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What is RNA secondary structure prediction?

• Given an RNA sequence, predict its secondary structure

AAACAUGAGGAUUACCCAUGU
RNA sequence

Predict

Secondary Structure
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Nussinov algorithm

• Observation 1:
The greater the number of base-pairs, the more energetically stable.

⇒ Nussinov algorithm predicts a secondary structure that maximizes the 
number of base-pairs.

• Observation 2:
The optimal structure of a given sequence can be constructed from the optimal 
structures of shorter subsequences.

⇒ Dynamic programming



Nussinov algorithm

• The optimal structure of a subsequence [i, j] can be computed from a slightly 
smaller subsequence.

1. Add a base-pair (i, j) to the optimal structure of the subsequence [i+1, j-1].
2. Add an unpaired base i to the optimal structure of the subsequence [i+1, j].
3. Add an unpaired base j to the optimal structure of the subsequence [i, j-1].
4. Concatenate the two optimal substructures [i, k] and [k+1, j].
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Figure 10.7 The Nussinov algorithm looks at four ways in which the best
RNA structure for a subsequence i , j can be made by adding i and/or j
onto already calculated optimal structures for smaller subsequences. Pseu-
doknots are not considered.

correct structure from all the incorrect structures. We need both a function that
assigns the correct structure the highest score, and an algorithm for evaluating the
scores of all possible structures.

Base pair maximisation and the Nussinov folding algorithm

One approach might be to find the structure with the most base pairs. Nussinov
introduced an efficient dynamic programming algorithm for this problem [Nussi-
nov et al. 1978]. Although this criterion is too simplistic to give accurate structure
predictions, the example is instructive because the mechanics of the Nussinov al-
gorithm are the same as those of the more sophisticated energy minimisation
folding algorithms and of probabilistic SCFG-based algorithms.

The Nussinov calculation is recursive. It calculates the best structure for small
subsequences, and works its way outwards to larger and larger subsequences. The
key idea of the recursive calculation is that there are only four possible ways of
getting the best structure for i , j from the best structures of the smaller subse-
quences (Figure 10.7):

(1) add unpaired position i onto best structure for subsequence i +1, j ;
(2) add unpaired position j onto best structure for subsequence i , j −1;
(3) add i , j pair onto best structure found for subsequence i +1, j −1;
(4) combine two optimal substructures i ,k and k +1, j .

More formally, the Nussinov RNA folding algorithm is as follows. We are
given a sequence x of length L with symbols x1, . . . , xL . Let δ(i , j) = 1 if xi and
xj are a complementary base pair; else δ(i , j) = 0. We will recursively calculate
scores γ (i , j) which are the maximal number of base pairs that can be formed for
subsequence xi , . . . , xj .
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Nussinov algorithm

• Observation:
The greater the number of base pairs, the more energetically stable.

• Computational complexity: O(L3) time, O(L2) space

s(i, j) = max

8
>><

>>:

s(i+ 1, j � 1) + 1
s(i+ 1, j)
s(i, j � 1)
maxk[s(i, k) + s(k + 1, j)]

if the i-th base and j-th base are 
allowed to form base pairs



The four ingredients of RNA secondary structure prediction
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values to the parameters in the next sections. Here, I concen-
trate in the different CFG rules used to describe RNA second-
ary structure.

A production rule that represents the formation of a basepair 
is of the form (S → a S â) where a and â stand for two paired 
bases. A scoring system for this one-rule grammar requires 
assigning 16 (or six) parameters whether one allows all pos-
sible nucleotides pairs or just restricted (A-U, G-C, or G-U) 
basepairs. This “grammar” would produce a single infinitely  
long helix of all paired RNA bases. Not quite exactly what we 
want.

A grammar that produces discontinuous helices with single-
stranded bases connecting the stems, and generates independent 
as well as nested stems could have the form,43

  S → a S â | a S | S a | S S | ε.
This grammar has five rules, here separated by a | (“or” sym-

bol). The fourth rule allows the possibility of multiple helices, 
and the fifth rule ends a string. The grammar allows one to intro-
duce 16 (or six) basepair emissions, four single base emissions and 
five transitions one for each of the rules.

The sequence of grammar rules necessary to produce a given 
RNA structure in named a derivation (or parse). A possible 
derivation under the above grammar for the toy stem “cacccug” 
(where nucleotides c-g and a-u are paired to each other) is

non-nested configurations named pseudoknots. In this review, 
I concentrate on methods for RNA secondary structure predic-
tion leaving aside pseudoknots as well as tertiary interactions. 
Although one should not forget that it might be exactly pseu-
doknots and tertiary interactions what could make the methods 
move forward and to obtain better prediction accuracies.

An important advance was the realization that any nested 
(i.e. secondary structure) existing method for RNA folding 
could be represented as a context-free grammar (CFG),41 and 
that RNA secondary structure prediction could be viewed as 
CFG parsing.43 A CFG consists of non-terminals (NTs) (rep-
resented with capital letters), terminals (the actual RNA bases, 
represented with lower case letters) and production rules of the 
form [NT → (any combination of NTs/terminals)]. The pro-
duction rules determine recursively the strings of RNA bases 
and structures that the grammar permits.44 Grammar for RNA 
folding allow all possible strings of nucleotides (possibly with 
some restrictions in the secondary structures allowed), but they 
“weight” each string differently according to a scoring system 
that assigns values to the parameters of the grammar. Grammar 
parameters that provide scores for the actual nucleotides are 
named “emissions.” Parameters that weight the different choices 
(rules) for a given non-terminal are named “transitions.” I will 
discuss the different scoring schemes and how to assign actual 

