Rodrigo Alonso

(A) Higher spin and amplitude methods [8, 6, 7, 2]

The coupling of a photon of momentum q to a particle of spin S and mass m is given by the 3pt amplitude

$$\mathcal{A}_{+S_AS_B} = Q \frac{\langle AB \rangle^{2S}}{m^{2S-1}} \frac{m[1\xi]}{\langle q\hat{p}_A \xi]}, \qquad \qquad \mathcal{A}_{-S_AS_B} = Q \frac{[AB]^{2S}}{m^{2S-1}} \frac{m\langle 1\xi \rangle}{\langle q\hat{p}_B \xi]}, \qquad (1)$$

where \pm are the photon helicities and the spin of particles A, B is encoded in the implicit index of square and angle brackets $|A_I\rangle$, $I = \pm 1/2$.

1. The coupling of an electron and a positive helicity photon in QFT reads,

$$e\left(\left.\left|B\right|,\left\langle B\right|\right)\gamma^{0}\left(\begin{array}{cc}0&\sigma^{\mu}\\\bar{\sigma}^{\mu}&0\end{array}\right)\left(\begin{array}{cc}\left|A\right\rangle\\\left|A\right]\right)\frac{\langle\xi|\sigma^{\mu}|q]}{\sqrt{2}\langle\xi\,q\rangle}(2\pi)^{4}\delta^{4}(p_{A}+p_{B}+q).$$

Work the expression above into angle and square bracket products, then divide and multiply by $\langle q\hat{p}_A \xi \rangle$ simplifying the numerator and using relations

$$\langle \xi | \sigma^{\mu} | q] \sigma_{\mu} = | \xi \rangle [q] \qquad \langle \xi | \sigma^{\mu} | q] \bar{\sigma}_{\mu} = | q] \langle \xi | \qquad \hat{q} \bar{\xi} + \hat{\xi} \bar{q} = \langle q \xi \rangle [\xi q] \mathbf{1}$$

$$\hat{p}_{i} | i] = m_{i} | i \rangle \qquad p_{A}^{\mu} q_{\mu} = 0 \rightarrow \hat{p}_{A} \bar{q} = -\hat{q} \bar{p}_{A} \qquad p_{A} + p_{B} + q = 0$$

with $m_A = m_B = m$, $m_\gamma = m_1 = 0$ to recover the form in (1) with $Q = e/\sqrt{2}$.

2. Show that the product which arises in the s-channel on shell contribution (i.e. $((p_A + p_1)^2 = (p_C + p_2)^2 = m^2)$) is gauge (i.e. ξ, ζ) independent and simplifies to

$$\frac{m[1\xi]}{\langle 1\hat{p}_A\xi]}\frac{m\langle 2\zeta\rangle}{\langle \zeta\hat{p}_C2]} = \frac{\langle 2\hat{p}_A1]^2}{m^2\langle 12\rangle[12]}$$

using relations given in exercise 1 above with substitutions $q \to p_1, A \to A$ and separately on the other vertex $q \to p_2, A \to C, \xi \to \zeta$.

3. In the lectures we derived the high energy behaviour of the s-channel contribution to Compton scattering

$$\mathcal{A}_{+-} = Q^2 \frac{m^2 t^S}{sm^{2S}}$$

unitarity demands, roughly, $\mathcal{A}(t \to s) \leq 16\pi$ (if you want it rigorous, here [8]). Obtain and discuss an estimate for the scale $E_* = \sqrt{s_*} = L_*^{-1}$ at which the bound is saturated and we expect to see the composite nature of higher spin for these particles ($\hbar c = 0.2$ GeV fm, $e^2/(4\pi) = 1/137$)

	Δ (Baryon)	a_2 (Meson)	$^{115}_{45}$ In (Nucleus)
mass(GeV)	1.2	1.3	107
spin	3/2	2	9/2
charge	e	e	guess

(B) Conserved magnitudes from Poincare symmetry [10, 9]

The infinitesimal effect on a scalar function (e.g. a scalar field and the Lagrangian) under translations $x^{\mu} \to x^{\mu} + \epsilon^{\mu}$, is $\delta_{\epsilon} f(x) = \epsilon^{\mu} \partial_{\mu} f$. Defining $\delta_{\epsilon} \mathcal{L} = \partial_{\mu} F^{\mu}$ we obtain an expression for the conserved current of translations

$$\epsilon^{\nu}J^{\mu}_{(\nu)} = \delta_{\epsilon}\phi \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\phi} - F^{\mu} = \epsilon^{\nu}T^{\mu}_{\ \nu}$$

with conserved magnitudes $\int dx^3 J^0_{(\mu)} = \int dx^3 T^0_{\mu} = P_{\mu}$ i.e. total energy and momentum.

