Generative modeling of RNA switches with RBMs

Jorge Fernandez-de-Cossio-Diaz

Paris, ENS

In collaboration with: P. Hardouin, F.-X. Lyonnet du Moutier, A. Di Gioacchino, B. Marchand, Y. Ponty, B. Sargueil, R. Monasson, S. Cocco

Computational approaches to RNA structure and function Centro de Ciencias de Benasque 2024-07-24

Structure and function of non-coding RNA molecules

3d-structure Biological function in the cell

sequence

Problem: sequence \leftrightarrow function mapping

(Sequence) data-driven approach

Conservation, covariation, ...

Bacillus subtilis다		UUUCUAUCCAGAG.AGG.U.GG
<u>Staphylococcus epidermidis</u> 다		AC <mark>CUUAUU</mark> UUGAG.A <mark>AG.C</mark> .UG
Bacillus subtilis	200	AACUUAUCAAGAG.CGG.C.UG
Listeria innocuad		CUCUUAUCGAGAG.CGG.C.AGAGAGGGACUGG.CCCGAUGAA.GCCCGGCAACC.U.AAC.UUUAUuuaaAGGGACUGG.CCGAUGAA.GCC.UUUAUuuaa
Listeria monocytogenes다		CUCUUAUCGAGAG.CGG.C.AGAGGGACUGG.CCCGAUGAA.GCCCGGCAACC.U.AAC.UUUAUuuaaAGGGACUGG.CCGAUGAA.GCC.UUUAUuuaa
Bacillus subtilis		CUCUUAUCCCGAGCUGG.C.GG.C.GG.C.GG.C.C.C.C.C.AGG.CCCUA.UGAA.GCCCAGCAACC.G.GUU.UCUCUguuauuuauuaug
Listeria innocual		CUCUUAUCCAGAG.CGG.U.AGAGAGGGACUGA.CCCUU.UGAA.GCCCAGCAACC.U.ACA.CAUAU
Listeria monocytogenes	\sim	CUCUUAUCCAGAG, CGG, U, AG,, AG,, AGGGA, CUGA, CCCUU, UGAA, GCC, -CAGCAACC, U, ACA, CAUAU,,, AGGGA, CUGA, CCCUU, UGAA, GCC, -CAGCAACC, U, ACA, CAUAU,,,
Listeria innocual ⁷	R	AUCUUAUCCAGAG, UGG, U.GG,, GG,, AGGGA, AAUG, CCCUG, UGAA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AGGGA, AAUG, CCCUG, UGAA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AGGGA, AAUG, CCCUG, AGGA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AGGGA, AAUG, CCCUG, AGGA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AGGGA, AAUG, CCCUG, AGGA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AGGGA, AAUG, CCCUG, AUGAA, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AAUG, CCCUG, AAUG, ACC, -CAGCAACC, U. AAA, CAAUAauuC,, AAUG, AAUG, AAUG, ACC, AAUAA, AAUG, AAUAAU, AAUAAU
Listeria monocytogenes	48	AUCUUAUCCAGAG, UGG, U.GG, U.GG, AGGGA, AAUG, CCCUA, UGAA, GCC, -CAGCAACC, U. AAA, CAAUAauuC
Listeria innocuar	80	CUCUUAUUAUGAG, UGG, U, AG,
Listeria monocytogenes		CUCUUAUAAUGAG, UGG, U, AG,
Streptomyces coelicolor		CGCUCAUCCAGAG, GGG, C, AG, AG, AG, AG, AG, AG, AG, AG, AG, AG
Clostridium sporogenes	2 2	UACUUAUCAAGAG, CGG, U, GG, AGGGA, CUGG, CCCUA, UGAA, GCC, -CAGCAACC, U, AUA, UGAAA
Staphylococcus aureus	803	AUCCUGAG, UGG, U, GG, A, GG, A,
Staphylococcus aureus	20	CUCUUAUCCUGAG, UGG, U.GG, U.GG, A.GG, CAUGGACCCCAA, UGAA, ACC, -CAGCAACC, U.CUU, UUUUUA
Staphylococcus enidermidie	-	CUCUUAUCCUGAG UGG U GG U GG AGAGGG AGAGGA CAUGGACCCAA UGAA ACC -CAGGAACC U CUU UAUU-
Bacillue enhtilie		
Listeria innocuar		
Listeria monocutogenes	¥.	
Listeria innocuera	(.~	
Listeria innocua	~^(AACUUAUCAACAA ACC U CC ACCAC UCCAA CCC UUCCCAACCACCACCACCACCACCACCACCACCACCACCA
Listeria monocutogenee	- K	
Bacillus lichoniformic Amer 14580		
DACITIUS TECRETITOTALIS ATUL 1408019		00.00A0A0.A040.000.000.000.000.000.000.0

We can then test (experimentally) their generative capabilities.