Figure 1. Unified description of different methods for single-sequence RNA secondary structure prediction. The menu of elements that define a meth-
od are: architecture, scoring scheme, parameterization and inference method. The architecture consists of the list of features which, in turn, determine 
the number of parameters of the model. The different architectures one can devise for a nested RNA secondary structure all fall into the category of 
a Context-Free Grammar (CFG). Any architecture can be implemented using either thermodynamic, weights or probabilistic parameters. Both weight 
and probabilistic schemes can be trained on data (statistical). There are statistical weight schemes such as CLLMs. Statistical probabilistic schemes for 
RNA folding are usually stochastic CFGs (SCFGs). Notice that SCFGs are a subset of CFGs. SCFGs describe models with a probabilistic scheme, while the 
concept CFG applies to all scoring schemes. The assignment of values for the parameters (parameterization) depends on the scoring scheme used. 
Thermodynamic models take values as kcal/mol free-energy estimations from experimental data. Conditional Log-Linear models use methods that 
require numerical optimization (CML and also online training). Probabilistic models are usually trained by maximum likelihood methods, which simply 
require obtaining frequencies of occurrences in the training set [and the addition of at least Laplace (+1) priors]. Once an architecture, scoring scheme 
and parameterization are in place (that is, a “model”), one can use different algorithms to infer plausible secondary structures. Unlike training, which is 
specific for the different scoring schemes, the folding algorithms (usually dynamic programming algorithms) are essentially identical for all parameter-
izations (although oftentimes they have different names). A side note; the term “probabilistic” often leads to confusion. In the end, all scoring schemes 
(probabilistic or not) can give us insight into the probabilistic distribution of structures (πs) for a given sequence (s) (the so-called Boltzmann ensemble 
in a thermodynamic scheme). For instance, one can calculate the distribution’s partition function (via the McCaskill or inside algorithms) or rigorously 
sample structures from that distribution. However, what is normally referred to as a “probabilistic” model is one in which the parameters of the model 
are themselves probabilities. Probabilistic models are “generative” models, which means that in addition to the Boltzmann ensemble per sequence, 
they also provide insight into the joint distribution for the ensemble of sequences and structures. With a probabilistic method, one can quite naturally 
generate sequences together with their structures according to the model.

[Rivas 2013]



The four ingredients of RNA secondary structure prediction

1. Architecture
– Nearest neighbor model
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Nearest neighbor model

• Nearest neighbor model [Zuker&Stiegler81; Zuker03]

– The free energy of a secondary structure is the sum of the free energy of its 
substructures.276 10 RNA structure analysis

A
A
A

U
C G
A U
U A
G
A

C

G C
G
A
U

C
A

U

3'

5'

-1.1 terminal mismatch of hairpin
-2.9 stack

-2.9 stack (special case of 1 nt bulge)

-1.8 stack
-0.9 stack
-1.8 stack
-2.1 stack

5' dangle -0.3
unstructured single strand 0.0

1 nt bulge +3.3

4 nt loop +5.9

overall G = -4.6 kcal/mol

Figure 10.10 An example !G calculation for an RNA stem loop (the wild
type R17 coat protein binding site).

maximum base-paired structure was calculated above. The principal difference
is that because of the stacking parameters, two matrices (called V and W ) are
kept instead of one. W (i , j) is the energy of the best structure on i , j . V (i , j) is
the energy of the best structure on i , j given that i , j are paired. The algorithm
can then keep track of stacking interactions by adding new base pairs only onto
the V matrix. Conceptually this two-state calculation is very similar to the use of
extra insert states in pairwise dynamic programming alignment with affine gap
costs (Chapter 2) to keep track of insert extensions. For a complete description of
the Zuker algorithm, see Zuker & Stiegler [1981].

We could write down a SCFG that followed similar rules. The simplest stack-
ing production rule would be, for instance, cV g → cgV cg for producing a GC
pair in a stem after (stacked on) a CG, using V as a base pair generating nonter-
minal (as in the Zuker V matrix). With the CG terminals on the left as context for
the production of the GC, this is technically a context-sensitive production, so we
can’t use such rules as the basis for a SCFG. However, we can convert to context-
free productions by using four different nonterminals V au , V cg, V gc, V ua , and us-
ing right-hand sides of the form → gV gcc to produce a G-C pair, for instance
– the nonterminal identity V gc ‘remembers’ that a G-C pair was just generated.
(In other words, all we are doing is making the model a higher order Markov
process.) The probability of a production V cg → gV gcc, for instance, would be
the probability of a C-G pair stacked on a G-C pair.2 Other details of the Zuker
algorithm and its two matrices V and W could be incorporated similarly into an
analogous full probabilistic model with two nonterminals V and W (expanded
for nearest neighbour context). CYK and inside–outside algorithms for an SCFG

2 Since only one nonterminal is possible for a given xi , xj pair and the other three have zero
probability, the four nonterminals behave as one for the purposes of memory and time com-
plexity in parsing algorithms.
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Nearest neighbor model

• Decomposition of RNA secondary structure with the nearest neighbor model
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Fig. 3 Recursive decomposition of an RNA sequence for minimizing the free energy of the secondary structure
according to the nearest neighbor model

loop. The multibranch loop is decomposed into the rightmost loop
M1 and the other loops M, where M1 contains exactly one closed
loop C and M contains one or more loops C, disambiguating the
decomposition of RNA secondary structure.

Based on the decomposition shown in Fig. 3, the recursive
equation for the dynamic programming algorithm to calculate the
minimum free energy is as follows:

F iþ1,j , min
i<k#j

Cik þ Fkþ1,j

"

ℋ i, jð Þ, min
i<k<l<j

Ckl þ ℐ i, j ; k, lð Þ, min
i<u<j

M iþ1,u þM 1
uþ1,j&1 þ a

min
i<u<j

u & i þ 1ð Þc þ Cuþ1,j þ b, min
i<u<j

M iu þCuþ1,j þ b, Mi,j&1 þ c

M 1
i,j&1 þ c, Cij þ b

o

¼ Mii ¼ M 1
ii ¼ 1,

ð1Þ

where Fij is the minimum free energy of the secondary structure of
the subsequence xi : j and Cij represents the MFE over closed
structures. Mij is the MFE of part of a multibranch loop that
contains one or more loops, and M 1

ij is the MFE of part of a
multibranch loop with the rightmost loop.

Here, H i, jð Þ is the free energy of a hairpin loop xi : j closed by
the base pair (i, j). I i, j ; k, lð Þ is the free energy of a stacking (for
k ¼ i + 1 and l ¼ j & 1), a bulge loop (for k ¼ i + 1 or l ¼ j & 1), or



Nearest neighbor model

• Recursive equation for Zuker algorithm [1981]

• Computational complexity: O(L3) time, O(L2) space
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ij is the MFE of part of a
multibranch loop with the rightmost loop.
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LinearFold algorithm

• [Huang et al., 2019] developed LinearFold algorithm using:
– left-to-right incremental dynamic programming, and
– the beam search approximate to reduce search space.

• Computational complexity: O(L) time, O(L) space

org/), a comprehensive set of ncRNA sequences from many databases.

