Differentiable RNA Folding with Applications

Benasque 2024

Dr Max Ward

Department of Computer Science and Software Engineering University of Western Australia

July 26, 2024

The Team

- Talk co-author (couldn't be here today)
 - Ryan Krueger (Harvard University)
- Collaborators
 - Marco Matthies (University of Hamburg)
 - Dave Matthews (University of Rochester)
 - Sharon Aviran (University of California, Davis)
 - Elena Rivas (Harvard University)
 - Andrew Torda (University of Hamburg)
 - Michael Brenner (Harvard University)

Figure: Ryan Krueger. 3rd year PhD in Applied Mathematics at Harvard University

Overview

- Algorithms can be differentiable and the gradient can be used for optimization
- Gradient-based optimization is very powerful and flexible!
- We have a differentiable RNA folding algorithm
- Some proof-of-concept applications
 - RNA structure design
 - mRNA design

- The derivative shows how the output of the algorithm changes if we adjust the input
- The input and output must be continuous
- Typical RNA folding (Zuker-Stiegler, McCaskill) deals with a discrete sequence
- We generalise McCaskill's algorithm so its input is a continuous distribution of sequences rather than a single sequence

Continuous Inputs (ft. math!)

- One way to do this is to construct independent nucleotide distributions for each position
- Call the distribution of sequences Ψ
- $\Psi \in [0,1]^{4 \times n}, \sum_{i=1}^{4} \Psi_{i,j} = 1$
- The probability of sampling a sequence $p(\pi|\Psi) = \prod_{j=1}^{|\pi|} \Psi_{\pi_j,j}$
- The partition function generalizes: $Z_{\Psi} = \sum_{\pi} \sum_{s \in S_{\pi}} p(\pi|\Psi) e^{-\beta E(s|\pi)}$
- You can think of this either as an expected partition function or the partition function for a probabilistic/continuous sequence

• The partition function can be calculated using a generalized McCaskill's algorithm

Implementation

- Key observation. All the operations in this algorithm are differentiable
- We implemented this algorithm using an optimizing GPU autodifferentiation compiler (JAX)
- In practice, somewhat complicated:
 - No branches (if/else) allowed
 - No dynamic memory
 - In short, static computation only!

- The nearest neighbour model is tricky without if statements
- There were memory issues with our first version
- Coaxial stacks and dangling ends
 - We initially targeted parity with ViennaRNA
 - Their default treatment of dangling ends (-d2) is bad for the generalized algorithm
- The time complexity is $O(n^3)$ but the memory complexity is $O(n^3)$. We need to store all linearization points for back propagation
- Our GPU had 80GB, so memory is the limit
- Our first experiments were limited to 50nts

Eterna100 Results

• We optimized the probability of the target structure via gradient decent

Eterna100 Results

- To optimize the probability of a target structure we compute the partition function for Ψ considering only a single structure *s*. Call this Z_{W}^{s}
- Probability $\approx \frac{Z_{\Psi}^s}{Z_{\Psi}}$

Puzzle ID	Initial	Optimized	Answer 1	Answer 2
1	0.017	0.976	0.402	0.909
3	$pprox 10^{-13}$	0.988	0.420	0.798
8	0.206	0.984	0.545	0.596
10	$pprox 10^{-21}$	0.962	0.530	0.716
11	$pprox 10^{-11}$	0.941	0.449	0.562
15	$pprox 10^{-20}$	0.002	0.403	0.540
20	$pprox 10^{-14}$	0.209	0.244	0.588
23	$pprox 10^{-8}$	0.563	0.005	0.021
26	$pprox 10^{-7}$	0.987	0.235	0.241
30	$pprox 10^{-9}$	0.980	0.094	0.162
33	$pprox 10^{-27}$	0.726	0.676	0.594
40	$pprox 10^{-16}$	0.990	0.835	0.794
41	$pprox 10^{-23}$	0.021	0.001	$pprox 10^{-6}$
47	$pprox 10^{-31}$	0.381	0.002	0.007
57	$pprox 10^{-35}$	$pprox 10^{-8}$	$pprox 10^{-12}$	$pprox 10^{-14}$
65	$pprox 10^{-21}$	0.101	0.133	0.136
66	$pprox 10^{-25}$	0.003	0.001	$pprox 10^{-4}$

Citations

• The work presented thus far is from *Matthies*, *M.C.*, *Krueger*, *R.*, *Torda*, *A.E.* and Ward, *M.*, 2024. Differentiable partition function calculation for RNA. Nucleic Acids Research, 52(3), pp.e14-e14.