S. Cocco et al 2018 Rep. Prog. Phys. 81 032601; W. P. Russ, et al. Science 369.6502 (2020): 440-445.

Multiple sequence alignment (MSA) of homologs are rich in evolutionary information:

Models trained on MSA data can infer constraints necessary for function.

SAM-I riboswitch aptamer domain

Upstream of coding part of mRNA.

Recognizes a metabolite (SAM) specifically

SAM = S-adenosyl methionine

Regulates methionine metabolism in bacteria

Model system for *riboswitches*, which regulate gene expression in bacteria and eukaryotes, in response to specific metabolites

SAM-I riboswitch aptamer

SAM-I riboswitch aptamer domain

ON state

Downstream mRNA (transcribed)

SAM-I riboswitch aptamer domain

Challenges for successful riboswitch regulatory function:

- network of tertiary contacts
- specific **ligand** binding
- switch between competing conformations in response to the ligand
- combinatorially large space of possible sequences $(5^{108} \sim 10^{75})$ and structures \Rightarrow difficult to design

SAM-I riboswitch homologs are found in many different organisms

RF00162 aptamer domain family Multiple Sequence Alignment (MSA), consisting of: 6161 sequences, 108 aligned positions

https://rfam.org

visible layer

visible layer

 $\mathbf{v} = (v_1, \dots, v_N) = \text{the RNA sequence}$

 $\mathbf{h} = (h_1, \dots, h_M) = \text{latent variables (features)}$

Energy function:

$$(\mathbf{v}, \mathbf{h}) = \sum_{i} \mathcal{V}_{i}(v_{i}) + \sum_{\mu} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{i\mu} W_{i\mu}v_{i\mu}$$

visible layer

Boltzmann law:

$$P(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} e^{-E(\mathbf{v}, \mathbf{h})}$$

 $\mathbf{v} = (v_1, \dots, v_N) =$ the RNA sequence

 $\mathbf{h} = (h_1, \dots, h_M) = \text{latent variables (features)}$

Energy function:

$$(\mathbf{v}, \mathbf{h}) = \sum_{i} \mathcal{V}_{i}(v_{i}) + \sum_{\mu} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{i\mu} W_{i\mu}v_{i\mu}$$

Boltzmann law:

Partition function (normalization constant)

$$P(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} e^{-E(\mathbf{v}, \mathbf{h})}$$

$$Z = \sum_{v_1, \dots, v_l}$$

 $\mathbf{v} = (v_1, \dots, v_N) =$ the RNA sequence

 $\mathbf{h} = (h_1, \dots, h_M) = \text{latent variables (features)}$

Energy function:

$$(\mathbf{v}, \mathbf{h}) = \sum_{i} \mathcal{V}_{i}(v_{i}) + \sum_{\mu} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{i\mu} W_{i\mu}v_{i\mu}$$

$$dh_1 \dots dh_M e^{-E(\mathbf{v},\mathbf{h})}$$

Sampling

Energy

Conditional probabilities factorize

$$P(\mathbf{v} | \mathbf{h}) = \prod_{i} P(v_i | \mathbf{h})$$
$$P(\mathbf{h} | \mathbf{v}) = \prod_{\mu} P(h_{\mu} | \mathbf{v})$$

 $E(\mathbf{v},\mathbf{h}) = \sum \mathcal{V}_i(v_i) + \sum \mathcal{U}_\mu(h_\mu) - \sum W_{i\mu}v_ih_\mu$ μ iμ i

Sampling

Energy

Conditional probabilities factorize

$$P(\mathbf{v} | \mathbf{h}) = \prod_{i} P(v_i | \mathbf{h})$$
$$P(\mathbf{h} | \mathbf{v}) = \prod_{\mu} P(h_{\mu} | \mathbf{v})$$

Gibbs sampling

Converges to equilibrium samples from the model

Likelihood:

2

$$h_{2} \qquad h_{3} \\ P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} \stackrel{P}{=} \frac{(\mathbf{h}^{t} | \mathbf{v}_{E_{\text{eff}}}^{t}(\mathbf{v}) \qquad h_{1}^{t}$$

of latent variables

visible units interact with hidden units effective interactions between visible units

 $h_M^t \qquad P(\mathbf{v}^{t+1}|\mathbf{h}^t)$

$$v_1^{t+1}$$
 v_N^{t+1}
 ${}^{\mu(h_\mu)}dh_\mu$

Effective model

Likelihood:

 2^{\prime}

$$h_{2} \qquad h_{3} \\ P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} \stackrel{P}{=} \frac{(\mathbf{h}^{t} | \mathbf{v}_{E_{\text{eff}}}^{t}(\mathbf{v}) \qquad h_{1}^{t}$$

of latent variables

visible units interact with hidden units

effective interactions between visible units

 $\begin{array}{l} \textbf{RBM,are universal approximators:} \\ h_M^t & P(\mathbf{v}^{t+1}|\mathbf{h}^t) \end{array}$

They can model arbitrarily complex functions, provided they have enough hidden units

$$v_1^{t+}
u_1^{(h_\mu)} dh_\mu$$

 v_N^{t+1}

Le Roux, Nicolas, and Yoshua Bengio. Neural computation 20.6 (2008): 1631-1649.

