RNA in 3D: more than canonical pairs and "unpaired loops"

> Jiří Černý jiri.cerny@ibt.cas.cz

Laboratory of Structural Bioinformatics of Proteins Institute of Biotechnology, Czech Academy of Sciences

DNATCO Team:

Paulína Božíková Michal Malý Jakub Svoboda Terezie Prchalová Bohdan Schneider

- Proteins
 - Pattern of backbone hydrogen bonds

β-Sheet (3 strands)

α-helix

- Proteins
 - Pattern of backbone hydrogen bonds

• Equivalent to φ/ψ backbone torsions

- Base pairing (hydrogen bond pattern) is only a small part of the structure
 - Using it as NA secondary structure is insufficient
 - In practice this is even worse because in most cases only canonical WC pairs are considered

- Only a combination of much richer, more complicated base interactions (including non-canonical pairs) and backbone conformations can describe the full 3D structure in "2D"
 - NA bases are hetero-aromatic moieties with high dipoles, strong H-bonds and base stacking (vdW)
 - Stacking is responsible for the helicity, and vdW strength is comparable to H-bonding contribution
 - Sugar-phosphate backbone contains larger number of polar atoms (H-bonds) and negatively charged polarizable phosphodiester group
 - extra O2' OH in RNA adds further complexity
 - Water/ions/ligands play important role in defining the structure as well

3D structures

- Much less structural data is available for Nucleic Acids
 - 200k protein structures in PDB
 - 16k NA structures in PDB
 - 42M AAs *vs.* 100k nucleotides (< 2Å resolution)
- No reliable algorithms for NA structure
 - Annotation and Validation
 - Modeling and Refinement
 - Including bond lengths and angles, not "only" the expected backbone torsions uncertainties
- Using protein tools and approaches for NAs just doesn't work
- We are developing a set of tools, databases, and workflows available at the "database of molecular structures" datmos.org

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
 - Automated assignment (no expert knowledge needed)
 - Parameter free (based on/derived from data only)
- From atomic coordinates
 - Backbone conformations & Structural motifs
 - How to assign/annotate *local NA conformations*?
 - Cartesian coordinates impractical
 - many degrees of freedom, no simple Ramachandran-like plot possible
 - working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block
 - clustering limited by (un)available structural data (tetranucleotide would be better)
 - (di)Nucleotide Conformations (96+1 NtC classes)

Dinucleotide block and its backbone parameters.

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
 - Automated assignment (no expert knowledge needed)
 - Parameter free (based on/derived from data only)
- From atomic coordinates
 - Backbone conformations & Structural motifs
 - How to assign/annotate local NA conformations?
 - Cartesian coordinates impractical
 - many degrees of freedom, no simple Ramachandran-like plot possible
 - working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block
 - clustering limited by (un)available structural data (tetranucleotide would be better)
 - (di)Nucleotide Conformations (96+1 NtC classes)

Rules of transcription factors and nucleosome interactions.

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
 - Automated assignment (no expert knowledge needed)
 - Parameter free (based on/derived from data only)
- From atomic coordinates
 - Backbone conformations & Structural motifs
 - How to assign/annotate local NA conformations?
 - Cartesian coordinates impractical
 - many degrees of freedom, no simple Ramachandran-like plot possible
 - working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block
 - clustering limited by (un)available structural data (tetranucleotide would be better)
 - (di)Nucleotide Conformations (96+1 NtC classes)

2013: DNA only, 18 conformers (based on 2008 work)

Assignment of DNA conformers

The server assigns 18 conformers based on the values of their backbone torsion angles.

- Table defining the conformers is below and Cartesian coordinates of their representative samples can be downloaded.
- The conformers consist of three BI-forms, two BII-forms, three A-forms, three Z-forms, four mixed A/B forms, and three conformers with bases in the syn orientation.
- Conformationally extreme conformers are not assigned to any of the above; these steps formally represent the 19th conformer.
- More information about the conformers and the ways how the conformers were identified can be found in the paper by Svozil et al., Nucleic Acids Research, 36, 3690 (2008).
- Assignment of DNA conformers has been used in bioinformatic analysis of protein/DNA interfaces in the paper by <u>Schneider et al., Nucleic Acids research, 42, 3381 (2014).</u>

Please, read before you upload coordinates of your DNA:

- DNA steps are identified based on atom names as defined by the PDB format, version 3.1 or above (sugar atoms as 04' not 04*).
- Steps with non-standard or missing atoms that define torsions $\delta \dots \delta + 1$, χ , and $\chi + 1$ are not considered in the assignment process
- Conformers are assigned for modified residues that contain standard names for atoms defining the step torsions between δ and δ+1 and χ and χ+1.

B	ro	wse	for	the	PDB	file

or

Browse... No file selected.