Neural Network Projection

- We can add a neural network before the differentiable folding algorithm. The network's output is $\boldsymbol{\Psi}$
- Gradients from differentiable folding can be used to update the network weights instead of updating Ψ directly
- In short, this is a higher dimensional projection

Eterna100 Results (with neural net)

- Experiments with poor performance were re-run with a basic fully-connected network
- No hyperparameter optimisation or restarts were done

Puzzle ID	Neural Net	Original	Answer 1	Answer 2
15	0.416	0.002	0.403	0.540
20	0.610	0.209	0.244	0.588
41	0.407	0.021	0.001	$pprox 10^{-6}$
57	$\approx 5.5^{-7}$	$pprox 10^{-8}$	$pprox 10^{-12}$	$pprox 10^{-14}$
65	0.351	0.101	0.133	0.136
66	0.006	0.003	0.001	$pprox 10^{-4}$

Training Plots

• Sometimes interesting things happened

Algorithmic Improvements

- 50nt is too small
- We developed a checkpointing strategy for backprop to reduce the memory to $O(n^{2.5})$ at the cost of a 2x increase in compute time
- Don't use -d2 (64x improvement)
- Better recursions to exploit symmetries (e.g., in internal loops 96x improvement)
- With all these optimizations we can get to 1650nt on an 80GB GPU

- We wanted to test our improved method on mRNA design
- Objective: ensure CAI is above a threshold, maximize the partition function
- We use a neural network projection and train by gradient descent as before

$$\Omega(\pi|lpha) = egin{cases} Z_\pi & ext{if CAI}(\pi|lpha) \geq au \ -\infty & ext{otherwise} \end{cases}$$

• Problem. $\Omega(\pi|lpha)$ is not differentiable and is not a function of Ψ

Loss Function

$$\mathcal{L}(\Psi, lpha) = -\log(Z_{\Psi}) \cdot f(\mathsf{ECAI}(\Psi)) \cdot g(P(lpha|\Psi))$$

Definitions

- ECAI(Ψ) is the expected CAI sampled from Ψ
- $P(\alpha|\Psi)$ is the probability of sampling a valid coding sequence for the protein α
- f and g are hinge functions (e.g., ReLu) that punish going under a threshold

• We can consistently improve a good seed for EFE (e.g., LinearDesign)

	Unconstrained		$CAI \geq 0.8$		
	LinearDesign	Our Method	LinearDesign	Our Method	
MEV	-114.84	-114.92	-112.96	-113.04	
Mini-GFP	-207.65	-208.59	-205.15	-205.15	
Nanoluciferase	-452.34	-452.38	-451.29	-452.01	
spike RBD	-411.55	-412.59	-407.50	-408.61	
eGFP + degron	-546.92	-547.71	-546.56	-547.17	

Krueger, R. and Ward, M., 2024. Scalable Differentiable for mRNA Design. bioRxiv, pp.2024-05.

mRNA Results with Refinement

- We ran some experients to optimize AUP
- Gradient optimisation gets us to a good location in sequence space
- We sample from the optimized distribution and refine with an adaptive walk

	Linear Design		Our Method	
	CAI	AUP	CAI	AUP
MEV (target CAI=0.8)	0.825	0.171	0.805	0.147
Mini-GFP (target CAI=0.9)	0.901	0.263	0.900	0.192
nLuc (target CAI=0.9)	0.885	0.203	0.888	0.184

General Network Pretraining

- We're trying to pretrain a general network
- No data needed-the model learns directly from the nearest neighbor model
- Proof of concept: train a neural network for sequences at most 50aa
- We train in batches of 256 randomly generated sequences

• Distributions of $log(Z_{\Psi})$ differences to baseline random valid sequences

Future Plans & More

- Differentiable folding is a powerful and flexible tool with numerous applications
- Future plans
 - Difficult objective functions (e.g., forbidden motifs)
 - Foundation model for mRNA design
 - Scale existing structural design method
 - Foundation model for structural design
- Things I didn't have time to talk about
 - Parameter optimization
 - Module in structure prediction pipelines
 - Reparameterization trick for ideal training data