Montufar, Guido, and Nihat Ay. Neural computation 23.5 (2011): 1306-1319.

Effective model

MSA (training data):

Bacillus subtilis
<u>Staphylococcus epidermidis</u> 다
Bacillus subtilis
<u>Listeria innocua</u> 다
<u>Listeria monocytogenes</u> 더
Bacillus subtilis
<u>Listeria innocua</u> 다
<u>Listeria monocytogenes</u> 다
Listeria innocua
<u>Listeria monocytogenes</u> 더
<u>Listeria innocua</u> 岱
<u>Listeria monocytogenes</u> 岱
<u>Streptomyces coelicolor</u> 다
<u>Clostridium sporogenes</u> 岱
<u>Staphylococcus aureus</u> 더
<u>Staphylococcus aureus</u> 더
<u>Staphylococcus epidermidis</u> 샵
Bacillus subtilis
<u>Listeria innocua</u> 岱
<u>Listeria monocytogenes</u> 다
Listeria innocuad
Listeria innocua 🖓
<u>Listeria monocytogenes</u> 다
Bacillus licheniformis ATCC 145801

1	UUUCUAUCCAGAG.AGG	. <mark>U</mark> .GG	AGGGACUGG	.CCCUAUGAA.	ACC.UCGGCAACA	UU
1.6	ACCUUAUUUUGAG.AAG	. <mark>C</mark> .UG	AGGGA.uUUGG	.CCCAUAGAA.	GCU.UCAGCAACC	.G.ACU.UUA
	AACUUAUCAAGAG.CGG	. <mark>C</mark> .UG	AGGGACUGG	.ACCUAUGAA.	GCCCGGCAACC	. <mark>U</mark> .GCA.UAG
	CUCUUAUCGAGAG.CGG	. <mark>C</mark> .AG	AGGGACUGG	.CCCGAUGAA.	GCCCGGCAACC	.U.AAC.UUUAUuuaa
	CUCUUAUCGAGAG.CGG	. <mark>C</mark> .AG	AGGGACUGG	.CCCGAUGAA.	GCCCGGCAACC	.U.AAC.UUUAUuuaa
	CUCUUAUCCCGAGeUGG	. <mark>C</mark> .GG	AGGGACAGG	.CCCUAUGAA.	GCCCAGCAACC	.G. GUU.UCUCUguuauuuauuaug
	CUCUUAUCCAGAG.CGG	. <mark>U</mark> .AG	AGGGACUGA	.CCCUUUGAA.	GCCCAGCAACC	.U. ACA.CAUAU
•)	CUCUUAUCCAGAG.CGG	. <mark>U</mark> .AG	AGGGACUGA	.CCCUUUGAA.	GCCCAGCAACC	. <mark>U</mark> .ACA.CAUAU
	AUCUUAUCCAGAG.UGG	. <mark>U</mark> .GG	AGGGAAAUG	.CCCUGUGAA.	ACCCAGCAACC	.U.AAA.CAAUAauuc
80	AUCUUAUCCAGAG.UGG	. <mark>U</mark> .GG	AGGGAAAUG	.CCCUAUGAA.	GCCCAGCAACC	.U.AAA.CAAUAauuc
88	CUCUUAUUAUGAG.UGG	. <mark>U</mark> .AG	AGGGACUGG	.CCCGUUGAA.	ACCCAGCAACC	. <mark>U</mark> .UUC.AAUUC
	CUCUUAUAAUGAG.UGG	. <mark>U</mark> .AG	AGGGACUGG	.CCCGUUGAA.	ACCCGGCAACC	. <mark>U</mark> .UUC.AAUAC
3	CGCUCAUCCAGAG.GGG	.C.AG	AGGGA.uACGG	.CCCGAUGAA.	GCC.CCGGCAACC	.C.UCC.AGUCGguucuugucacacgga
<u>ሪ</u> አ	UACUUAUCAAGAG.CGG	. <mark>U</mark> .GG	AGGGACUGG	.CCCUAUGAA.	GCCCAGCAACC	.U.AUA.UGAAA
58	AUCCUGAG.UGG	. <mark>U</mark> .GG	AGGGA.CAUGG	aCCCAAUGAA.	ACCCAGCAACC	. <mark>U</mark> .CUU.UUUUA
, ,	CUCUUAUCCUGAG.UGG	. <mark>U</mark> .GG	AGGGA.CAUGG	aCCCAAUGAA.	ACCCAGCAACC	. <mark>U</mark> .CUU.UUUUA
	CUCUUAUCCUGAG.UGG	. <mark>U</mark> .GG	AGGGA.CAUGG	aCCCAAUGAA.	ACCCAGCAACC	. <mark>U</mark> .CUU.UAUU
<u>.</u>	CUCUUAUC GAGAGUUGG	. <mark>G</mark> .CG	AGGGAUUGG	.CCUUUUGAC.	CCC AAC AGC AACC	.G.ACC.GUAAUaccauugugaaauggggcgcacugc
O	UUCUUAUCCAGAG.UGG	. <mark>U</mark> .GG	AGGGA.aUCGG	.CCCAGUGAA.	ACCCGGCAGCG	.G.AGC.GC
2.00 A	UUCUUAUCAAGAG.UGG	. <mark>U</mark> .GG	AGGGA.aUCGG	.CCCAGUGAA.	ACCCAGCAGCG	.G.AGC.GC
1 ~	UUCUUAUCACGAA.AGG	. <mark>U</mark> .GG	AGGGACUGG	.CCCUUUGAA.	GCC.UUAGCAACC	.G.GAA.UUU
17	AACUUAUCAAGAA.AGG	. <mark>U</mark> .GG	AGGGU.uCUGG	.CCCAGUGAA.	GCC.UUGGCAACC	.G.GAC.UU
≁* ⊁	AACUUAUCAAGAA.AGG	. <mark>U</mark> .GG	AGGGU.uCUGG	.CCCCGUGAA.	GCC.UUGGCAACC	. <mark>G</mark> .GAU.UU
	UUCUUAUUCAGAG, AGG	.C.GG	AGGGA . AUUGG	CCCUG. UGAA.	ACC, UCGGCAGCG	G. GUU. CUGCAUA.

