Differentiable RNA Folding with
Applications

Benasque 2024

Dr Max Ward

Department of Computer Science and Software Engineering
University of Western Australia

July 26, 2024

1/22

The Team

® Talk co-author (couldn't be here today)
® Ryan Krueger (Harvard University)

¢ Collaborators
® Marco Matthies (University of Hamburg)

® Dave Matthews (University of Rochester)

® Sharon Aviran (University of California, Davis)

® Elena Rivas (Harvard University)

® Andrew Torda (University of Hamburg)

® Michael Brenner (Harvard University) Figure: Ryan Krueger_ 3rd year PhD in
Applied Mathematics at Harvard
University

2/22

Overview

Algorithms can be differentiable and the gradient can be used for optimization

Gradient-based optimization is very powerful and flexible!
We have a differentiable RNA folding algorithm

® Some proof-of-concept applications

® RNA structure design
® mRNA design

3/22

Continuous Inputs

The derivative shows how the output of the algorithm changes if we adjust the input

The input and output must be continuous

Typical RNA folding (Zuker-Stiegler, McCaskill) deals with a discrete sequence

We generalise McCaskill’s algorithm so its input is a continuous distribution of
sequences rather than a single sequence

CUCAUGCGGAA & Illlllllll

4/22

Continuous Inputs (ft. math!)

® One way to do this is to construct independent nucleotide distributions for each
position

Call the distribution of sequences W
Velo, 1 vi=1
The probability of sampling a sequence p(7|W) = H'Wl Vo

The partition function generalizes: Zy =) > s p(m|V)e™ BE(s|m)
You can think of this either as an expected partition function or the partition
function for a probabilistic/continuous sequence

5/22

Generalized McCaskill’s Algorithm (more math)

® The partition function can be calculated using a generalized McCaskill's algorithm

P(bj, bj,i,j) =
B(oNE-LOOP(b;, bj, i, j))
P(b, by, k1) - W, k- W,

Z -B(TWO-LOOP(bj, bj, bi, by, i,], k, 1)) Z
Vb, b € Aji < k<1<
M(2,i+1,j —1)- B(M;) - B(M,)

M(p,i,j) =

M(p, i+ 17]) ' B(Mu)

P(bia bka i7 k) : M(max(O, p— 1)3 k + 17])
B(Mp) - W, i - Wp, &
Vb, by € Aji < k<

6/22

Implementation

e Key observation. All the operations in this algorithm are differentiable

® We implemented this algorithm using an optimizing GPU autodifferentiation
compiler (JAX)

® |n practice, somewhat complicated:

® No branches (if/else) allowed
® No dynamic memory
® |n short, static computation only!

7/22

Gotchas and Caveats

® The nearest neighbour model is tricky without if statements
® There were memory issues with our first version

® Coaxial stacks and dangling ends

® We initially targeted parity with ViennaRNA
® Their default treatment of dangling ends (-d2) is bad for the generalized algorithm

® The time complexity is O(n3) but the memory complexity is O(n3). We need to
store all linearization points for back propagation

® QOur GPU had 80GB, so memory is the limit

® Qur first experiments were limited to 50nts

8/22

Eternal00 Results

® We optimized the probability of the target structure via gradient decent

Misfolded Aptamer (ID: 47) . Shortie 6 (ID: 41) -
Target structure: (. (((C-IN-(C))evveees o)) — 6 Target structure: ((....)).((..))-(-)-((+-)) —0c
— — U
50 9~ 35
8=
§=
£ 30
20 32
H] 25
3% & g2 3
£ 3 £ o=
@ g @
2 b 215
) 8= @
H
g; 10
8= o2
3
3o
g
0 - o
10 . 1.0
E 38 §0% 35
g g2 g g8
202 0555 = 05T &
5 —— Target probability EQ 23 —— Target probability EQ
g —— Norm. seq. entropy Sg] —— Norm. seq. entropy sg
[z3 [zZ3
o. .0 0.00 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Optimization step Optimization step

9/22

Eternal(00 Results

Puzzle ID Initial Optimized Answer 1 Answer 2
1 0.017 0.976 0.402 0.909
3 ~ 1013 0.988 0.420 0.798
o N 8 0.206 0.984 0.545 0.596
® To optimize the probability of 10 A 10721 0.962 0.530 0.716
11 ~10~ 11 0.941 0.449 0.562
a target.s.tructure Yve compute 15 ~ 10-20 5003 0.403 0.540
the partition function for ¥ 20 ~ 1014 0.209 0.244 0.588
considering only a single 23 ~107° 0.563 0.005 0.021
. s 26 ~ 107 0.987 0.235 0.241
structure s. Ca” thls Z\V 30 ~ 10—9 0.980 0.094 0.162
- z$ 33 ~10~% 0.726 0.676 0.594
~ Vv Y.rey
® Probability =~ Z- 40 ~10-16 0.990 0.835 0.794
41 ~10~ %3 0.021 0.001 ~10°
47 ~ 1031 0.381 0.002 0.007
57 ~ 10~ ~ 108 ~ 1012 ~10~ 1
65 ~ 10~ 0.101 0.133 0.136
66 ~ 1025 0.003 0.001 ~10~*

10/22

Citations

® The work presented thus far is from Matthies, M.C., Krueger, R., Torda, A.E. and
Ward, M., 2024. Differentiable partition function calculation for RNA. Nucleic Acids
Research, 52(3), pp.el4-el4.