While ArchiveII contains sequences of 3000nt or less, RNAcentral has

many much longer ones, with the longest being 244 296nt (Homo

Sapiens Transcript NONHSAT168677.1, from the NONCODE data-

base (Zhao et al., 2016)). We run all programs (compiled by GCC

4.9.0) on Linux, with 3.40GHz Intel Xeon E3-1231 CPU and 32G

memory.

Figure 3A shows that on the relatively short ArchiveII set,

LinearFold’s runtime scales almost linearly with the sequence

length, while the two baselines have superquadratic runtimes. On

the much longer RNAcentral set, Figure 3B shows strictly linear

runtime for LinearFold and near-cubic runtimes for the baselines,

which agrees with the asymptotic analyses and suggests that

the minor deviations from the theoretical runtimes are due to the

short sequence lengths in the ArchiveII set. For a sequence of

!10 000nt (e.g. the HIV genome), LinearFold takes only 8 s, while

the baselines take 4 min. For a sequence of 32 753nt, LinearFold

takes 26 s, while CONTRAfold and RNAfold take 2 and 1.7 h,

respectively.

In addition, LinearFold uses only O(n) memory (Fig. 3C). The

classical O(n3)-time algorithm uses O(n2) space, because it needs to

solve the best-scoring substructure for each substring [i, j] bottom-

up. LinearFold, in contrast, uses O(n) space thanks to left-to-right

beam search, and is the first O(n)-space algorithm to be able to pre-

dict base pairs of unbounded distance. It is able to fold the longest

sequence in RNAcentral (244 296nt) within 3 min, while neither

CONTRAfold or RNAfold runs on anything longer than 32 767nt

due to datastructure limitations. As a result, the sequence limit on

our web server (105nt, see abstract) is 10" that of RNAfold web ser-

ver (the previous largest), being by far the largest limit among all

available servers (as of March 2019). The curve-fittings in Figure 3

were done log-log in gnuplot with n>103 in A, n > 3"103 in B,

and n>104 in C, to focus on the asymptotics.

3.2 Accuracy
We next compare LinearFold with the two baselines in accuracy,

reporting both positive predictive value (PPV, the fraction of pre-

dicted pairs in the known structure) and sensitivity (the fraction of

known pairs predicted) on each RNA family in the ArchiveII data-

set, allowing correctly predicted pairs to be offset by one position

for one nucleotide as compared to the known structure (Sloma and

Mathews, 2016); we also report exact match accuracies in

Supplementary Table SI 2. We test statistical significance using a

paired, one-sided permutation test, following (Aghaeepour and

Hoos, 2013).

Figure 4 shows that LinearFold is more accurate than the baselines,

and interestingly, this advantage is more pronunced on longer sequen-

ces. Individually, LinearFold-C (the LinearFold implementation of the
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org/), a comprehensive set of ncRNA sequences from many databases.

While ArchiveII contains sequences of 3000nt or less, RNAcentral has

many much longer ones, with the longest being 244 296nt (Homo

Sapiens Transcript NONHSAT168677.1, from the NONCODE data-

base (Zhao et al., 2016)). We run all programs (compiled by GCC

4.9.0) on Linux, with 3.40GHz Intel Xeon E3-1231 CPU and 32G

memory.

Figure 3A shows that on the relatively short ArchiveII set,

LinearFold’s runtime scales almost linearly with the sequence

length, while the two baselines have superquadratic runtimes. On

the much longer RNAcentral set, Figure 3B shows strictly linear

runtime for LinearFold and near-cubic runtimes for the baselines,

which agrees with the asymptotic analyses and suggests that

the minor deviations from the theoretical runtimes are due to the

short sequence lengths in the ArchiveII set. For a sequence of

!10 000nt (e.g. the HIV genome), LinearFold takes only 8 s, while

the baselines take 4 min. For a sequence of 32 753nt, LinearFold

takes 26 s, while CONTRAfold and RNAfold take 2 and 1.7 h,

respectively.

In addition, LinearFold uses only O(n) memory (Fig. 3C). The

classical O(n3)-time algorithm uses O(n2) space, because it needs to

solve the best-scoring substructure for each substring [i, j] bottom-

up. LinearFold, in contrast, uses O(n) space thanks to left-to-right

beam search, and is the first O(n)-space algorithm to be able to pre-

dict base pairs of unbounded distance. It is able to fold the longest

sequence in RNAcentral (244 296nt) within 3 min, while neither

CONTRAfold or RNAfold runs on anything longer than 32 767nt

due to datastructure limitations. As a result, the sequence limit on

our web server (105nt, see abstract) is 10" that of RNAfold web ser-

ver (the previous largest), being by far the largest limit among all

available servers (as of March 2019). The curve-fittings in Figure 3

were done log-log in gnuplot with n>103 in A, n > 3"103 in B,

and n>104 in C, to focus on the asymptotics.

3.2 Accuracy
We next compare LinearFold with the two baselines in accuracy,

reporting both positive predictive value (PPV, the fraction of pre-

dicted pairs in the known structure) and sensitivity (the fraction of

known pairs predicted) on each RNA family in the ArchiveII data-

set, allowing correctly predicted pairs to be offset by one position

for one nucleotide as compared to the known structure (Sloma and

Mathews, 2016); we also report exact match accuracies in

Supplementary Table SI 2. We test statistical significance using a

paired, one-sided permutation test, following (Aghaeepour and

Hoos, 2013).

Figure 4 shows that LinearFold is more accurate than the baselines,

and interestingly, this advantage is more pronunced on longer sequen-

ces. Individually, LinearFold-C (the LinearFold implementation of the
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The four ingredients of RNA secondary structure prediction

4. Inference
– Minimum free energy (MFE)
– Maximum likelihood estimate (MLE)
– Maximum expected accuracy (MEA)
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values to the parameters in the next sections. Here, I concen-
trate in the different CFG rules used to describe RNA second-
ary structure.

A production rule that represents the formation of a basepair 
is of the form (S → a S â) where a and â stand for two paired 
bases. A scoring system for this one-rule grammar requires 
assigning 16 (or six) parameters whether one allows all pos-
sible nucleotides pairs or just restricted (A-U, G-C, or G-U) 
basepairs. This “grammar” would produce a single infinitely  
long helix of all paired RNA bases. Not quite exactly what we 
want.