Likelihood of training data:

MSA (training data):

Bacillus subtilis	3	UUUCUAUCCAGAG.AGG.U.GGAGGGACUGG.CCCUAUGAA.ACC.UCGGCAACAUU
<u>Staphylococcus epidermidis</u> 다	たい	ACCUUAUUUUGAG.AAG.C.UG
Bacillus subtilis	$\mathbf{\mathcal{S}}$	AACUUAUCAAGAG.CGG.C.UGAGGGACUGG.ACCUAUGAA.GCCCGGCAACC.U.GCA.UAG
Listeria innocua		CUCUUAUCGAGAG.CGG.C.AGAGAGGGACUGG.CCCGAUGAA.GCCCGGCAACC.U.AAC.UUUAUuuaaAGGGACUGG.CCGAUGAA.GCC.UUUAUuuaa
<u>Listeria monocytogenes</u> 다		CUCUUAUCGAGAG.CGG.C.AGAGAGGGACUGG.CCCGAUGAA.GCCCGGCAACC.U.AAC.UUUAUuuaaAGGGACUGG.CCGAUGAA.GCC.UUUAUuuaa
Bacillus subtilis		CUCUUAUCCCGAGcUGG.C.GGCGGAGGGACAGG.CCCUAUGAA.GCCCAGCAACC.G.GUU.UCUCUguuauuuauuaug
<u>Listeria innocua</u> 다		CUCUUAUCCAGAG.CGG.U.AGAGAGGGACUGA.CCCUU.UGAA.GCCCAGCAACC.U.ACA.CAUAU
<u>Listeria monocytogenes</u> 다	~)	CUCUUAUCCAGAG.CGG.U.AGAGAGGGACUGA.CCCUU.UGAA.GCCCAGCAACC.U.ACA.CAUAU
Listeria innocua	200	AUCUUAUCCAGAG.UGG.U.GGAGGAGGGAAAUG.CCCUGUGAA.ACCCAGCAACC.U.AAA.CAAUAauucAGGGAAAUG.
<u>Listeria monocytogenes</u> 다	Ro	AUCUUAUCCAGAG.UGG.U.GGGGAGGGAAAUG.CCCUAUGAA.GCCCAGCAACC.U.AAA.CAAUAauucAGGGAAAUG.
Listeria innocua	88	CUCUUAUUAUGAG.UGG.U.AGAGAGGGACUGG.CCCGUUGAA.ACCCAGCAACC.U.UUC.AAUUC
<u>Listeria monocytogenes</u> 다		CUCUUAUAAUGAG.UGG.U.AGAGAGGGACUGG.CCCGUUGAA.ACCCGGCAACC.U.UUC.AAUAC
Streptomyces coelicolor	1	CG <mark>CUCAUC</mark> CAGAG.G <mark>GG.C</mark> .AGAGA <mark>GGG</mark> A.uACGG.CCCGAUGAA.GCC.CCGGCAACC.C.UCC.AGUCGguucuugucacacgga
Clostridium sporogenes	02.5	UACUUAUCAAGAG.CGG.U.GGAGGGACUGG.CCCUAUGAA.GCCCAGCAACC.U.AUA.UGAAA
Staphylococcus aureus	58	AUCCUGAG.UGG.U.GGGGAGGGA.CAUGGaCCCAA.UGAA.ACCCAGCAACC.U.CUUUUA
Staphylococcus aureus	, •	CUCUUAUCCUGAG.UGG.U.GGGGAGGGA.CAUGGaCCCAA.UGAA.ACCCAGCAACC.U.CUUUUA
Staphylococcus epidermidis	1.22	CUCUUAUCCUGAG.UGG.U.GGGGAGGGA.CAUGGaCCCAA.UGAA.ACCCAGCAACC.U.CUU.UAUU
Bacillus subtilis	#	CUCUUAUCGAGAGUUGG.G.CGG.CGAGGGAUUGG.CCUUUUGAC.CCCAACAGCAACC.G.ACC.GUAAUaccauugugaaauggggcgcacugc
<u>Listeria innocua</u> 다		UUCUUAUCCAGAG.UGG.U.GGAGGGA.aUCGG.CCCAG.UGAA.ACCCGGCAGCG.G.AGC.GC
<u>Listeria monocytogenes</u> 다		UUCUUAUCAAGAG.UGG.U.GGGGAGGGA.aUCGG.CCCAG.UGAA.ACCCAGCAGCG.G.AGC.GC
Listeria innocua	1~	UUCUUAUCACGAA.AGG.U.GGAGGGACUGG.CCCUU.UGAA.GCC.UUAGCAACC.G.GAA.UUU
Listeria innocua	17	AACUUAUCAAGAA.AGG.U.GGAGGGU.uCUGG.CCCAGUGAA.GCC.UUGGCAACC.G.GAC.UU
<u>Listeria monocytogenes</u> 다	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AACUUAUCAAGAA.AGG.U.GGAGGGU.uCUGG.CCCCGUGAA.GCC.UUGGCAACC.G.GAU.UU
Bacillus licheniformis ATCC 1458017		UUCUUAUUCAGAG, AGG, C, GG,