- 1. Obtain the currents for Lorentz invariance $x^{\mu} \to x^{\mu} + \omega^{\mu\nu} x_{\nu}$ with $\omega_{\mu\nu} = -\omega_{\nu\mu}$ and express them in terms of $T_{\mu\nu}$ and x^{μ} .
- 2. Interpret the conserved magnitudes, first for rotations, then for boosts.

(C) Running of non-abelian coupling [1]

The Feynman rules in the background and Feynman gauge are (all momenta coming into the vertex)

while the gauge propagator is $-i\eta_{\mu\nu}\delta_{ab}/q^2$ and that of the ghosts $i\delta_{ab}/q^2$.

1. Consider the gauge propagator between two *conserved* currents and a self energy correction to it the form $\Sigma_{\mu\nu} = \Sigma_T q^2 \eta_{\mu\nu} + \Sigma_L q_\mu q_\nu$. Justify the dropping of Σ_L in the following equation

$$gJ_{\mu}\left(\frac{-i\eta^{\mu\nu}}{q^{2}} + \frac{-i\eta^{\mu\rho}}{q^{2}}(-i\Sigma_{\rho\sigma})\frac{-i\eta^{\sigma\nu}}{q^{2}}\right)gJ_{\nu} = gJ_{\mu}\left(\frac{-i\eta^{\mu\nu}}{q^{2}} + \frac{-i\eta^{\mu\nu}}{q^{2}}(-i\Sigma_{T}q^{2})\frac{-i}{q^{2}}\right)gJ_{\nu}$$

2. Using Feynman parameters and the results

$$\int \frac{d^4\ell}{(2\pi)^4} \frac{\ell_{\mu}\ell_{\nu}}{(\ell^2 - \Delta)^2} = \frac{1}{2} \frac{1}{(4\pi)^2} \Delta d_{\epsilon} \qquad \int \frac{d^4\ell}{(2\pi)^4} \frac{1}{(\ell^2 - \Delta)^2} = \frac{i}{(4\pi)^2} d_{\epsilon}$$

given $d_{\epsilon} \equiv \epsilon^{-1} - \log p^2 / \mu^2$ with p the momentum in Δ , compute $(P_{\mu\nu} = q^2 \eta_{\mu\nu} - q_{\mu}q_{\nu})$

$$-i\Sigma_{\rm ghost} = \bigwedge_{i \to \infty} = \frac{iC_{Ad}g_s^4}{3(4\pi)^2} \delta_{ab} P_{\mu\nu} d_{\epsilon} \quad -i\Sigma_{\rm gauge} = \bigwedge_{i \to \infty} = \frac{i10C_{Ad}g_s^2}{3(4\pi)^2} \delta_{ab} P_{\mu\nu} d_{\epsilon}$$

where $C_{Ad}\delta_{ab} = f_{acd}f_{bcd}$, the gauge loop has a 1/2 symmetry factor and the ghost an extra minus sign. Why do we get the precise combination in $P_{\mu\nu}$?

3. Put this result in the expression of 1 with the renormalised $(A = \sqrt{Z}A_R Z = 1 + \delta Z)$, 2pt function

$$-iJ_{\mu}\frac{1}{Zq^{2}}g^{2}\left(1-\Sigma_{T}\right)J_{\mu} = -iJ_{\mu}\frac{1}{q^{2}}g^{2}\left(1-\Sigma_{T}-\delta Z\right)J_{\mu} + \mathcal{O}(g^{6}) \equiv -iJ_{\mu}\frac{g_{\text{eff}}^{2}}{q^{2}}J^{\mu}$$

Use $\delta Z \propto 1/\epsilon$ to cancel the divergence. This being done, how does the effective coupling change with energy (p)? You can think of QCD with $C_{Ad} = N_c = 3$ and compare with the β function to check your result.

4. If you're up for it add N_f Dirac fermions (quarks) to find $-i\Sigma_{\psi} = ig^2 4C_{\psi}\delta P_{\mu\nu}d_{\epsilon}/3(4\pi)^2$.

(D) Self-consistent gauge theories

Consider the matter content of the SM with variable representations

	q_L	u_R	d_R	ℓ_L	e_R
$U(1)_Y$	Q_q	Q_u	Q_d	Q_ℓ	-1
$SU(2)_L$	n	1	1	2	1
$SU(3)_c$	r	r	r	1	1

where n, r label the representations by their dimension, i.e. n = 2, 3, 4, r = 3, 6, 8 etc.