A grammar that produces discontinuous helices with single-
stranded bases connecting the stems, and generates independent 
as well as nested stems could have the form,43

  S → a S â | a S | S a | S S | ε.
This grammar has five rules, here separated by a | (“or” sym-

bol). The fourth rule allows the possibility of multiple helices, 
and the fifth rule ends a string. The grammar allows one to intro-
duce 16 (or six) basepair emissions, four single base emissions and 
five transitions one for each of the rules.

The sequence of grammar rules necessary to produce a given 
RNA structure in named a derivation (or parse). A possible 
derivation under the above grammar for the toy stem “cacccug” 
(where nucleotides c-g and a-u are paired to each other) is

non-nested configurations named pseudoknots. In this review, 
I concentrate on methods for RNA secondary structure predic-
tion leaving aside pseudoknots as well as tertiary interactions. 
Although one should not forget that it might be exactly pseu-
doknots and tertiary interactions what could make the methods 
move forward and to obtain better prediction accuracies.

An important advance was the realization that any nested 
(i.e. secondary structure) existing method for RNA folding 
could be represented as a context-free grammar (CFG),41 and 
that RNA secondary structure prediction could be viewed as 
CFG parsing.43 A CFG consists of non-terminals (NTs) (rep-
resented with capital letters), terminals (the actual RNA bases, 
represented with lower case letters) and production rules of the 
form [NT → (any combination of NTs/terminals)]. The pro-
duction rules determine recursively the strings of RNA bases 
and structures that the grammar permits.44 Grammar for RNA 
folding allow all possible strings of nucleotides (possibly with 
some restrictions in the secondary structures allowed), but they 
“weight” each string differently according to a scoring system 
that assigns values to the parameters of the grammar. Grammar 
parameters that provide scores for the actual nucleotides are 
named “emissions.” Parameters that weight the different choices 
(rules) for a given non-terminal are named “transitions.” I will 
discuss the different scoring schemes and how to assign actual 

Figure 1. Unified description of different methods for single-sequence RNA secondary structure prediction. The menu of elements that define a meth-
od are: architecture, scoring scheme, parameterization and inference method. The architecture consists of the list of features which, in turn, determine 
the number of parameters of the model. The different architectures one can devise for a nested RNA secondary structure all fall into the category of 
a Context-Free Grammar (CFG). Any architecture can be implemented using either thermodynamic, weights or probabilistic parameters. Both weight 
and probabilistic schemes can be trained on data (statistical). There are statistical weight schemes such as CLLMs. Statistical probabilistic schemes for 
RNA folding are usually stochastic CFGs (SCFGs). Notice that SCFGs are a subset of CFGs. SCFGs describe models with a probabilistic scheme, while the 
concept CFG applies to all scoring schemes. The assignment of values for the parameters (parameterization) depends on the scoring scheme used. 
Thermodynamic models take values as kcal/mol free-energy estimations from experimental data. Conditional Log-Linear models use methods that 
require numerical optimization (CML and also online training). Probabilistic models are usually trained by maximum likelihood methods, which simply 
require obtaining frequencies of occurrences in the training set [and the addition of at least Laplace (+1) priors]. Once an architecture, scoring scheme 
and parameterization are in place (that is, a “model”), one can use different algorithms to infer plausible secondary structures. Unlike training, which is 
specific for the different scoring schemes, the folding algorithms (usually dynamic programming algorithms) are essentially identical for all parameter-
izations (although oftentimes they have different names). A side note; the term “probabilistic” often leads to confusion. In the end, all scoring schemes 
(probabilistic or not) can give us insight into the probabilistic distribution of structures (πs) for a given sequence (s) (the so-called Boltzmann ensemble 
in a thermodynamic scheme). For instance, one can calculate the distribution’s partition function (via the McCaskill or inside algorithms) or rigorously 
sample structures from that distribution. However, what is normally referred to as a “probabilistic” model is one in which the parameters of the model 
are themselves probabilities. Probabilistic models are “generative” models, which means that in addition to the Boltzmann ensemble per sequence, 
they also provide insight into the joint distribution for the ensemble of sequences and structures. With a probabilistic method, one can quite naturally 
generate sequences together with their structures according to the model.

[Rivas 2013]



Inference: MFE/MLE or MEA

• Inference focuses on which secondary structure is drawn from the probability 
distribution of RNA secondary structures.

• Predict minimum free energy (MFE) structure
– Zuker algorithm (Zuker et al., 1981)
– Software: Mfold / RNAfold
– Equivalent to maximum likelihood estimate with McCaskill model

• Predict maximum expected accuracy (MEA) structure
– Prediction by considering “distribution” of secondary structures
– Software:

• CONTRAfold (Do et al., 2006)
• CentroidFold (Hamada et al., 2009, Sato et al. 2009)



MFE structure is not always the best

All of the ensemble centroids in our analysis are based on
samples of structures. However, we could also use the base-
pair probabilities calculated from partition functions
(McCaskill 1990) for this purpose. Because sample base-
pair frequencies used for centroid calculation approach the
base-pair probabilities as the sample size increases, our
sample-based-centroid will approach the partition-func-
tion-based centroid. However, because base-pair probabil-
ities give only the marginal probabilities of individual base
pairs, the identification of clusters of similar structures
based on base-pair probabilities alone is at best difficult.
In contrast, because sampled structures are real-
izations from the joint high-dimensional distribution of
all base pairs (Ding and Lawrence 2003), clustering is
greatly facilitated. Accordingly, a statistical sample enables
the decomposition of the two-dimensional histogram of
base pairs into subhistograms of distinct structural clusters
(Ding and Lawrence 2003).