Model is trained, by finding parameters that maximise the likelihood of the data:

Likelihood of training data:

MSA (training data):

Bacillus subtilis		UUUCUAUCCAGAG.AGG.U.GG
Staphylococcus epidermidis		ACCUUAUUUUGAG.AAG.C.UG
Bacillus subtilis	700)	AACUUAUCAAGAG.C.GG.C.UGAGGGACUGG.ACCUAUGAA.GCCCGGCAACC.U.GCA.UAG
Listeria innocual ⁹	\sim	CUCUUAUCGAGAG.C.GG.C.AGAG.AG.AG.AG.CUGG.CCCGA.UGAA.GCCCGGCAACC.U.AAC.UUUAUuuaa
Listeria monocytogenes		CUCUUAUCGAGAG, CGG, C, AG,
Bacillus subtilier		
Listeria incorreza		
Listeria innocuali	C5	CUCUUAUCCAGAG.CGG.U.AGAGGGACUGA.CCCUU.UGAA.GCCCAGCAACC.U.ACA.CAUAU
Listeria monocytogenes G		CUCUUAUCCAGAG.CGG.U.AGAGAGGGACUGA.CCCUU.UGAA.GCCCAGCAACC.U.ACA.CAUAU
Listeria innocua ^{B4}		AUCUUAUCCAGAG.UGG.U.GGAGGGAAAUG.CCCUGUGAA.ACCCAGCAACC.U.AAA.CAAUAauucAGGGAAAUG.CCCUGUGAA.ACC.
<u>Listeria monocytogenes</u> 다	80	AUCUUAUCCAGAG.UGG.U.GG
Listeria innocuat ²	#8	CUCUUAUUAUGAG.UGG.U.AGAGAGGGACUGG.CCCGU.UGAA.ACCCAGCAACC.U.UUC.AAUUC
Listeria monocytogenes	• -	CUCUUAUAAUGAG.UGG.U.AGAG.AG.AG.AG.AG.AG.AG.CUGG.CCCGU.UGAA.ACCCGGCAACC.U.UUC.AAUAC
Streptomyces coelicolor		CGCUCAUCCAGAG, GGG, C, AG,
Clostridium sporogenes	2.2	$U_{ACUUAUCAACAC} CCC U CC U CCC U CCC U CCC U CCC U AUA UCAAA$
Staphylogoggus aurous	302	
Staphylococcus aureus	20	AUCCUGAG.UGG.U.GGAGGGA.CAUGGaCCCAA.UGAA.ACCCAGCAACC.U.CUU.UUUUA
Staphylococcus aureus		CUCUUAUCCUGAG.UGG.U.GGGGAGGGA.CAUGGaCCCAAUGAA.ACCCAGCAACC.U.CUU.UUUUA
Staphylococcus epidermidis		CUCUUAUCCUGAG.UGG.U.GGAGGGA.cAUGGaCCCAAUGAA.ACCCAGCAACC.U.CUU.UAUU
Bacillus subtilis	- #	CUCUUAUCGAGAGuUGG.G.CGG.ACCAUUGG.G.CG.ACCUUUUGAC.CCCUUUUGAC.CCCAACAGCAACC.G.ACC.GUAAUaccauugugaaauggggcgcacugc
Listeria innocuad ⁷		UUCUUAUCCAGAG.UGG.U.GGAGGGA.aUCGG.CCCAG.UGAA.ACCCGGCAGCG.G.AGC.GC
Listeria monocytogenes		UUCUUAUCAAGAG.UGG.U.GG
Listeria innocual?	¥	UUCUUAUCACGAA, AGG, U., GG,
Listeria innocual	(,⊶	
Listeria menerutorenee	×^(
Listeria monocytogenes	- N-	AACUUAUCAAGAA.AGG.U.GG
Bacillus licheniformis ATCC 14580Fd		UUCUUAUUCAGAG.AGG.C.GG

