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Motivation

m RNA design involves designing RNA sequences that fold into a
desired structure to perform a specific function.

m The only data set available and recognized by the scientific
community for this purpose is EteRNA10O, a collection of
structures assembled manually by experts:

m 100 distinct secondary structure design challenges with lengths varying
between 12 and 400 nucleotides and an average length of 127
nucleotides.

m Some algorithms managed to successfully solve most of the
EteRNA100 design challenges.




Motivation

m Need for a new community-wide standard benchmark specifically
designed for RNA design and RNA modeling algorithms.

m We created a very large, comprehensive and general-purpose
dataset of over 15 million secondary structures with lengths
ranging from 7 to 10,098.

m Our focus was mainly on multi-branched loops, which are often
challenging to predict accurately.

m This dataset contains a diverse range of difficult-to-design motifs,
from internal loops to n-way junctions (where n >= 3):

m N-way junctions are substructures which have three or more helical
“arms” (N) branching off. o
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Data sources

m Separate structures from Rfam and RNAsolo provide
complementary information that together allows for a more
comprehensive and accurate understanding of RNA structure
and function.

m Rfam 14 (https://rfam.org/)
m Database being collection of RNA families.

m Secondary structures help identify and characterize motifs such
as loops, stem-loops, and other structural elements that are
evolutionarily conserved and may have functional significance.




Data sources

m RNAsolo (https://rnasolo.cs.put.poznan.pl/)

m A self-updating database for experimentally determined RNA 3D
structures, curated from the Protein Data Bank (PDB).

m Cleans files from non-RNA data.

m Offers downloads of various data subsets - whether clustered by
resolution, source, or format

m As of June 20, 2024 hosts 15,049 RNA structures, organized into
3,356 equivalence classes, each exemplified by a cluster
representative.

m We collected non-redundant 3D structures, which we then
annotate for their canonical 2D representations.




Data preparation pipeline: from Rfam and
RNAsolo to extracted loop motifs

O
O O

Download FASTA files
from Rfam and non-
redundant mmCIF files
from RNAsolo

Annotation (RNAsolo)
O

Run RNApolis annotator
for every mmCIF file to
extract 2D structure from

the 3D coordinates O

Motif extraction O

Divide every 2D structure

into structural elements
Loops .
(stems, loops, single
O

strands)

For each loop, generate:

the loop and one that also O

covers adjacent stems ()

Generate CSV files with

extracted loop fragments

separately for Rfam and
RNAsolo datasets

m Rfam 14

We collected covariance models and seed
sequences for all RNA families from the Rfam
14 database.

We developed script rfam-folder
(https://github.com/tzok/rnapolis-py) for
generating consensus secondary structure for
each RNA sequence in every Rfam family.

The textual results were transformed into
standardized dot-bracket notation.

The resultant 2D  structure is often
underfolded, as it relies on strong signals from
a large number of aligned sequences

To address this limitation, the rfam-folder runs
RNAfold, treating the initial 2D structure as a
hard constraint to fill unpaired regions with
probable base pairs.



https://github.com/tzok/rnapolis-py

Data preparation pipeline: from Rfam and
RNAsolo to extracted loop motifs

m The obtained 2D structures represent a more complete and
realistic ones.

m For a more diversified dataset, we gathered results from both
approaches: the straightforward unification of Infernal’'s outputs
and the refined structures generated by RNAfold with hard
constraints.




Data preparation pipeline: from Rfam and
RNAsolo to extracted loop motifs

@ RNAsoIo

m We used the annotator script from the RNApolis-py library for
each PDBx/mmCIF file from the RNAsolo database to identify
canonical base pairs and generate dot-bracket notation for entire
structures.

m We then integrated it with data from Rfam for comprehensive
analysis in subsequent stages.

m Motif extraction

m We dissected each 2D structure into following components:
loops, stems, and single strands.

m  We used motif-extractor script from the RNApolis-py library.

m It identifies and categorizes the structural fragments based on
predefined rules e.g., recognizing adjacent base pairs as stems.




Data preparation pipeline: from Rfam and
RNAsolo to extracted loop motifs

m To create effective RNA design targets, we focused on loops,
which are often challenging to predict accurately.

m Loops removed from their structural context (e.g., the connecting
stems) are energetically unstable and unlikely to be
Independently predicted by RNA design algorithms.

m Thus, for each identified loop motif, we generated two datasets:
m The isolated loop fragment
m The 2D structure of loop fragment extended with its connecting stems

m The final step in our data preparation pipeline consolidates the
results into a CSV file.

m Each row corresponds to a loop, with columns identifying the
motif's source and the sequence or dot-bracket encoded
structure of the two mentioned instances.