Although the best centroids are the best predictors, these
centroids cannot be defined when a reference structure is
unavailable. However, it is an appealing feature that the best
centroid predictions are based ononly three to four clusters, on
average. The small number of cluster centroid predictions can
facilitate further structural determination by allowing the
incorporation of other types of information, e.g., partial struc-
ture information from enzymatic or chemical probing. In
order that our comparison be as direct and clear-cut as possi-
ble, all predicted structures in this analysis are based on the
same set of energy rules (Xia et al. 1998; Mathews et al. 1999).
Wehave not compared these approaches using recently revised
energy rules (Mathews et al. 2004). Comparisons incorporat-
ing constraints (e.g., for forcing modified bases in tRNAs to be
unpaired or for the incorporation of other partial structure
information) and coaxial stacking also await further study.
However, we currently see no reason why the advantages of
these sample-based predictions should not extend to other

Fig 1. live 4/c

FIGURE 1. The energy landscape of the sampled ensemble and representative structures for Agrobacterium tumefaciens 5S rRNA (GenBank
accession number X02627) of 120 nt. The structure determined by comparative sequence analysis is in the larger (blue color) cluster with a
probability of 0.591 and the MFE structure is in the smaller cluster (purple color) with a probability of 0.409. The coordinates for a structure is
(axis 1, axis 2, energy), where the horizontal axes are from multidimensional scaling (MDS; Kruskal and Wish 1977) for presenting high-
dimensional objects in typically two dimensions, and the vertical axis is the free energy of a secondary structure. The base-pair distances between
structures (see Materials and Methods section) are used for MDS. The coordinates are (21.50, !5.73, !46.80) for the structure determined by
comparative sequence analysis, (!27.92, !0.45, !50.50) for the MFE structure, (6.55, 3.15, !36.40) for the ensemble centroid, (20.14, !2.88,
!45.80) for the larger cluster centroid, and (!25.95, !0.34, !50.50) for the smaller cluster centroid.
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Prediction of RNA secondary structures

1980 1990 2000 2010 2020

1978 Nussinov algorithm
1981 Mfold (Zuker algorithm) 1994 RNAfold

2004 RNAstructure
2006 CONTRAfold

2009 CentroidFold

2011 ContextFold

2011 IPknot

1999 PKNOTS

2021 MXfold2

2012 TORNADO

2019 SPOT-RNA
2018 Knotty

2022 IPknot++

2018 MXfold

2003 Pfold

2010 HotKnots 2.0
2005 HotKnots

2007 SimFold 2019 LinearFold

2003 NUPACK

MEA
MFE/MLE
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ABSTRACT
Motivation: Recent studies have shown that the methods for
predicting secondary structures of RNAs on the basis of posterior
decoding of the base-pairing probabilities has an advantage with
respect to prediction accuracy over the conventionally utilized
minimum free energy methods. However, there is room for
improvement in the objective functions presented in previous studies,
which are maximized in the posterior decoding with respect to the
accuracy measures for secondary structures.
Results: We propose novel estimators which improve the accuracy
of secondary structure prediction of RNAs. The proposed estimators
maximize an objective function which is the weighted sum of the
expected number of the true positives and that of the true negatives
of the base pairs. The proposed estimators are also improved
versions of the ones used in previous works, namely CONTRAfold
for secondary structure prediction from a single RNA sequence and
McCaskill-MEA for common secondary structure prediction from
multiple alignments of RNA sequences. We clarify the relations
between the proposed estimators and the estimators presented in
previous works, and theoretically show that the previous estimators
include additional unnecessary terms in the evaluation measures with
respect to the accuracy. Furthermore, computational experiments
confirm the theoretical analysis by indicating improvement in the
empirical accuracy. The proposed estimators represent extensions
of the centroid estimators proposed in Ding et al. and Carvalho
and Lawrence, and are applicable to a wide variety of problems in
bioinformatics.
Availability: Supporting information and the CentroidFold software
are available online at: http://www.ncrna.org/software/centroidfold/.
Contact: hamada-michiaki@aist.go.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

∗To whom correspondence should be addressed.

1 INTRODUCTION
Recent research has revealed that a number of RNAs which are not
translated into proteins play important roles in cells. These RNAs are
called non-coding RNAs (ncRNAs), and have attracted remarkable
attention (Mattick, 2005; Prabhakar et al., 2006; Venkatesh et al.,
2006; Washietl et al., 2005; Zaratiegui et al., 2007). It is known
that the functions of ncRNAs are often related to their respective
structures. In this article, we treat two estimation (prediction)
problems of structures of RNA sequences: (i) secondary structure
estimation from a single RNA sequence and (ii) common secondary
structure estimation from multiple alignments of RNA sequences.

The secondary structure prediction of RNAs is an important
classical problem in bioinformatics (Durbin et al., 1998; Hofacker
et al., 1994). The standard solution is to predict the secondary
structure possessing the minimum free energy (MFE), which can
be calculated by using dynamic programming (DP) algorithms e.g.
Mfold (Zuker and Stiegler, 1981). The MFE structure is regarded
as a maximum likelihood (ML) estimator, which provides the
highest probabilities in a probabilistic distribution over the solutions
(McCaskill, 1990). However, MFE/ML structures generally have a
very low probability, and in some cases are even not optimal with
respect to the number of correctly predicted base pairs (Carvalho and
Lawrence, 2008). Therefore, alternative estimators which consider
the entire distribution over the solutions, instead of only the solution
with the highest probability, have been proposed. These include
the centroid estimator (Carvalho and Lawrence, 2008) used in
Sfold (Ding et al., 2005) and the maximum expected accuracy
(MEA) estimator used in CONTRAfold (Do et al., 2006). Those
estimators maximize the expectation of the objective function
related to the accuracy of the prediction. In this article, we
propose a novel estimator which reflects the accuracy measures
more directly than the MEA estimator, and show that the MEA
estimator contains unnecessary terms which do not contribute to the
improvement of the accuracy with respect to the predicted secondary
structure (Section 2.4). The proposed estimator maximizes the
expectation of γ ·TP+TN , where TP is the number of the true
positive base pairs and TN is that of the true negatives in the
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ABSTRACT

The CENTROIDFOLD web server (http://www.ncrna.org/
centroidfold/) is a web application for RNA second-
ary structure prediction powered by one of the most
accurate prediction engine. The server accepts
two kinds of sequence data: a single RNA sequence
and a multiple alignment of RNA sequences.
It responses with a prediction result shown as a
popular base-pair notation and a graph representa-
tion. PDF version of the graph representation is also
available. For a multiple alignment sequence, the
server predicts a common secondary structure.
Usage of the server is quite simple. You can paste
a single RNA sequence (FASTA or plain sequence
text) or a multiple alignment (CLUSTAL-W format)
into the textarea then click on the ‘execute
CentroidFold’ button. The server quickly responses
with a prediction result. The major advantage of this
server is that it employs our original CENTROIDFOLD

software as its prediction engine which scores the
best accuracy in our benchmark results. Our web
server is freely available with no login requirement.