Model is trained, by finding parameters that maximise the likelihood of the data:

Likelihood of training data:

negative gradient Probability positive gradient 00 Data

RBM is compatible with structural constraints

epistatic score

$$\frac{P(.,.)P(G,C)}{P(G,.)P(.,C)}$$

- De Leonardis, et al. "DCA of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction." NAR 43.21 (2015): 10444-10455.
- Weinreb, et al. "3D RNA and functional interactions from evolutionary couplings." Cell 165.4 (2016): 963-975.
- Tubiana, et al. "Learning protein constitutive motifs from sequence data." Elife 8 (2019): e39397.

RBM is compatible with structural constraints

RBM "score":

$\ln P_{v}(\mathbf{v}) = -E_{\text{eff}}(\mathbf{v}) + \text{const.}$

CM score:

log-prob. of sequence under covariance model (consensus secondary structure)

Nawrocki, Eric P., Diana L. Kolbe, and Sean R. Eddy. "Infernal 1.0: inference of RNA alignments." Bioinformatics 25.10 (2009): 1335-1337.

Eddy, Sean R., and Richard Durbin. "RNA sequence analysis" using covariance models." Nucleic acids research 22.11 (1994): 2079-2088.

140

very short (or no) P4

Probed ~500 sequences

with P. Hardouin, F.-X. Lyonnet, B. Sargueil Siegfried, Nathan A., et al. Nat. Meth. 11.9 (2014): 959-965.

Eddy, Sean R. Ann. Rev. Biophys. 43.1 (2014): 433-456.

Probed ~500 sequences

with P. Hardouin, F.-X. Lyonnet, B. Sargueil

Siegfried, Nathan A., et al. Nat. Meth. 11.9 (2014): 959-965.

Eddy, Sean R. Ann. Rev. Biophys. 43.1 (2014): 433-456.

Probed ~500 sequences

Probed ~500 sequences

SHAPE reactivities reflect expected structural changes in response to SAM

Example:

- Reactivity changes (SAM vs. no SAM) indicate SAM binding
- Consistent with previously reported structural Natural responses in natural sequences
 - Trausch, Jeremiah J., et al. PNAS 111.18 (2014): 6624-6629
 - Hennelly, Scott P., Irina V. Novikova, and Karissa Y. Sanbonmatsu. Nat. (RBN NAR 41.3 (2013): 1922-1935.
- saMeppell, Benoit, et al. "Molecular insights into the ligand-controlled organization of the SAM-I^{rriboswitch."} Nat. Chem. Biol. 7.6 (2011)Rfam CN 384-392.
 - IPANEMAP: Saaidi, Afaf, et al. NAR 48.15 (2020): 8276-8289.

SHAPE reactivities reflect expected structural changes in response to SAM

Eddy, Sean R. Ann. Rev. Biophys. 43.1 (2014): 433-456.; IPANEMAP: Saaidi, Afaf, et al. NAR 48.15 (2020): 8276-8289.

