
Differentiable RNA Folding with
Applications

Benasque 2024

Dr Max Ward
Department of Computer Science and Software Engineering

University of Western Australia

July 26, 2024

1 / 22

The Team

• Talk co-author (couldn’t be here today)
• Ryan Krueger (Harvard University)

• Collaborators
• Marco Matthies (University of Hamburg)
• Dave Matthews (University of Rochester)
• Sharon Aviran (University of California, Davis)
• Elena Rivas (Harvard University)
• Andrew Torda (University of Hamburg)
• Michael Brenner (Harvard University) Figure: Ryan Krueger. 3rd year PhD in

Applied Mathematics at Harvard
University

2 / 22

Overview

• Algorithms can be differentiable and the gradient can be used for optimization

• Gradient-based optimization is very powerful and flexible!

• We have a differentiable RNA folding algorithm
• Some proof-of-concept applications

• RNA structure design
• mRNA design

3 / 22

Continuous Inputs

• The derivative shows how the output of the algorithm changes if we adjust the input

• The input and output must be continuous

• Typical RNA folding (Zuker-Stiegler, McCaskill) deals with a discrete sequence

• We generalise McCaskill’s algorithm so its input is a continuous distribution of
sequences rather than a single sequence

4 / 22

Continuous Inputs (ft. math!)

• One way to do this is to construct independent nucleotide distributions for each
position

• Call the distribution of sequences Ψ

• Ψ ∈ [0, 1]4×n,
∑4

i=1Ψi ,j = 1

• The probability of sampling a sequence p(π|Ψ) =
∏|π|

j=1Ψπj ,j

• The partition function generalizes: ZΨ =
∑

π

∑
s∈Sπ p(π|Ψ)e−βE(s|π)

• You can think of this either as an expected partition function or the partition
function for a probabilistic/continuous sequence

5 / 22

Generalized McCaskill’s Algorithm (more math)

• The partition function can be calculated using a generalized McCaskill’s algorithm

P(bi , bj , i , j) =

∑

B(one-loop(bi , bj , i , j))
P(bk , bl , k, l) ·Ψbk ,k ·Ψbl ,l

·B(two-loop(bi , bj , bk , bl , i , j , k , l))

∀bk , bl ∈ A, i < k < l < j

M(2, i + 1, j − 1) · B(Mi) · B(Mp)

M(p, i , j) =

∑

M(p, i + 1, j) · B(Mu)

P(bi , bk , i , k) · M(max(0, p − 1), k + 1, j)

·B(Mp) ·Ψbi ,i ·Ψbk ,k

∀bi , bk ∈ A, i < k ≤ j

6 / 22

Implementation

• Key observation. All the operations in this algorithm are differentiable

• We implemented this algorithm using an optimizing GPU autodifferentiation
compiler (JAX)

• In practice, somewhat complicated:
• No branches (if/else) allowed
• No dynamic memory
• In short, static computation only!

7 / 22

Gotchas and Caveats

• The nearest neighbour model is tricky without if statements

• There were memory issues with our first version
• Coaxial stacks and dangling ends

• We initially targeted parity with ViennaRNA
• Their default treatment of dangling ends (-d2) is bad for the generalized algorithm

• The time complexity is O(n3) but the memory complexity is O(n3). We need to
store all linearization points for back propagation

• Our GPU had 80GB, so memory is the limit

• Our first experiments were limited to 50nts

8 / 22

Eterna100 Results

• We optimized the probability of the target structure via gradient decent

C)

G)

G)

G)

U .

U .

U .

U .

U .

C)

G)

A .

A .

A .

A .

A .

U .

U .

A .

A .

C)

G)

A .

U .

U .

G .

C (

G (

A .

C)

C)

G)

U .

A .

C .

C (

G (

G (

C (

G (

U .

U .

U .

U .

U .

U .

C (

C (

C (

G (

0 25 50 75 100 125 150 175 200
Optimization step

0.0

0.2

T
ar

ge
t p

ro
b.

Target probability
Norm. seq. entropy

0

10

20

30

40

50

B
as

e
in

de
x

0.0

0.5

1.0

N
or

m
al

iz
ed

se
q.

 e
nt

ro
py

Misfolded Aptamer (ID: 47)
Target structure: ((((......(((((...))).((....)).........)).....))))

A
C
G
U

G)

G)

U .

A .

A .

U .

C (

C (

C .

C)

G)

U .

A .

A .

U .

C) (

G) (

A .

C)

G)

U .

U .

U .

U .

C (

G (

A .

C ()

G ()

U .

A .

A .

U .

C (

G (

0 25 50 75 100 125 150 175 200
Optimization step

0.00

0.02

T
ar

ge
t p

ro
b.

Target probability
Norm. seq. entropy

0

5

10

15

20

25

30

35

B
as

e
in

de
x

0.0

0.5

1.0

N
or

m
al

iz
ed

se
q.

 e
nt

ro
py

Shortie 6 (ID: 41)
Target structure: ((....)).((....)).((....)).((....))