INTRODUCTION

Recent research has discovered that functional noncoding
RNAs (ncRNAs) play essential roles in cells. It is well-
known that functions of ncRNAs are deeply related to
their secondary structures rather than primary sequence
structures (e.g. hairpin structures for miRNA precursors
and cloverleaf structures for tRNAs). Therefore, the
importance of accurate secondary structure predictions
has increased. The most successful approach for predict-
ing RNA secondary structures is based on the free energy
minimization such as Mfold (1) and RNAfold in the

Vienna RNA package (2). Alternative approach is based
on probabilistic frameworks, including stochastic context-
free grammars (SCFGs), which can model RNA second-
ary structures without pseudoknots (3). These approaches
employ a dynamic programming technique called the
Cocke–Younger–Kasami (CYK) algorithm for calculating
the minimum free energy (MFE) or maximum likelihood
(ML) structure (4). However, several studies have pointed
out a drawback of the MFE/ML estimators that the
MFE/ML structure generally has an extremely low prob-
ability and is even not optimal with respect to the number
of corrected predicted base pairs (5–8). Hence, alternative
estimators which consider the ensemble of all possible
solutions, instead of only the solution with the highest
probability, have been developed. These include the
centroid estimator employed by Sfold (6,7) and the max-
imum expected accuracy (MEA) estimator employed by
CONTRAfold (9). These estimators maximize the expec-
tation of an object function related to the accuracy of the
prediction.
We have recently proposed a generalized centroid

estimator, called a g-centroid estimator, which can be
more appropriate for the accuracy measure of RNA sec-
ondary structure prediction than the MEA estimator, and
have furthermore shown that the g-centroid estimator
is theoretically and experimentally superior to the MEA
estimator (10).
CENTROIDFOLD is an implementation of the g-centroid

estimator for predicting RNA secondary structures, and is
distributed as a free software from http://www.ncrna.org/
software/centroidfold/. In this article, we introduce a web
application of CENTROIDFOLD with a very simple interface.
It takes an individual RNA sequence or a multiple align-
ment of RNA sequences, and returns its predicted
(common) secondary structure with a graphical represen-
tation. Our web application is available at http://
www.ncrna.org/centroidfold/ for unrestricted use.

*To whom correspondence should be addressed. Tel: +81 3 3599 8743; Fax: +81 3 3599 8081; Email: sato-kengo@aist.go.jp

! 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Maximizing expected accuracy

• Given a space S (x) of secondary structures of RNA sequence x, predict a 
structure "# that maximizes an accuracy metric.

Predict as many correct base pairs as possible

uGain function for true prediction

# of true positives # of true negatives

: a reference structure
: a predicted structure

G(y, ŷ) = �TP (y, ŷ) + TN(y, ŷ) (� > 0)



Maximizing expected accuracy

• Given a probability distribution P(y | x) over a space S (x) of secondary 
structures, predict a structure "# that maximizes expected accuracy

Predict as many correct base pairs as possible

uGain function for true prediction

# of true positives # of true negatives

: a reference structure
: a predicted structure

G(y, ŷ) = �TP (y, ŷ) + TN(y, ŷ) (� > 0)

arg max
ŷ2S(x)

X

y2S(x)

G(y, ŷ)P (y | x)



Maximizing expected accuracy

• Find "# that maximizes:

• Nussinov-style dynamic programming

X

y2S(x)

G(y, ŷ)P (y | x) =
X

i<j

[(� + 1)pij � 1]ŷij + C

s(i, j) = max

8
>><

>>:

s(i+ 1, j � 1) + [(� + 1)pij � 1]
s(i+ 1, j)
s(i, j � 1)
maxk[s(i, k) + s(k + 1, j)]

base-pairing probability



The four ingredients of RNA secondary structure prediction

2. Scoring scheme
– Weights
– Probability distribution
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values to the parameters in the next sections. Here, I concen-
trate in the different CFG rules used to describe RNA second-
ary structure.

A production rule that represents the formation of a basepair 
is of the form (S → a S â) where a and â stand for two paired 
bases. A scoring system for this one-rule grammar requires 
assigning 16 (or six) parameters whether one allows all pos-
sible nucleotides pairs or just restricted (A-U, G-C, or G-U) 
basepairs. This “grammar” would produce a single infinitely  
long helix of all paired RNA bases. Not quite exactly what we 
want.

A grammar that produces discontinuous helices with single-
stranded bases connecting the stems, and generates independent 
as well as nested stems could have the form,43

  S → a S â | a S | S a | S S | ε.
This grammar has five rules, here separated by a | (“or” sym-

bol). The fourth rule allows the possibility of multiple helices, 
and the fifth rule ends a string. The grammar allows one to intro-
duce 16 (or six) basepair emissions, four single base emissions and 
five transitions one for each of the rules.

The sequence of grammar rules necessary to produce a given 
RNA structure in named a derivation (or parse). A possible 
derivation under the above grammar for the toy stem “cacccug” 
(where nucleotides c-g and a-u are paired to each other) is

non-nested configurations named pseudoknots. In this review, 
I concentrate on methods for RNA secondary structure predic-
tion leaving aside pseudoknots as well as tertiary interactions. 
Although one should not forget that it might be exactly pseu-
doknots and tertiary interactions what could make the methods 
move forward and to obtain better prediction accuracies.

An important advance was the realization that any nested 
(i.e. secondary structure) existing method for RNA folding 
could be represented as a context-free grammar (CFG),41 and 
that RNA secondary structure prediction could be viewed as 
CFG parsing.43 A CFG consists of non-terminals (NTs) (rep-
resented with capital letters), terminals (the actual RNA bases, 
represented with lower case letters) and production rules of the 
form [NT → (any combination of NTs/terminals)]. The pro-
duction rules determine recursively the strings of RNA bases 
and structures that the grammar permits.44 Grammar for RNA 
folding allow all possible strings of nucleotides (possibly with 
some restrictions in the secondary structures allowed), but they 
“weight” each string differently according to a scoring system 
that assigns values to the parameters of the grammar. Grammar 
parameters that provide scores for the actual nucleotides are 
named “emissions.” Parameters that weight the different choices 
(rules) for a given non-terminal are named “transitions.” I will 
discuss the different scoring schemes and how to assign actual 