SHAPE reactivity response to SAM in generated sequences

with SAM

no SAM

Sequences probed

476 RBM, 206 natural

		Conclusive	Switchers
O Nat. (X)	Natural	145 of 201	97 (66.9 ± 3
● Nat. (✓)	Nat.(Seed)	111 of 151	75 (67.6 ± 4
• rCM (\mathbf{X})	Nat.(Hits)	34 of 50	22 (64.7 ± 8
\mathbf{O} RBM (\mathbf{X})	Nat.(RBMscore>300)	96 of 137	67 (69.8 ± 4
RBM (✓)	Nat.(RBMscore>310)	65 of 96	50 (76.9 ± 3
	Rfam CM	14 of 16	0 (0%)
	RBM	59 of 84	14 (23.7 ±
Eddy, S	earer (Aren Beore Biopby	5. 40. ðf(8 814): 4	13 1344(56., 0 ±

Eddy, Searer (RBM/(RBM/Seorer 300) s. 40.0f(3014): 43344(35.0 ± 7 IPANEMAP: Saaidi, Afaf, et al. NAR 48.15 (2020): 8276-8289. RBM(RBM/score) 310) 31 of 40 12 (38.7 ± 8)

SHAPE reactivity response to SAM in generated sequences

O Nat. (**x**)

● Nat. (✓)

O rCM (**×**)

▶ rCM (✓)

O RBM (\mathbf{X})

■ RBM (✓)

with SAM

no SAM

Sequences probed

476 RBM, 206 natural

Results:

22% to 38% of RBM generated sequences exhibit expected Structural responses to Switchers 145 of 201 Natural

- with $e^{1}0 40\%$ divergence from %
- Nat.(Hits) 34 of 50
- $diversity_{0}(e_{3}Gb) n_{0} P_{f} 4_{7}$
- 65 of 96 Nat.(RBMscore>310) **Divi as** 0 (0%) Rfam CM Cenerative model RBM 59 of 84

Eddy, Searer (ABM/Beorer 6) 300 s. 40.0f (8014): 43844 (56.0 ± 7.5% **IPANEMAP:** Saaidi, Afaf, et al. NAR 48.15 (2020): 8276-8289. RBM(RBMscore>310) 31 of 40 12 (38.7 ± 8.7%

Different properties of natural riboswitches:

- specificities (SAM vs. SAH)
- ligand affinity $(0.13 20\mu M)$
- thermostabilities

Next: Manipulate properties of generated sequences with representation learning

Next: Manipulate properties of generated sequences with representation learning

Different properties of natural riboswitches:

- specificities (SAM vs. SAH)
- ligand affinity $(0.13 20\mu M)$
- thermostabilities

Representation space (h)

Data space (V)

Next: Manipulate properties of generated sequences with representation learning

Different properties of natural riboswitches:

- specificities (SAM vs. SAH)
- ligand affinity $(0.13 20\mu M)$
- thermostabilities

[JFdCD et al PRX'2023]

Representation space (h)

Model (RBM)

Data space (V)

Thank you

ENS, Paris

Andrea Di Gioacchino Rémi Monasson Simona Cocco

CitCOM, Université Paris Cité

Pierre Hardouin Francois-Xavier Lyonnet Bruno Sargueil

LIX Ecole Polytechnique, Palaiseau

Bertrand Marchand Yann Ponty

JFdCD et al bioRxiv:2023.05.10.540155

Backup

PCA projections of probed sequences

will

Structure and function of non-coding RNA molecules

Total number of structures in the PDB

50k -

1980

Structure and function of non-coding RNA molecules

RNA: linear chain of nucleotides (four types: A,U,C,G)

Central dogma: DNA → mRNA → protein role as information carrier

Tinoco, Bustamante. How RNA folds. J Mol Biol. 1999

Large fraction of RNA is non-coding rRNA 80-90% of cell RNA content tRNA 10-15%, mRNA 3-7%

https://assets.thermofisher.com/TFS-Assets/BID/Technical-Notes/collibri-stranded-rna-library-prep-kit-total-rna-seq-mrna-seq-technical-note.pdf

Many ncRNA functions:

Rybozymes, riboswitches, box, potential role in origin of life, ...

SAM riboswitch

visible layer

visible layer

$E(\mathbf{v},\mathbf{h}) = \sum \mathcal{V}_i(v_i) + \sum \mathcal{U}_\mu(h_\mu) - \sum w_{i\mu}v_ih_\mu$ iμ μ μ

$E(\mathbf{v},\mathbf{h}) = \sum \mathcal{V}_i(v_i) + \sum \mathcal{U}_\mu(h_\mu) - \sum w_{i\mu}v_ih_\mu$ μ iµ μ

Boltzmann probability law

 $P(\mathbf{v}, \mathbf{h}) = \frac{\mathbf{I}}{Z} e^{-E(\mathbf{v}, \mathbf{h})}$, where $Z = \sum e^{-E(\mathbf{v}, \mathbf{h})}$ is the partition function. v,h

v = the RNA sequence; $\mathbf{h} =$ latent variables (features)

hood:
$$P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} = \frac{1}{Z} e^{-E_{\text{eff}}(\mathbf{v})}$$

