RNA in 3D: more than canonical pairs and "unpaired loops"

> Jiří Černý jiri.cerny@ibt.cas.cz

Laboratory of Structural Bioinformatics of Proteins Institute of Biotechnology, Czech Academy of Sciences

DNATCO Team:

Paulína Božíková Michal Malý Jakub Svoboda Terezie Prchalová Bohdan Schneider

- **Proteins**
	- Pattern of backbone hydrogen bonds

- **Proteins**
	- Pattern of backbone hydrogen bonds

● Equivalent to φ/ψ backbone torsions

- Base pairing (hydrogen bond pattern) is only a small part of the structure
	- Using it as NA secondary structure is insufficient
	- In practice this is even worse because in most cases only canonical WC pairs are considered

- Only a combination of much richer, more complicated **base interactions** (including non-canonical pairs) **and backbone conformations** can describe the full 3D structure in "2D"
	- NA bases are hetero-aromatic moieties with high dipoles, strong H-bonds and base stacking (vdW)
	- Stacking is responsible for the helicity, and vdW strength is comparable to H-bonding contribution
	- Sugar-phosphate backbone contains larger number of polar atoms (H-bonds) and negatively charged polarizable phosphodiester group
	- extra O2' OH in RNA adds further complexity
	- Water/ions/ligands play important role in defining the structure as well

3D structures

- Much less structural data is available for Nucleic Acids
	- 200k protein structures in PDB
	- 16k NA structures in PDB
	- 42M AAs *vs.* 100k nucleotides (< 2Å resolution)
- No reliable algorithms for NA structure
	- Annotation and Validation
	- **Modeling and Refinement**
	- Including bond lengths and angles, not "only" the expected backbone torsions uncertainties
- Using protein tools and approaches for NAs just doesn't work
- We are developing a set of tools, databases, and workflows available at the "database of molecular structures" datmos.org

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
	- Automated assignment (no expert knowledge needed)
	- Parameter free (based on/derived from data only)
- From atomic coordinates
	- Backbone conformations & Structural motifs
		- How to assign/annotate *local NA conformations*?
			- Cartesian coordinates impractical
			- many degrees of freedom, no simple Ramachandran-like plot possible
			- *working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block*
			- clustering limited by (un)available structural data (tetranucleotide would be better)
			- (di)Nucleotide Conformations (*96+1 NtC classes*)

Dinucleotide block and its backbone parameters.

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
	- Automated assignment (no expert knowledge needed)
	- Parameter free (based on/derived from data only)
- From atomic coordinates
	- Backbone conformations & Structural motifs
		- How to assign/annotate *local NA conformations*?
			- Cartesian coordinates impractical
			- many degrees of freedom, no simple Ramachandran-like plot possible
			- *working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block*
			- clustering limited by (un)available structural data (tetranucleotide would be better)
			- (di)Nucleotide Conformations (*96+1 NtC classes*)

Rules of transcription factors and nucleosome interactions.

Nucleic acid backbone conformations

- Identification of important nucleic acid structure features at different levels of detail
	- Automated assignment (no expert knowledge needed)
	- Parameter free (based on/derived from data only)
- From atomic coordinates
	- Backbone conformations & Structural motifs
		- How to assign/annotate *local NA conformations*?
			- Cartesian coordinates impractical
			- many degrees of freedom, no simple Ramachandran-like plot possible
			- *working with the sugar phosphate backbone (torsions and distances) in a dinucleotide block*
			- clustering limited by (un)available structural data (tetranucleotide would be better)
			- (di)Nucleotide Conformations (*96+1 NtC classes*)

2013: DNA only, 18 conformers (based on 2008 work)

Assignment of DNA conformers

The server assigns 18 conformers based on the values of their backbone torsion angles.

- Table defining the conformers is below and Cartesian coordinates of their representative samples can be downloaded.
- . The conformers consist of three BI-forms, two BII-forms, three A-forms, three Z-forms, four mixed A/B forms, and three conformers with bases in the syn orientation.
- Conformationally extreme conformers are not assigned to any of the above; these steps formally represent the 19th conformer.
- More information about the conformers and the ways how the conformers were identified can be found in the paper by Svozil et al., Nucleic Acids Research, 36, 3690 (2008).
- . Assignment of DNA conformers has been used in bioinformatic analysis of protein/DNA interfaces in the paper by Schneider et al., Nucleic Acids research, 42, 3381 (2014).