11/22

Neural Network Projection

® We can add a neural network before the differentiable folding algorithm. The

network'’s output is W
® Gradients from differentiable folding can be used to update the network weights

instead of updating W directly
® |n short, this is a higher dimensional projection

Steps 1-3: End-to-end training

_
—

Random

s

Partition Arbitrary Loss
Function Function

20uanbas yNy SnonunuoD

[

I o Step 4: Sample sequences from trained
" network for experimental validation

12/22

Eternal00 Results (with neural net)

® Experiments with poor
performance were re-run with
a basic fully-connected network

® No hyperparameter
optimisation or restarts were

done

Puzzle ID Neural Net Original Answer 1 Answer 2
15 0.416 0.002 0.403 0.540
20 0.610 0.209 0.244 0.588
41 0.407 0.021 0.001 ~ 106
57 ~5577 ~107% =~10712 ~107
65 0.351 0.101 0.133 0.136
66 0.006 0.003 0.001 ~10~*

13/22

Training Plots

® Sometimes interesting things happened

Training Log with NN Projection Training Log with NN Projection

A\ | N\
1\ | 1

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Steps Steps

14/22

Algorithmic Improvements

® 50nt is too small

We developed a checkpointing strategy for backprop to reduce the memory to
O(n??®) at the cost of a 2x increase in compute time

Don't use -d2 (64x improvement)

® Better recursions to exploit symmetries (e.g., in internal loops 96x improvement)
With all these optimizations we can get to 1650nt on an 80GB GPU

Time per Gradient Calculation Memory per Gradient Calculation
80 + > -
Checkpoint Frequency A100,80 GB . -
40 — NA :
2 geo| i
30 6 S H A40,48 GB
= — 10 Saf
@ 4 = V100,32 GB
E >
E20 g
2 : Titan X, 1268
10 oler et
0 200 400 600 800 1000 1200
v
/,41—?*/ Sequence Length
0] e—o
0 200 400 600 800 1000 1200 Checkpoint Frequency
Sequence Length e NA 2 e § e 10 e 14

15/22

MRNA Design

® \We wanted to test our improved method on mRNA design
® Objective: ensure CAl is above a threshold, maximize the partition function

® We use a neural network projection and train by gradient descent as before

Z, if CAl(n|a) > 7

—oo0 otherwise

Q(r|o) = {

16/22

Loss Function

® Problem. Q(|a) is not differentiable and is not a function of W

L(V, o) = —log(Zv) - f(ECAI(V)) - g(P(|V))

® ECAI(V) is the expected CAl sampled from W
® P(«a|V) is the probability of sampling a valid coding sequence for the protein «

® f and g are hinge functions (e.g., ReLu) that punish going under a threshold

17/22

MRNA Results with a Seed

® We can consistently improve a good seed for EFE (e.g., LinearDesign)

Unconstrained CAl > 0.8
LinearDesign Qur Method LinearDesign Our Method
MEV -114.84 -114.92 -112.96 -113.04
Mini-GFP -207.65 -208.59 -205.15 -205.15
Nanoluciferase -452.34 -452.38 -451.29 -452.01
spike RBD -411.55 -412.59 -407.50 -408.61
eGFP + degron -546.92 -547.71 -546.56 -547.17

Krueger, R. and Ward, M., 2024. Scalable Differentiable for mRNA Design. bioRxiv, pp.2024-05.

18/22

MRNA Results with Refinement

® \We ran some experients to optimize AUP
® Gradient optimisation gets us to a good location in sequence space

® \We sample from the optimized distribution and refine with an adaptive walk

Linear Design Our Method
CAl AUP CAlI AUP

MEV (target CAI=0.8) 0.825 0.171 0.805 0.147
Mini-GFP (target CAI=0.9) 0.901 0.263 0.900 0.192
nLuc (target CAI=0.9) 0.885 0.203 0.888 0.184

19/22

General Network Pretraining

® We're trying to pretrain a general network

® No data needed—the model learns directly from the nearest neighbor model

Proof of concept: train a neural network for sequences at most 50aa

® \We train in batches of 256 randomly generated sequences

0 200 400 600 800 1000 o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

20/22

General Network Pretraining

¢ Distributions of log(Zy) differences to baseline random valid sequences

21/22

Future Plans & More

¢ Differentiable folding is a powerful and flexible tool with numerous applications
® Future plans
e Difficult objective functions (e.g., forbidden motifs)
Foundation model for mRNA design
Scale existing structural design method
Foundation model for structural design

® Things | didn't have time to talk about

® Parameter optimization
® Module in structure prediction pipelines
® Reparameterization trick for ideal training data

22/22

