

Identification of Basepairs in 3D Structures

Bohdan Schneider & Base Pairing Working Group

Computational Approaches to RNA Structure and Function

2024-07-30

Program

- Basepairing provides fundamental information about RNA
- Determining basepairs from 3D structures
- New algorithm to assign pairs
- Validation of basepair geometries

Basepairing provides fundamental information

- Watson-Crick, or canonical G-C and A-U pairs form the core of RNA structures.
- Basepairs critical for RNA fold are non-canonical, often sequentially distant.
- Lack of correctly assigned non-W-C pairs hamper ability to:
 - A. predict 2D & 3D structures.
 - B. run more robust sequence alignments.

Problems with Basepair Assignment in 3D Structures

• There is not enough high-quality data.

- PDB-annotated basepairs.
- Free programs assign basepairs inconsistently.

There Are not Enough High Quality NA Models

Amino acids and nucleotides in high-resolution structures (≤2.0 Å)

There Are not Enough High Quality NA Models

Amino acids and nucleotides in high-resolution structures (≤2.0 Å)

PDB-Annotated Basepairs Are often Incomplete & Incorrect

mmCIF category ndb_struct_na_base_pair sometimes missing; order of bases not defined

Free programs assign basepairs inconsistently

FR3D

- Sarver, M., C. L. Zirbel, J. Stombaugh, A. Mokdad and N. B. Leontis (2008): FR3D: finding local and composite
 recurrent structural motifs in RNA 3D structures. J Math Biol 56: 215-252.
- PDB-annotated pairs
 - program *maxit*, mmCIF category *ndb_struct_na_base_pair*
- ClaRNA
 - Walen, T., G. Chojnowski, P. Gierski and J. M. Bujnicki (2014): ClaRNA: a classifier of contacts in RNA 3D structures based on a comparative analysis of various classification schemes. Nucleic Acids Res 42: e151.
- MC-annotate
 - Gendron, P., S. Lemieux and F. Major (2001): Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol 308: 919-936
- DSSR
 - Li, S., W. K. Olson and X. J. Lu (2019): Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res 47: W26-W34.
- RNAView
 - Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman HM, Westhof E (2003): Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res 31: 3450-3460.

Benchmarking Identified Various Levels of Problems

	DNA	RNA	mmCIF	symmetry	models	alt	ins	scores
PDB					X			X
DSSR					X			X
FR3D								X
contacts (*)								
clarna	X		X	X	X	X	~	*
MC-Annotate	X		X	X	*	~		X
rnaview	√ *		X	X	~	~	~	X

(*) Contacts is being developed at IBT, not published

Going beyond the Benchmarking: Develop a New Method of Basepair Assignment

• Goal:

to define universal set of geometric parameters applicable to all types of basepairs

- The parameters must describe all basepair classes as described in the Leontis-Westhof classification
 - twelve L-W classes plus combinations of A/G/U/C bases in the pairs generate ~150 types of which 127 are observed
- Describe both DNA and RNA

C	Slycosidic		
	bond	Interacting edges	Local strand
1	Cis	Watson-Crick/Watson-Crick	Antiparallel
2	Trans	Watson-Crick/Watson-Crick	Parallel
3	Cis	Watson-Crick/Hoogsteen	Parallel
4	Trans	Watson-Crick/Hoogsteen	Antiparallel
5	Cis	Watson-Crick/Sugar Edge	Antiparallel
6	Trans	Watson-Crick/Sugar Edge	Parallel
7	Cis	Hoogsteen/Hoogsteen	Antiparallel
8	Trans	Hoogsteen/Hoogsteen	Parallel
9	Cis	Hoogsteen/Sugar Edge	Parallel
10	Trans	Hoogsteen/Sugar Edge	Antiparallel
11	Cis	Sugar Edge/Sugar Edge	Antiparallel
12	Trans	Sugar Edge/Sugar Edge	Parallel

New Transparent Set of Parameters Used to Assign Basepairs

- 1. Hydrogen bonds
 - H-bonds > atom-atom contacts
- 2. Co-planarity of the bases

- The redundant set of parameters contains 26 parameters
 - distribution minima + maxima are assigned
 - the limits have distinct values for different basepair classes

Simplified Protocol of Basepair Assignment

- Select the Reference Set of structures/nucleotides.
- Calculate all base-base contacts ≤ 4.0 Å.
- Sort the contacts by sequences.
 - A-A, A-C, A-U, A-G, C-U, ...
- These pairs represent potential basepairs.
 - ... in the PDB, a few millions in the Reference Set hundreds of thousands ...
- For all potential basepairs:
 - Calculate the parameter values.
 - Sort the parameter values by values expected in individual L-W classes.
 - Assign the class.
 - Validate quality of the assigned pair (in progress).

1. Hydrogen Bonds —> Atom-Atom Contacts

Atom-Atom Contacts: Described by Distances and

Angles

2. Co-planarity of the Bases: a Complicated Geometric Problem ...

• ... solved by defining a redundant set of angles and distances between base parts.

- Aircraft angles
 - yaw-pitch-roll
- Angles and distances between the edges and the bases.
 - ... calculated between the edge of **BASE1** to the plane of **BASE2**.
- Angles between the hydrogen bond vectors and the base planes.

Aircraft angles

The New Assignment Is at basepairs.datmos.org

- The web allows interactive play with the assignment by changing the structure ensemble and limiting values of all parameters
- Development version!!!

6ufm A-C11 · · · A-A9

6cu1 A-C56 · · · A-A54

The Next Step: Find the Core Regions of the Parameters Defining "Reference Basepairs"

- The Reference Basepairs will be selected from parameter distributions by Kernel Density Estimation
 - the limits of the KDE values will be determined so that numbers of Reference Basepairs will be:
 - for large classes (cWW GU and the like) ~ a thousand
 - for midsize classes (tWH UA) ~hundreds
 - for small classes with less than a hundred cases, KDE will be expert-adjusted
- rmsd between the validated and the Reference Basepairs will be the validation measure.

To Be Done

- Be able to assign basepairs on the fly for any uploaded structure.
- Finish development of validation protocol.
 - necessary to have a quantitative measure of basepair quality.
- Mature the web *basepairs.datmos.org*.
- Integrate new basepair assignment into the annotation web dnatco.datmos.org.

Thank you for your time!

Initiated by ELIXIR 3D-Bioinfo Community

 Supported by enthusiasm of the Base Pairing Working Group:

Helen Berman

Lada Biedermannová

Jiří Černý

Robbie Joosten

Catherine Lawson

Stanislav Lukeš

Marcin Magnus

Brinda Vallat

Eric Westhof

Craig Zirbel

Bohdan Schneider