Enter PDB ID

Nucleotide conformers (ntC) used for the assignment of steps. Conformers are identified by numbers as in Svozil et al. Nucleic Acids Research, 36, 3690 (2008).

ntC	Description	δ	З	ζ	a+1	<mark>β+1</mark>	γ+1	δ+1	Х	χ+1
8	"canonical" A-DNA	83	205	287	294	174	54	83	199	203
13	A-DNA, BI-like χ	89	201	275	294	162	54	89	244	244
19	A-DNA, α+1/γ+1 crank	84	194	290	149	192	182	88	205	188
41	A-to-B, δ>C3'-, δ+1 C2'-endo	90	196	280	299	179	55	142	222	256
32	BI-to-A, δ+1 O4'-endo	129	186	264	295	170	52	98	247	233
109	BII-to-A, δ+1>C3'-endo	142	213	181	297	139	52	90	273	207
110	as 109 plus α +1/ γ +1 crank, high β +1	146	257	186	60	224	196	90	260	200
54	"canonical" BI	136	183	259	303	181	44	138	252	259
50	BI variant	129	181	265	300	177	50	123	246	245
86	BII variant	140	201	216	314	154	46	140	262	253
96	BII variant	143	245	170	297	141	46	141	271	257

2016: DNA, 44 conformers

Assignment of DNA conformers (DNATCO v2.3)

The server assigns 44 DNA conformers based on the values of their 9 backbone torsion angles.

- Table defining the conformers is below; definition of the conformers, their esd values and Cartesian coordinates of their representative samples can be downloaded.
- Conformers are identified by four-letter symbols. "A", "B", "Z" letters imply stacked bases with first/second nucleotide in A, B, or Z like conformation. "NS" lables steps with Not Stacked bases. "S" at 3rd or 4th position means that the 1st or 2nd base is in syn orientation.

Tutorial

Test run (PDB ID 1bna)

- Conformationally extreme conformers are not assigned to any of the above; these steps formally represent the 45th conformer.
- How to cite:
 - The web service in version 2 is described in Černý et al., Nucleic Acids Research, 44, W284 (2016).
 - The conformers and the ways they were identified is described in the paper by Schneider et al., Acta Cryst D, 74, 52-64 (2018).
 - For example of application of the DNA Structural Alphabet see Schneider et al., Genes, 8(10), 278, (2017).

Please, read before you upload coordinates of your DNA:

- DNA steps are identified based on atom names as defined by the PDB format, version 3.1 or above (sugar atoms as 04' not 04*).
- Contact the authors for off-line analysis of non-standard or large structures (multiple NMR MODELs or MD simulation trajectory).
- Steps with non-standard or missing atoms that define torsions $\delta \dots \delta + 1$, χ , and $\chi + 1$ are not considered in the assignment process.
- Conformers are assigned for modified residues that contain standard names for atoms defining the step torsions between δ and δ +1 and χ and χ +1.

News and changes:

- v2.3:
 - Interactive 3D Complement pages for publications from <u>2017 (I3D)</u> and <u>2018 (I3D)</u> can be found at <u>Proteopedia</u>.
 - \circ the improved assignment protocol involves known δ /pseudorotation angle correlation for detection of outliers
 - a reference (representative NtC structure) is superposed upon the selected step and cartesian RMSD for atoms defining the nine torsions is reported

- $\circ\,$ protein/hetero/water groups from the original PDB can be displayed (P/H/W buttons)
- introduced a tetrahedron centered at the phosphate:
 - its size represents the confal value
 - its user adjustable color allows simple recognition of A/BI/BII/miB/Z/NS/SYN character of a step
- $\circ\,$ new buttons (D) reset to default colors; (Q) toggle quality, and (T) transparent tetrahedrons

• <u>v2.2</u>:

2019: 96 conformers, universal for DNA and RNA

2021: using Mol*

eli ir HOME	HELP TUTORIAL	TABLE OF CONFORMERS	BROWSE CONFORMERS	ABOUT HOW TO	CITE DOWNLOAD	₹ jibt
Ass	DNAT(CO ^{??} v4.1	ers		x1 c5 o1 e1 c1 c1 c2 g2 y2 o2 o3'	
	Submit own P Coordinate Electron density map (optional	DB or CIF file SUBMIT Browse No file selected.		Enter F	PDB ID (e.g. <u>1bna</u>) RCSB-PDB v SUB	MIT

2023: client-side web application

Annotation

© 2024 DNATCO Team

Annotation

© 2024 DNATCO Team

Supported by Institute of Biotechnology & Elixir CZ

Annotation

© 2024 DNATCO Team

w to cite Help Contai

© 2024 DNATCO Team

© 2024 DNATCO Team

Supported by Institute of Biotechnology & Elixir CZ

© 2024 DNATCO Team

© 2024 DNATCO Team https://dnatco.datmos.org/v5.0

How to cite Help Contact

Supported by Institute of Biotechnology & Elixir CZ

Refinement and Modeling with NtCs

Refinement and Modeling with NtCs

- Restraints for xray and cryoEM refinement
 - Phenix and REFMAC
- Enhanced sampling MD in gromacs
 - PMF-based enhanced sampling MD
 - tens of ns superior to μs classical MD
- Modeling and density fitting
 - MMB (MacroMoleculeBuilder)
 - Coot

RNA in 3D: more than canonical pairs and "unpaired loops"

> Jiří Černý jiri.cerny@ibt.cas.cz

Laboratory of Structural Bioinformatics of Proteins Institute of Biotechnology, Czech Academy of Sciences

DNATCO Team:

Paulína Božíková Michal Malý Jakub Svoboda Terezie Prchalová Bohdan Schneider