Fig. 2 Structure of the base of ribosomal P stalk (PDB id: 5D8H, chain A). A) 3D representation with
the 3-way junction shown in blue and connecting stems shown in green. B) 2D representation colored the
same way.




Data preparation pipeline: from Rfam and
RNAsolo to extracted loop motifs

m The datasets are available at:
https://zenodo.org/doi/10.5281/zenodo.12681122

A


https://zenodo.org/doi/10.5281/zenodo.12681122

Statistics of loop motifs with connecting
stems extracted from the RNAsolo database

. . L h
m The dataset contains 8,746 loop motifs.  Type Count __ engt
. Min Max Mean Std. Dev.
m Most of them (76%) are internal 100pPS, internal loop 6678 7 3048 784 114.81

: J-way junction 215 27 571 155.21 126.49
abOUt 78 nUCIGOtIdeS Iong on average’ -1—1.-m:: :;unzti{'}n THR4 32 2089 133.22 215.9

Includlng the motlf and Connectlng S5-way junction 265 12 1835 29447 306.6

G-way junction 69 43 1510 250.26 258.95
Ste mSs. T-way junction 47 49 2176 463.15 674.07
S-way junction 24 73 1982 602.62 677.44
u 3-Way and 4-Way junctions each make 9way junction 19 46 3040  401.84 635.26
. 10-way junction 12 50 362 175.08 132.93
up 9% of the dataset, with average 1i-way junction 11 60 1390  939.0 534.18
. 12-way junction 4 98 1271 491.0 458.33
lengths of 155 and 133 nucleotides. 13-way junction 2 291 303  297.0 6.0
15-way junction 1 69 69 69.0 0.0
18-way junction T 211 2824 621.71 %09.32
19-way junction 1 275 275 275.0 0.0
21-way junction 1 2709 2027 2852.0 #24.39
22-way junction 2 2880 3117 2998.5 118.5
25-way junction 1 3113 3113 3113.0 0.0

Total 8746




Length

. . . . Type Count
Statistics of loop motifs with Min  Mox  Moun St Dov.
Internal loop 12,101,168 9 7420 74.84 113.35
. 3-way junction 1,208,667 24 7TATO  121.04 110.85
ConneCtlng Stems extracted 4-way junction 1,301,478 33 T284 111.58 124.29
S-way junction 319,030 53 T415 240.87 248.51
f h Rf d b f-way junction 63,607 69 10046  351.5 353.97
rOm t e am a.ta. aSG 7-way junction 61,518 102 8331  434.92 379.33
8-way junction I8, TRL 129 9579 619.36 527.72
O-way junction 16,022 142 T092 603.64 536.48
i . 10-way junction 9,292 180 7356  1210.02 770.44
[ | The dataset contains 15 m||||0n |OOp 11-way junction 6,365 202 9599  1777.76 1316.1
e . 12-way junction 6,758 220 10098  2598.01 885.82
mOtIf INstances. 13-way junction 7,325 243 8178  2766.77 665.11
14-way junction 1,927 255 6895  2408.88 936.15
imi 15-way junction 681 269 6752  2195.54 1010.57
u Slmllarly to the RNASOIO dataset’ 16-way junction 689 284  T6TL  2295.81 1032.97
I I I 0 ) 17-way junction 364 349 6406  2576.04 959.62
Internal |00p mOtIfS dommate’ (80/0 . 18-way junction 170 366 5754  2287.79 986.42
. . 0 19-way junction 134 736 5113  2604.21 992.42
| 3-Way and 4-Way junctions make up 8% 920-way junction 97 1018 5908  2767.38  1000.39
. . 21-way junction 55 1088 8228  2672.84 1091.09
and 9% of instances respectively. 22-way junction 14 1104 4279 229252  808.39
] 23-way junction 28 1311 5200  2673.04 942.08
m The average |engths of these motifs: 24-way junetion 17 1143 3320 243971  708.18
) 25-way junction 9 1699 3343  2690.78 628.12
about 75 nts for internal |oops, 121 nts 26-way junction 13 1493 5028 3213 785.58
) ] 27-way junction 6 1802 4903  3344.83 904.92
for 3-Way junctions, and 112 nts for 4- 28-way junction 5 1801 3643  2464.6 820.94
i . 29-way junction 8 2058 4425 3546 536.61
Way J unctions. 30-way junction 4 1763 3330 2825 625.34
31-way junction 3 2612 4780 3420 967.33
32-way junction 1 4064 4064 4064 0
33-way junction 3 3009 3459 3299 149.67
35-way junction 1 3108 3108 3108 0
J6-way junction 1 3330 3330 3330 0
37-way junction 1 2614 2614 2614 0