Figure 1. Unified description of different methods for single-sequence RNA secondary structure prediction. The menu of elements that define a meth-
od are: architecture, scoring scheme, parameterization and inference method. The architecture consists of the list of features which, in turn, determine 
the number of parameters of the model. The different architectures one can devise for a nested RNA secondary structure all fall into the category of 
a Context-Free Grammar (CFG). Any architecture can be implemented using either thermodynamic, weights or probabilistic parameters. Both weight 
and probabilistic schemes can be trained on data (statistical). There are statistical weight schemes such as CLLMs. Statistical probabilistic schemes for 
RNA folding are usually stochastic CFGs (SCFGs). Notice that SCFGs are a subset of CFGs. SCFGs describe models with a probabilistic scheme, while the 
concept CFG applies to all scoring schemes. The assignment of values for the parameters (parameterization) depends on the scoring scheme used. 
Thermodynamic models take values as kcal/mol free-energy estimations from experimental data. Conditional Log-Linear models use methods that 
require numerical optimization (CML and also online training). Probabilistic models are usually trained by maximum likelihood methods, which simply 
require obtaining frequencies of occurrences in the training set [and the addition of at least Laplace (+1) priors]. Once an architecture, scoring scheme 
and parameterization are in place (that is, a “model”), one can use different algorithms to infer plausible secondary structures. Unlike training, which is 
specific for the different scoring schemes, the folding algorithms (usually dynamic programming algorithms) are essentially identical for all parameter-
izations (although oftentimes they have different names). A side note; the term “probabilistic” often leads to confusion. In the end, all scoring schemes 
(probabilistic or not) can give us insight into the probabilistic distribution of structures (πs) for a given sequence (s) (the so-called Boltzmann ensemble 
in a thermodynamic scheme). For instance, one can calculate the distribution’s partition function (via the McCaskill or inside algorithms) or rigorously 
sample structures from that distribution. However, what is normally referred to as a “probabilistic” model is one in which the parameters of the model 
are themselves probabilities. Probabilistic models are “generative” models, which means that in addition to the Boltzmann ensemble per sequence, 
they also provide insight into the joint distribution for the ensemble of sequences and structures. With a probabilistic method, one can quite naturally 
generate sequences together with their structures according to the model.

[Rivas 2013]
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– Thermodynamic-based methods 
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• discriminative, generative
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Prediction of RNA secondary structures

1980 1990 2000 2010 2020

1978 Nussinov algorithm
1981 Mfold (Zuker algorithm) 1994 RNAfold

2004 RNAstructure
2006 CONTRAfold

2009 CentroidFold

2011 ContextFold

2011 IPknot

1999 PKNOTS

2021 MXfold2

2012 TORNADO

2019 SPOT-RNA
2018 Knotty

2022 IPknot++

2018 MXfold

2003 Pfold

2010 HotKnots 2.0
2005 HotKnots

2007 SimFold 2019 LinearFold

2003 NUPACK
Thermodynamic-based methods
Machine learning-based methods
Hybrid methods



Parameterization

• Thermodynamic-based methods
– Determine free energy parameters by experiments (e.g., Turner1999, Turner2004)
– Experimental errors are not negligible.
– Too simplified models can only be constructed due to the limitations of experimental 

techniques.

• Machine learning-based methods
– Rich-parameterized models can be constructed.
– Potential risk of overfitting due to the inability to provide enough training data.



Potential risk of overfitting

• Fewer parameters can be determined by experiments for the thermodynamic 
models.

• There is a possibility of overfitting to the training dataset for machine learning-
based models.

Method #parameters Parameterization Benchmark: F
TestSetA TestSetB

UNAfold [Markham et al., 2008] 3,500 Thermodynamic 0.510 0.513
RNAfold [Lorenz et al., 2011] 12,700 Thermodynamic 0.537 0.543
CONTRAfold [Do et al., 2006] 300 Machine Learning 0.572 0.579
ContextFold [Zakov et al., 2011] 205,000 Machine Learning 0.644 0.490

Comparison of different methods [Rivas et al., 2012]

Rich parameters High accuracy



Potential risk of overfitting

• Fewer parameters can be determined by experiments for the thermodynamic 
models.

• There is a possibility of overfitting to the training dataset for machine learning-
based models.

Method #parameters Parameterization Benchmark: F
TestSetA TestSetB

UNAfold [Markham et al., 2008] 3,500 Thermodynamic 0.510 0.513
RNAfold [Lorenz et al., 2011] 12,700 Thermodynamic 0.537 0.543
CONTRAfold [Do et al., 2006] 300 Machine Learning 0.572 0.579
ContextFold [Zakov et al., 2011] 205,000 Machine Learning 0.644 0.490

Comparison of different methods [Rivas et al., 2012]

Rich parameters High accuracy overfitting



ARTICLE

RNA secondary structure prediction using deep
learning with thermodynamic integration
Kengo Sato 1✉, Manato Akiyama1 & Yasubumi Sakakibara1

Accurate predictions of RNA secondary structures can help uncover the roles of functional

non-coding RNAs. Although machine learning-based models have achieved high performance

in terms of prediction accuracy, overfitting is a common risk for such highly parameterized

models. Here we show that overfitting can be minimized when RNA folding scores learnt

using a deep neural network are integrated together with Turner’s nearest-neighbor free

energy parameters. Training the model with thermodynamic regularization ensures that

folding scores and the calculated free energy are as close as possible. In computational

experiments designed for newly discovered non-coding RNAs, our algorithm (MXfold2)

achieves the most robust and accurate predictions of RNA secondary structures without

sacrificing computational efficiency compared to several other algorithms. The results sug-

gest that integrating thermodynamic information could help improve the robustness of deep

learning-based predictions of RNA secondary structure.
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Our Approach

• Develop an algorithm that is robust against the overfitting using…
Øa scoring model that integrates machine learning and thermodynamic approaches,
Ø the max-margin based training algorithm a.k.a. structured support vector machines 

(SSVM), and
Ø thermodynamic regularization that ensures that folding scores and the calculated free 

energy are as close as possible.



Scoring Model
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Scoring Model

• Integrate the thermodynamic approach and the machine learning approach. 
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Training Algorithm

• To optimize the network parameters λ, we employ a max-margin based training 
algorithm a.k.a structured support vector machines (SSVM) [Tsochantaridis et al., 
2005].