: $E_{\text{eff}}(\mathbf{v}) = \sum_{i} \mathcal{V}_{i}(v_{i}) - \sum_{\mu} \ln \int e^{\sum_{i} w_{i\mu}v_{i}h_{\mu} - \mathcal{U}_{\mu}(h_{\mu})}$

visible layer

Full RBM

visible units interact with hidden units

Effective model

effective interactions between visible units

The SAM-I aptamer domain family

SAM-I riboswitch aptamer domain **RNA family (RF00162)**

6161 sequences

108 aligned positions

RBM reproduces statistics of SAM family

Secondary structure is not sufficient

RBM samples are compatible with secondary structure

Compatibility with secondary structure

Infernal (Covariance model)

with P. Hardouin, F.-X. Lyonnet, B. Sargueil

Wilkinson, KA et al. "SHAPE: quantitative RNA structure analysis at single nucleotide resolution." Nature Protocols 1.3 (2006): 1610-1616.

with P. Hardouin, F.-X. Lyonnet, B. Sargueil

Wilkinson, KA et al. "SHAPE: quantitative RNA structure analysis at single nucleotide resolution." Nature Protocols 1.3 (2006): 1610-1616.

with P. Hardouin, F.-X. Lyonnet, B. Sargueil

After adding the probe, the RNA molecules are sequenced. The probe results in sequencing errors.

Reactivity: $r = \frac{m - u}{d}$, where

m = mutation rate with probe

u = mutation rate without probe(cancel seq. error biases)

d = mutation rate in denatured state (cancel site-dependent biases)

Wilkinson, KA et al. "SHAPE: quantitative RNA structure analysis at single nucleotide resolution." Nature Protocols 1.3 (2006): 1610-1616.

Structural flexibility requires moderate binding energies

ViennaRNA: Energy calculations of RNA secondary structures, based on the Turner model.

ViennaRNA

- 7287-7292.

• Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C. et al. ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26 (2011). <u>https://doi.org/10.1186/1748-7188-6-26</u> • Mathews, DH., et al. "Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure." PNAS 101.19 (2004):

Statistical inference of base-pairs from SHAPE data

SHAPE log-odds score

$$\mathcal{S}_{n}(i) = \ln \frac{P_{ni}(\tilde{r}_{ni} | \text{bp})}{P_{ni}(\tilde{r}_{ni} | \text{np})}$$
$$= \ln \frac{\int P(r | \text{bp}) P_{ni}(\tilde{r}_{ni} | r) dr}{\int P(r | \text{np}) P_{ni}(\tilde{r}_{ni} | r) dr}$$

 $P_{ni}(\tilde{r}_{ni} | r)$ prob. of measuring \tilde{r}_{ni} given underlying reactivity r (account for sampling error during sequencing)

P(r | bp) prob. of reactivities of basepaired sites

Structure and function of non-coding RNA molecules

Top model performers in CASP15 (2022) RNA structure prediction competition are "physical models"

AlphaFold-derived attempts (e.g., DeepFoldRNA) generalize poorly to new sequences

Qiu, PLoS Comp. Biol (2023)

S 0

Statistical inference of base-pairs from SHAPE data

$$P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} = \frac{1}{Z} e^{-E_{\text{eff}}(\mathbf{v})}$$
$$P_{v}(\mathbf{v}) = \sum_{i} \mathcal{V}_{i}(v_{i}) - \sum_{\mu} \ln \int e^{\sum_{i} w_{i\mu} v_{i} h_{\mu} - \mathcal{U}}$$

v = the RNA sequence

Model is trained, by finding parameters that maximise the likelihood of the data MSA

$$P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} = \frac{1}{Z} e^{-E_{\text{eff}}(\mathbf{v})}$$
$$P_{v}(\mathbf{v}) = \sum_{i} \mathcal{V}_{i}(v_{i}) - \sum_{\mu} \ln \int e^{\sum_{i} w_{i\mu} v_{i} h_{\mu} - \mathcal{U}}$$

v = the RNA sequence

$$P_{v}(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} = \frac{1}{Z} e^{-E_{\text{eff}}(\mathbf{v})}$$
$$P_{v}(\mathbf{v}) = \sum_{i} \mathcal{V}_{i}(v_{i}) - \sum_{\mu} \ln \int e^{\sum_{i} w_{i\mu}v_{i}h_{\mu} - \mathcal{U}}$$

v = the RNA sequence

SAM riboswitches

Arc diagram

linear sequence

3D structure

Figure from Rfam: https://rfam.org/family/RF00162#tabview=tab3

PCA of RF00162 MSA