Total 15,144,276




RNA design algorithms used for
benchmarking and their evaluation

m We chose the following open-source RNA design algorithms:

m RNAinverse, INFO-RNA, DSS-Opt, RNAfbinv, RNARedPrint, and
DesiRNA.

m All tools were run using their default settings.
m https://github.com/jbadura/rna_design/

m For each sequence generated by the RNA design tool during testing,
RNAfold was used to determine its secondary structure.

m To evaluate the results two metrics were used: RNAdistance and
RNApdist.

m RNAdistance values were normalized - by dividing each RNAdistance
value by the corresponding length of the RNA sequence, ensuring a
more balanced comparison across different RNA sequences.

m The results are presented using violin plots.



https://github.com/jbadura/rna_design/

RNA design algorithms used for
benchmarking and their evaluation

m The dataset was used to evaluate and compare the performance of
selected RNA design tools: RNAinverse, INFO-RNA, DSS-Opt,
RNAfbinv, RNARedPrint, and DesiRNA.

m The first test was performed using a dataset derived from the RNAsolo
database.

m For the second one, due to the enormous size of the dataset derived
from Rfam database, we decided to showcase its capabilities using a
specific family, the glutamine riboswitch.

m This riboswitch, with its characteristic 3-way junction, presents
significant modeling challenges.

m Due to the varying accuracy levels of different RNA design tools across
cases of different lengths, an analysis was performed on the common
instances addressed by all tools.




Benchmarking test case using a dataset of
loop motifs derived from the RNAsolo
database

Table 4 RNA design benchmark results for the whole RNAsolo dataset.

RINA design No of solved Average com- Normalized RNApdist
algorithm cases puting time (s) RNAdistance

Results for 8746 instances

RNAinverse 7677 2.66 0.13 15.85
RNAfbinv 7206 8.24 0.26 15.93
INFO-RNA 7041 1.85 0.23 17.05
RNARedPrint 8746 0.11 0.61 46.12
DSS-Opt 8737 3.25 0.14 39.46
DesiRNA 8096 331.85 0.10 21.54

Results for 6037 instances successfully solved by each algorithm

RNAinverse 6037 0.84 5.89 12.79
RNAfbinv 6037 8.18 13.64 15.28
INFO-RNA 6037 0.35 12.06 12.70
RNARedPrint 6037 0.10 28.97 18.32
DSS-Opt 6037 1.78 5.34 13.21

DesiRNA 6037 312.56 3.56 12.26
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Benchmarking test case using a loop motifs dataset
derived from the Rfam database, illustrated by the
example of the glutamine riboswitch

m As an example of using a dataset derived from the Rfam
database, we have chosen the RF01739 (glutamine
riboswitch) Rfam family because it contains an important 3-
way junction.

m The alignment consists of over 1700 sequences and
Includes more than 2200 loops.

m Similarly to the previous example, we used this set to
evaluate and compare the performance of the following
RNA design tools: RNAinverse, INFO-RNA, DSS-Opt,
RNATfbinv, RNARedPrint, and DesiRNA.
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Benchmarking test case using a loop motifs dataset
derived from the Rfam database, illustrated by the
example of the glutamine riboswitch

m For predicting 3-way junction motifs, DesiRNA, RNAinverse
and RNAfbinv showed very similar distributions, reflecting
high accuracy and consistency, and achieving the best
results.

m All algorithms, except for RNARedPrint, displayed relatively
compact distributions with low median values.

= RNARedPrint, on the other hand, had a wide distribution
and a noticeably higher median value, indicating more
variability and less consistency in approximating the target
structure.




Conclusions

m In the rapidly evolving field of RNA bioinformatics, the demand for
high-quality data for use in benchmarking algorithms is increasing.

m To address the need, we have developed a comprehensive dataset
of loop motifs in RNA structures.

m It combines information from experimentally solved 3D structures
and the entire sequence repository of Rfam, a database of RNA
families and their sequential alignments.

m |t contains 15 million entries, ecompassing extracted internal loops,
3-way, 4-way, and higher cardinality junctions.

m These are not synthetic constructs, but rather motifs derived from
experimentally verified data.




Conclusions

m This datasets can be used by researchers working on RNA design
(also known as inverse folding) and also machine learning
pipelines that incorporate both sequence and structural information.

m The versatility of our dataset is enhanced by its ability to describe
each extracted motif either in isolation or within its structural
context. This flexibility allows researchers to tailor their analyses to
specific needs and objectives.

m To demonstrate the dataset's utility, we conducted extensive
experiments evaluating the performance of various inverse folding
algorithms using different metrics.