1. Revise anomaly cancellation (including gravity×hypercharge) in this theory to obtain the constraints:

$$Q_u + Q_d - nQ_q = 0 \qquad r(Q_u + Q_d - nQ_q) - 1 - 2Q_\ell = 0 \qquad (2 - n) = 0$$

$$rC_nQ_q + C_2Q_\ell = 0 \qquad r(Q_u^3 + Q_d^3 - nQ_q^3) - 1 - 2Q_\ell^3 = 0$$

where C_n are Casimirs $\operatorname{tr}(T^a_{(n)}T^b_{(n)}) \equiv C_n \delta_{ab}$.

2. Solve for hypecharges as a function of r to find

Q_q	Q_u	Q_d	Q_ℓ	Q_{e_R}
$\frac{1}{2r}$	$\frac{1}{2r} + \frac{1}{2}$	$\frac{1}{2r} - \frac{1}{2}$	$-\frac{1}{2}$	-1

3. Take the symmetric representation r = 6 built out of two symmetrised fundamentals and give the electric charges of pions, protons and neutrons in this theory ($Q_{\rm em} = Q_Y + T_3$, with $T_3 = \sigma_3/2$ in the SU(2) fundamental).

(E) Non-invertible symmetry and pion decay[5, 3, 4]

Consider the insertion of the charge operator at t = 0 for the conserved gauge-invariant non-invertible symmetry found in [5] for the neutral pion action

$$S = \int_{t>0} d^4x \left(\frac{1}{2} \partial_\mu \pi_0 \partial^\mu \pi_0 + \frac{c_A \pi_0}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} \right) + \int_{t=0} d^3x \left(\frac{\pi}{N} J_A^0 + \frac{N}{4\pi b_A} a^i \epsilon_{ijk} \left[\frac{a^{jk}}{2} - \frac{b_A F^{jk}}{N} \right] \right) + \int_{t<0} d^4x \left(\frac{1}{2} \partial_\mu \pi_0 \partial^\mu \pi_0 + \frac{c_A \pi_0}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} \right)$$

where $\pi_0(t \to 0^+) = \pi_0(t \to 0^-) - 2\pi f_\pi/N$, $b_A = N_c(q_u^2 - q_d^2)$, $\tilde{F}^{\mu\nu} = \varepsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$, $a^{ij} = \partial^i a^j - \partial^j a^i$ while every other field is the same above and below t = 0.

1. Use the variational principle to compute the EoM for $A_{\mu} \rightarrow A_{\mu} + \delta A_{\mu}$ with care to account for boundary terms and show that these read

$$\int_{t=0}^{t=0} d^3x \left[\delta A_{\mu} c_A [\pi_0(0^-) - \pi_0(0^+)] \tilde{F}^{0\mu} + \frac{1}{2\pi} \epsilon_{ijk} \partial^j a^k \delta A^i \right] = \int_{t=0}^{t=0} d^3x \delta A_i \epsilon^{ijk} \left[c_A \frac{2\pi f_\pi}{N} F^{jk} - \frac{1}{4\pi} a^{jk} \right]$$

2. Combine the equation above with the EoM for a and show that consistency demands

$$c_A = \frac{N_c (q_u^2 - q_d^2)}{8\pi^2 f_\pi}$$

References

- [1] L. F. Abbott. Introduction to the Background Field Method. Acta Phys. Polon. B, 13:33, 1982.
- [2] Nima Arkani-Hamed, Tzu-Chen Huang, and Yu-tin Huang. Scattering amplitudes for all masses and spins. JHEP, 11:070, 2021.
- [3] Lakshya Bhardwaj, Lea E. Bottini, Ludovic Fraser-Taliente, Liam Gladden, Dewi S. W. Gould, Arthur Platschorre, and Hannah Tillim. Lectures on generalized symmetries. *Phys. Rept.*, 1051:1–87, 2024.
- [4] T. Daniel Brennan and Sungwoo Hong. Introduction to Generalized Global Symmetries in QFT and Particle Physics. 6 2023.
- [5] Yichul Choi, Ho Tat Lam, and Shu-Heng Shao. Noninvertible Global Symmetries in the Standard Model. *Phys. Rev. Lett.*, 129(16):161601, 2022.
- [6] Herbi K. Dreiner, Howard E. Haber, and Stephen P. Martin. Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry. *Phys. Rept.*, 494:1–196, 2010.
- [7] Henriette Elvang and Yu-tin Huang. Scattering Amplitudes. 8 2013.
- [8] M. Jacob and G.C. Wick. On the general theory of collisions for particles with spin. Annals of Physics, 7(4):404-428, 1959.
- [9] R.A. https://www.ippp.dur.ac.uk/ ralonso/iqft.pdf. My QFT, notes.
- [10] David Tong. http://www.damtp.cam.ac.uk/user/tong/qft.html. QFT, Lectures.