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Overview

Algorithms can be differentiable and the gradient can be used for optimization

Gradient-based optimization is very powerful and flexible!
We have a differentiable RNA folding algorithm

® Some proof-of-concept applications

® RNA structure design
® mRNA design
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Continuous Inputs

The derivative shows how the output of the algorithm changes if we adjust the input

The input and output must be continuous

Typical RNA folding (Zuker-Stiegler, McCaskill) deals with a discrete sequence

We generalise McCaskill’s algorithm so its input is a continuous distribution of
sequences rather than a single sequence

CUCAUGCGGAA & Illlllllll
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Continuous Inputs (ft. math!)

® One way to do this is to construct independent nucleotide distributions for each
position

Call the distribution of sequences W
Velo, 1 vi=1
The probability of sampling a sequence p(7|W) = H'Wl Vo

The partition function generalizes: Zy =) > s p(m|V)e™ BE(s|m)
You can think of this either as an expected partition function or the partition
function for a probabilistic/continuous sequence
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Generalized McCaskill’s Algorithm (more math)

® The partition function can be calculated using a generalized McCaskill's algorithm

P(bj, bj,i,j) =
B(oNE-LOOP(b;, bj, i, j))
P(b, by, k1) - W, k- W,

Z -B(TWO-LOOP(bj, bj, bi, by, i, ], k, 1)) Z
Vb, b € Aji < k<1<
M(2,i+1,j —1)- B(M;) - B(M,)

M(p,i,j) =

M(p, i+ 17]) ' B(Mu)

P(bia bka i7 k) : M(max(O, p— 1)3 k + 17])
B(Mp) - W, i - Wp, &
Vb, by € Aji < k<
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Implementation

e Key observation. All the operations in this algorithm are differentiable

® We implemented this algorithm using an optimizing GPU autodifferentiation
compiler (JAX)

® |n practice, somewhat complicated:

® No branches (if/else) allowed
® No dynamic memory
® |n short, static computation only!
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Gotchas and Caveats

® The nearest neighbour model is tricky without if statements
® There were memory issues with our first version

® Coaxial stacks and dangling ends

® We initially targeted parity with ViennaRNA
® Their default treatment of dangling ends (-d2) is bad for the generalized algorithm

® The time complexity is O(n3) but the memory complexity is O(n3). We need to
store all linearization points for back propagation

® QOur GPU had 80GB, so memory is the limit

® Qur first experiments were limited to 50nts
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Eternal00 Results

® We optimized the probability of the target structure via gradient decent
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Eternal(00 Results

Puzzle ID Initial Optimized Answer 1  Answer 2
1 0.017 0.976 0.402 0.909
3 ~ 1013 0.988 0.420 0.798
o N 8 0.206 0.984 0.545 0.596
® To optimize the probability of 10 A 10721 0.962 0.530 0.716
11 ~10~ 11 0.941 0.449 0.562
a target.s.tructure Yve compute 15 ~ 10-20 5003 0.403 0.540
the partition function for ¥ 20 ~ 1014 0.209 0.244 0.588
considering only a single 23 ~107° 0.563 0.005 0.021
. s 26 ~ 107 0.987 0.235 0.241
structure s. Ca” thls Z\V 30 ~ 10—9 0.980 0.094 0.162
- z$ 33 ~10~% 0.726 0.676 0.594
~ Vv Y.rey
® Probability =~ Z- 40 ~10-16 0.990 0.835 0.794
41 ~10~ %3 0.021 0.001 ~10°
47 ~ 1031 0.381 0.002 0.007
57 ~ 10~ ~ 108 ~ 1012 ~10~ 1
65 ~ 10~ 0.101 0.133 0.136
66 ~ 1025 0.003 0.001 ~10~*
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Neural Network Projection

® We can add a neural network before the differentiable folding algorithm. The

network'’s output is W
® Gradients from differentiable folding can be used to update the network weights

instead of updating W directly
® |n short, this is a higher dimensional projection

Steps 1-3: End-to-end training
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I o Step 4: Sample sequences from trained
" network for experimental validation
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Eternal00 Results (with neural net)

® Experiments with poor
performance were re-run with
a basic fully-connected network

® No hyperparameter
optimisation or restarts were

done

Puzzle ID Neural Net Original Answer 1  Answer 2
15 0.416 0.002 0.403 0.540
20 0.610 0.209 0.244 0.588
41 0.407 0.021 0.001 ~ 106
57 ~5577 ~107% =~10712 ~107
65 0.351 0.101 0.133 0.136
66 0.006 0.003 0.001 ~10~*
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Training Plots

® Sometimes interesting things happened

Training Log with NN Projection Training Log with NN Projection
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Algorithmic Improvements

® 50nt is too small

We developed a checkpointing strategy for backprop to reduce the memory to
O(n??®) at the cost of a 2x increase in compute time

Don't use -d2 (64x improvement)

® Better recursions to exploit symmetries (e.g., in internal loops 96x improvement)
With all these optimizations we can get to 1650nt on an 80GB GPU
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MRNA Design

® \We wanted to test our improved method on mRNA design
® Objective: ensure CAl is above a threshold, maximize the partition function

® We use a neural network projection and train by gradient descent as before

Z, if CAl(n|a) > 7

—oo0 otherwise

Q(r|o) = {
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Loss Function

® Problem. Q(|a) is not differentiable and is not a function of W

L(V, o) = —log(Zv) - f(ECAI(V)) - g(P(|V))

® ECAI(V) is the expected CAl sampled from W
® P(«a|V) is the probability of sampling a valid coding sequence for the protein «

® f and g are hinge functions (e.g., ReLu) that punish going under a threshold
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MRNA Results with a Seed

® We can consistently improve a good seed for EFE (e.g., LinearDesign)

Unconstrained CAl > 0.8
LinearDesign Qur Method LinearDesign Our Method
MEV -114.84 -114.92 -112.96 -113.04
Mini-GFP -207.65 -208.59 -205.15 -205.15
Nanoluciferase -452.34 -452.38 -451.29 -452.01
spike RBD -411.55 -412.59 -407.50 -408.61
eGFP + degron -546.92 -547.71 -546.56 -547.17

Krueger, R. and Ward, M., 2024. Scalable Differentiable for mRNA Design. bioRxiv, pp.2024-05.
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MRNA Results with Refinement

® \We ran some experients to optimize AUP
® Gradient optimisation gets us to a good location in sequence space

® \We sample from the optimized distribution and refine with an adaptive walk

Linear Design Our Method
CAl  AUP CAlI AUP

MEV (target CAI=0.8)  0.825 0.171 0.805 0.147
Mini-GFP (target CAI=0.9) 0.901 0.263 0.900 0.192
nLuc (target CAI=0.9) 0.885 0.203 0.888 0.184
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General Network Pretraining

® We're trying to pretrain a general network

® No data needed—the model learns directly from the nearest neighbor model

Proof of concept: train a neural network for sequences at most 50aa

® \We train in batches of 256 randomly generated sequences

0 200 400 600 800 1000 o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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General Network Pretraining

¢ Distributions of log(Zy) differences to baseline random valid sequences
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Future Plans & More

¢ Differentiable folding is a powerful and flexible tool with numerous applications
® Future plans
e Difficult objective functions (e.g., forbidden motifs)
Foundation model for mRNA design
Scale existing structural design method
Foundation model for structural design

® Things | didn't have time to talk about

® Parameter optimization
® Module in structure prediction pipelines
® Reparameterization trick for ideal training data
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