
RNA structure determination
via chemical probing

Christine Heitsch, Georgia Tech Math (+ SCMB Director)

Considering the next step in your career? Or know someone who is? Let’s chat!



AA long time ago (2004), in a journal far far away,
a long time in a journal far, far away (PNAS) . . .

“Chemical modification is a technique that reveals solvent accessible nucleotides
. . . and an algorithm allowing constraints from such chemical modification has
not been reported.”

“In this study, a dynamic programming algorithm for prediction of RNA
secondary structure has been revised to use experimentally determined chemical
modification constraints. These constraints dramatically improve the accuracy of
structure prediction when free energy minimization alone predicts <40% of
known base pairs.”
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Chemical probing: our only hope?

1. Reactive if accessible. If reactive, then accessible!

2. Accessible if unpaired1. If accessible, then unpaired2!

3. Ergo, forbid3 highly4 reactive positions from pairing.

Voila! Minimum free energy prediction accuracy increases

(significantly) under chemical modification constraints5.

1or “in A-U or G-C pairs at the ends of helices, G-U pairs anywhere, or adjacent to G-U pairs”
2almost always
3“conformations inconsistent with the data”, i.e.
4but maybe not moderately and definitely not weakly (as if adjectives were well-defined)
5which were both “hard” (must be satisfied) and “negative” (always prohibit, never enforce)
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“Never tell me the odds!”

Feeding an optimization algorithm high quality information helps.

A lot.

But. . .

Can the process be made more automatic?

Systematic?

Comprehensive?

Etc?
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May the force be with you
Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single
nucleotide resolution, KA Wilkinson, EJ Merino & KM Weeks, Nature Protoc 2006.

SHAPE strategy:

1. Chemical modifications

2. Read-out changes

3. Infer structure

Predict secondary structure

using data as “soft” constraints

(i.e. “restraints”)

in new reward/penalty function

under NNTM optimization.
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Understanding SHAPE-directed MFE predictions

Sükösd, Swenson, Kjems, & Heitsch, Nucleic Acids Res, 2013.

A probabilistic model for SHAPE data:
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λ = 0.681
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Raw data from Deigan et al, PNAS 2009; K Weeks, personal communication.

Use model to get statistics on accuracy improvement over

1000 trials per sequence for a diverse set of 16S ribosomal RNA.
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Predictions can vary (a lot!) in accuracy,
but generally preserve accurate MFE pairs

‘SHAPE’

vs real

‘SHAPE’

vs MFE

E.cuniculi
E.cuniculi, REAL − colors = proportion of SHAPE−directed structures that have that pair
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E.coli
E.coli, REAL − colors = proportion of SHAPE−directed structures that have that pair
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H.volcanii
H.volcanii, REAL − colors = proportion of SHAPE−directed structures that have that pair
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How “directable” are MFE predictions?
It depends on the sequence!

Precision

( tp
tp+fp)

Recall

( tp
tp+fn)
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Parameterize ∆GS(i) = m ln(S(i) + 1) + b, accuracy: 0

E.cuniculi, R
EAL − colors = proportion of SH

APE−directed structures that have that pair
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State-of-the-art? (According to Illumina. . . )

SHAPE-Seq (Lucks et al, PNAS 2011):

SHAPE-MaP (Siegfied et al, Nat Methods 2014):

https://emea.illumina.com/science/sequencing-method-explorer/kits-and-arrays/shape-{seq,map}.html

According to J White Bear’s talk: SHAPE-nanopore/nanoSHAPE

(Leger et al, Nat Commun 2021; Stephenson et al, Cell Genom 2022)
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DMS-MaP: different chemistry, same story

1. New procedure for introducing chemical modifications

2. High-throughput sequencing read-out of alterations

3. “Black box” bioinformatics to infer structure
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Relative difference of maximal helices (ReDMaxH)
with Alfie Brownless, Afaf Saaidi & Alain Laederach

Goal: Identify base pairing signal in DMS-MaP data.

E. coli 5S rRNA (Mustoe et al, PNAS 2019)

Theory: Signal in co-occurring modifications.

Practice: Complex dependencies.
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Binary mutation distribution

Mutation counts/reads vary over multiple orders of magnitude.
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Relative difference computation

Input: Matrices M and N where mij = # of reads where both

i and j are mutated and nij = total # of reads covering both.

Estimate binary/joint and unary/independent probabilities:

p̂ij =
mij

nij
and p̂k =

mkk

nkk
for k = i, j.

Define:

Rdij =
p̂ij − p̂ip̂j

p̂ip̂j
=

p̂ij
p̂ip̂j

− 1

Actually work with percentage (×100 value)
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Rd follow Laplace’s first law of errors (1774)

f(x) =
1

2β
exp−|x− µ|

β
with median µ and spread β

Not as nice analytically as second law (1778, aka Gaussian), but

often a much better error model6 (Wilson, J Am Stat Assoc 1923).
6
“No phenomenon is better known perhaps, as a plain matter of fact, than that the frequencies which we actually meet in everyday

work in economics, in biometrics, or in vital statistics, very frequently fail to conform at all closely to the so-called normal distribution.”
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This isStrongest signal AROUND base pairs
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Tuple census under Rd classification
over Moore neighborhoods for maximal helices

A tuple [i, j] is ‘high’ if Rdij −µ > λβ and ‘extreme’ if > (λ+3)β.

Default λ = 6, but can change to alter precision/recall trade-offs.

The Moore neighborhood of base pair (i, j) is the set of tuples

{[i+ a, j + b] | a, b ∈ {−1, 0, 1}}.

A helix (i, j, k) is maximal if (i+m, j −m) are canonical for

0 ≤ m < k, neither (i− 1, j + 1) nor (i+ k, j − k) are, and

j − i− 2k ≥ 2.

For each maximal helix of length ≥ 4, count the number of

extreme and of high tuples over its Moore neighborhood.
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Build structure(s) greedily but without conflict
Rate Nucleotide Pairings

Rank Maximal Helices

(79,97,8)

(18,65,6)

(31,51,4)

Generate Summary Structures
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Many advantages to ReDMaxH approach

holo/apoA

holo/apoA holo/apoB apoA holo/apoA holo/apoB

1. Confirm read depth (= data quality) with Laplace distribution.

2. Directly compare/contrast helix support in different conditions.

3. Structure prediction independent of NNTM optimization. Etc.
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In conclusion: keep it simple

(Robust too. Comprehensible is good. Interpretable as well. And. . . )

ReDMaxH structure for human RMRP in vitro DMS-MaP data
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