Please, read before you upload coordinates of your DNA:

- DNA steps are identified based on atom names as defined by the PDB format, version 3.1 or above (sugar atoms as O4' not O4*).
- Steps with non-standard or missing atoms that define torsions δ ... $\delta+1$, χ , and $\chi+1$ are not considered in the assignment process
- Conformers are assigned for modified residues that contain standard names for atoms defining the step torsions between δ and $\delta+1$ and χ and $\chi+1$.

SUBMIT

or

Browse... | No file selected. **SUBMIT**

B0

2016: DNA, 44 conformers

Assignment of DNA conformers (DNATCO v2.3)

The server assigns 44 DNA conformers based on the values of their 9 backbone torsion angles.

- · Table defining the conformers is below; definition of the conformers, their esd values and Cartesian coordinates of their representative samples can be downloaded.
- Conformers are identified by four-letter symbols, "A", "B", "Z" letters imply stacked bases with first/second nucleotide in A, B, or Z like conformation, "NS" lables steps with Not Stacked bases. "S" at 3rd or 4th position means that the 1st or 2nd base is in syn orientation.

Tutorial

Test run (PDB ID 1bna)

- Conformationally extreme conformers are not assigned to any of the above; these steps formally represent the 45th conformer.
- · How to cite:
	- The web service in version 2 is described in Cerny et al., Nucleic Acids Research, 44, W284 (2016).
	- The conformers and the ways they were identified is described in the paper by Schneider et al., Acta Cryst D, 74, 52-64 (2018).
	- For example of application of the DNA Structural Alphabet see Schneider et al., Genes, 8(10), 278, (2017).

Please, read before you upload coordinates of your DNA:

- DNA steps are identified based on atom names as defined by the PDB format, version 3.1 or above (sugar atoms as 04' not 04*).
- Contact the authors for off-line analysis of non-standard or large structures (multiple NMR MODELs or MD simulation trajectory).
- Steps with non-standard or missing atoms that define torsions δ ... δ +1, χ , and χ +1 are not considered in the assignment process
- Conformers are assigned for modified residues that contain standard names for atoms defining the step torsions between δ and $\delta+1$ and χ and $\chi+1$.

News and changes:

- \cdot v2.3:
	- o Interactive 3D Complement pages for publications from 2017 (13D) and 2018 (13D) can be found at Proteopedia.
	- \circ the improved assignment protocol involves known δ /pseudorotation angle correlation for detection of outliers
	- o a reference (representative NtC structure) is superposed upon the selected step and cartesian RMSD for atoms defining the nine torsions is reported
	- o protein/hetero/water groups from the original PDB can be displayed (P/H/W buttons)
	- o introduced a tetrahedron centered at the phosphate:
		- its size represents the confal value
		- its user adjustable color allows simple recognition of A/BI/BII/miB/Z/NS/SYN character of a step
	- \circ new buttons (D) reset to default colors; (Q) toggle quality, and (T) transparent tetrahedrons
- \bullet $V2.2$:

2019: 96 conformers, universal for DNA and RNA

2021: using Mol*

2023: client-side web application

Annotation

© 2024 DNATCO Team

Supported by Institute of Biotechnology & Elixir CZ

Annotation

© 2024 DNATCO Team

Supported by Institute of Biotechnology & Elixir CZ $\frac{1}{\sqrt{2}}$ ibt

Annotation

© 2024 DNATCO Team

How to cite Help Contact

© 2024 DNATCO Team

© 2024 DNATCO Team

Supported by Institute of Biotechnology & Elixir CZ

© 2024 DNATCO Team

© 2024 DNATCO Team

https://dnatco.datmos.org/v5.0

How to cite Help Contact

Supported by Institute of Biotechnology & Elixir CZ

Refinement and Modeling with NtCs

Refinement and Modeling with *NtC*s

- Restraints for xray and cryoEM refinement
	- Phenix and REFMAC
- Enhanced sampling MD in gromacs
	- PMF-based enhanced sampling MD
	- tens of ns superior to μs classical MD
- Modeling and density fitting
	- MMB (MacroMoleculeBuilder)
	- Coot

RNA in 3D: more than canonical pairs and "unpaired loops"

> Jiří Černý jiri.cerny@ibt.cas.cz

Laboratory of Structural Bioinformatics of Proteins Institute of Biotechnology, Czech Academy of Sciences

DNATCO Team:

Paulína Božíková Michal Malý Jakub Svoboda Terezie Prchalová Bohdan Schneider