A
C
G
U

9 / 22

Eterna100 Results

• To optimize the probability of
a target structure we compute
the partition function for Ψ
considering only a single
structure s. Call this Z s

Ψ

• Probability ≈ Z s
Ψ

ZΨ

Puzzle ID Initial Optimized Answer 1 Answer 2

1 0.017 0.976 0.402 0.909
3 ≈ 10−13 0.988 0.420 0.798
8 0.206 0.984 0.545 0.596
10 ≈ 10−21 0.962 0.530 0.716
11 ≈ 10−11 0.941 0.449 0.562
15 ≈ 10−20 0.002 0.403 0.540
20 ≈ 10−14 0.209 0.244 0.588
23 ≈ 10−8 0.563 0.005 0.021
26 ≈ 10−7 0.987 0.235 0.241
30 ≈ 10−9 0.980 0.094 0.162
33 ≈ 10−27 0.726 0.676 0.594
40 ≈ 10−16 0.990 0.835 0.794
41 ≈ 10−23 0.021 0.001 ≈ 10−6

47 ≈ 10−31 0.381 0.002 0.007
57 ≈ 10−35 ≈ 10−8 ≈ 10−12 ≈ 10−14

65 ≈ 10−21 0.101 0.133 0.136
66 ≈ 10−25 0.003 0.001 ≈ 10−4

10 / 22

Citations

• The work presented thus far is from Matthies, M.C., Krueger, R., Torda, A.E. and
Ward, M., 2024. Differentiable partition function calculation for RNA. Nucleic Acids
Research, 52(3), pp.e14-e14.

11 / 22

Neural Network Projection
• We can add a neural network before the differentiable folding algorithm. The
network’s output is Ψ

• Gradients from differentiable folding can be used to update the network weights
instead of updating Ψ directly

• In short, this is a higher dimensional projection

12 / 22

Eterna100 Results (with neural net)

• Experiments with poor
performance were re-run with
a basic fully-connected network

• No hyperparameter
optimisation or restarts were
done

Puzzle ID Neural Net Original Answer 1 Answer 2

15 0.416 0.002 0.403 0.540
20 0.610 0.209 0.244 0.588
41 0.407 0.021 0.001 ≈ 10−6

57 ≈ 5.5−7 ≈ 10−8 ≈ 10−12 ≈ 10−14

65 0.351 0.101 0.133 0.136
66 0.006 0.003 0.001 ≈ 10−4

13 / 22

Training Plots

• Sometimes interesting things happened

14 / 22

Algorithmic Improvements
• 50nt is too small
• We developed a checkpointing strategy for backprop to reduce the memory to
O(n2.5) at the cost of a 2x increase in compute time

• Don’t use -d2 (64x improvement)
• Better recursions to exploit symmetries (e.g., in internal loops 96x improvement)
• With all these optimizations we can get to 1650nt on an 80GB GPU

� ��� ��� ��� ��� ���� ����
�������� ������

�

��

��

��

��

�
�
�
�

	

��� ��� ������� ����������

��������� ���������
��
�
�
��
��

� ��� ��� ��� ��� ���� ����
�������� ������

��

��

��

��

�
�

��

��
�
��
�	

����� ��� ������� ����������

��������� ���������
�� � � �� ��

Titan X, 12GB

V100, 32 GB

A40, 48 GB

A100, 80 GB

15 / 22

mRNA Design

• We wanted to test our improved method on mRNA design

• Objective: ensure CAI is above a threshold, maximize the partition function

• We use a neural network projection and train by gradient descent as before

Ω(π|α) =

{
Zπ if CAI(π|α) ≥ τ

−∞ otherwise

16 / 22

Loss Function

• Problem. Ω(π|α) is not differentiable and is not a function of Ψ

Loss Function

L(Ψ, α) = − log(ZΨ) · f (ECAI(Ψ)) · g(P(α|Ψ))

Definitions
• ECAI(Ψ) is the expected CAI sampled from Ψ

• P(α|Ψ) is the probability of sampling a valid coding sequence for the protein α

• f and g are hinge functions (e.g., ReLu) that punish going under a threshold

17 / 22

mRNA Results with a Seed

• We can consistently improve a good seed for EFE (e.g., LinearDesign)

Unconstrained CAI ≥ 0.8

LinearDesign Our Method LinearDesign Our Method

MEV -114.84 -114.92 -112.96 -113.04
Mini-GFP -207.65 -208.59 -205.15 -205.15

Nanoluciferase -452.34 -452.38 -451.29 -452.01
spike RBD -411.55 -412.59 -407.50 -408.61

eGFP + degron -546.92 -547.71 -546.56 -547.17

Krueger, R. and Ward, M., 2024. Scalable Differentiable for mRNA Design. bioRxiv, pp.2024-05.

18 / 22

mRNA Results with Refinement

• We ran some experients to optimize AUP

• Gradient optimisation gets us to a good location in sequence space

• We sample from the optimized distribution and refine with an adaptive walk

Linear Design Our Method

CAI AUP CAI AUP

MEV (target CAI=0.8) 0.825 0.171 0.805 0.147
Mini-GFP (target CAI=0.9) 0.901 0.263 0.900 0.192

nLuc (target CAI=0.9) 0.885 0.203 0.888 0.184

19 / 22

General Network Pretraining

• We’re trying to pretrain a general network

• No data needed–the model learns directly from the nearest neighbor model

• Proof of concept: train a neural network for sequences at most 50aa

• We train in batches of 256 randomly generated sequences

20 / 22

General Network Pretraining

• Distributions of log(ZΨ) differences to baseline random valid sequences

21 / 22

Future Plans & More

• Differentiable folding is a powerful and flexible tool with numerous applications
• Future plans

• Difficult objective functions (e.g., forbidden motifs)
• Foundation model for mRNA design
• Scale existing structural design method
• Foundation model for structural design

• Things I didn’t have time to talk about
• Parameter optimization
• Module in structure prediction pipelines
• Reparameterization trick for ideal training data

22 / 22