• Thermodynamic regularization prevents the folding score of the secondary 
structure from differing significantly from the free energy of the 
thermodynamic parameters.
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• Assembled by [Rivas et al., 2012]

same families, 
structurally similar

different families, 
structurally dissimilar

SSU/LSU domains (1004)
tRNA (157)
SRP RNA (215)
RNaseP RNA (150)
tmRNA (266)
5S RNA (112)
Group I introns (50)
Group II introns (4)
Telomerase RNA (12)
<50 nts hairpins (962)
Other structures (234)

TrainSetA

3166 Sequences
SSU/LSU domains (135)
tRNA (140)
SRP RNA (31)
RNaseP RNA (29)
tmRNA (63)
5S RNA (50)
Group I introns (28)
Group II introns (4)
Telomerase RNA (30)
<50 nts hairpins (179)
Other structures (8) TestSetA

697
Sequences

TestSetB

5.8S rRNA (14)
U1 (18)
U2 (45)
9 Cis regulatory RNAs (116)
Bacteriophage pRNA (1)
7 Riboswitches (233)
2 Ribozyms (3)

430
Sequences

Dataset I



Comparison with competitive methods
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Correlation with free energy

• Dataset
– T-full dataset [Andronescu et al., 2008], 

which contains sequence-structure-energy triplets

PPV SEN F RMSE ρ

MXfold2 0.984 0.978 0.980 3.260 0.833

MXfold2 (w/o thermo. reg.) 0.980 0.972 0.973 3.607 0.538

CONTRAfold 0.963 0.639 0.643 5.781 0.736

RNAfold 0.979 0.964 0.963 2.868 0.909



Other DL-based methods

• Multiple binary classifiers for all (i, j) pairs
– SPOT-RNA [Singh et al., 2019] , E2Efold [Chen et al., 2020], UFold [Fu et al., 2022] 
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Strategies for overfitting in other DL-based methods

• SPOT-RNA [Singh et al., 2019]
– Ensemble of five different DL models

• E2Efold [Chen et al., 2020]
– None

• UFold [Fu et al., 2022] 
– Data augmentation using test data mutated

test data

mutate 20-30% nuc.,
fold by CONTRAfold

training dataaugmented  
data +

Model

train

predict
predicted

secondary structure

evaluate



same families, 
structurally similar

different families, 
structurally dissimilar

CRW database
Rfam 12 database

TR0

10814 Sequences

Families from Rfam 14
discovered later than Rfam 12

bpRNAnew

5401 Sequences

Dataset II

Assembled by [Sato et al., 2021]

CRW database
Rfam 12 database

TS0

1305 Sequences

From bpRNA-1m database [Danaee et al., 2018]



Comparison with other DL-based methods
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Comparison with other DL-based methods on another study

• UFold’s data augmentation is not likely to be helpful.

Values are taken from [de Lajarte et al., 2024]



But not perfect

• Family-wise cross validation on Archive II dataset [Szikszai et al., 2022]

noted that the split on families reduces the concerns on homology,
but does not completely eliminate all concerns about generalization.
tmRNA, for example, is tRNA-like and mRNA-like (Williams and
Bartel, 1996). Therefore, the tRNA-like features could overtrain a
model which cross-validation with tRNA would not reveal.

4.2 Existing models
For any machine learning model, an unbiased split of training and
testing data is essential for benchmarking performance. In the case
of biological data, this means considering the homology between
these sets carefully in order to eliminate their overlap. Many current
studies in RNA secondary structure prediction, especially those
using learning-based models, do not appropriately address RNA
homology. While it may be sufficient in many bioinformatics appli-
cations to consider sequence identity or sequence similarity, in the
case of RNA, the structure is strongly conserved amongst families—
often much more than sequence (Fig. 4). Because of this, it is pos-
sible (and highly probable) to create splits where despite considering
sequence similarity, near-identical structures are present in both the
training and testing data sets. Below is a breakdown of the training/
testing split methodologies used by existing methods.

4.2.1 RNA-state-inference
While the authors of RNA-state-inference (Willmott et al., 2020) do
publish the entire source code on Github, we did not re-train their
network due to their method’s focus on single families.

The main results presented in the article are tested on a small set
of 16 16S rRNAs used in SHAPE-directed experiments (Sükösd
et al., 2013), and trained on a large dataset of 17 032 16S rRNA
sequences. Sequence similarity is addressed by removing training
sequences with an over 10% match to any testing sequence, as well
as training sequences that ‘can be aligned such that they have

common nucleotides accounting for more than 80% of nucleotides
of the shorter sequence’ (Willmott et al., 2020). This addresses se-
quence homology but does not address structure homology.

Finally, the paper does address poor inter-family generalization
by also testing on 5S and 23S rRNAs. These test sets show weaker
results (with an average accuracy of 0.514 for 5S rRNA and 0.611
for 23S rRNA) when compared to testing on 16S rRNA (with an
average accuracy of 0.839) (Willmott et al., 2020), supporting our
conclusions.

4.2.2 CROSS and RPRes
Both Computational Recognition of Secondary Structure (CROSS)
(Delli Ponti et al., 2017), and RPRes (Wang et al., 2021) are meth-
ods that attempt to recreate SHAPE experiments in silico, sharing
many similarities with our demonstrative model. Unfortunately, no
source code is provided for CROSS, and as such, we were unable to
re-train their model on our dataset. While the authors of RPRes do
publish the source code on Github, we were unable to re-train their
network. See the Supplementary Information for more details.

Neither paper sufficiently addresses concerns regarding poor
inter-family generalization. Both models are evaluated by training
on one dataset at a time (PARS yeast, PARS human, HIV SHAPE,
icSHAPE and high-quality nuclear magnetic resonance
spectroscopy/X-ray crystallography structures) and testing on all
others one by one. With this methodology, there is no guarantee, or
indeed expectation, that the secondary structures in the datasets do
not overlap. According to Delli Ponti et al. (2017) ‘[n]egligible over-
lap exists between training and testing sets’ (Delli Ponti et al., 2017)
with Jaccard indices < 0.002 between each pair of datasets, where
JaccardðS1; S2Þ ¼ ðS1 \ S2Þ = ðS1 [ S2) for sequences S1 and S2.
This addresses sequence similarity but does not comprehensively ad-
dress inter-family cases.

4.2.3 DMfold
While the authors of DMfold (Wang et al., 2019) do publish the en-
tire source code on Github, we were unable to re-train their net-
work. See the Supplementary Information for more details.

The train/test split methodology used by DMfold produces sets
which heavily overlap families. After using their packaged tools for
generating the splits, we found that all testing families were covered
in the training set, without any consideration to RNA homology
whatsoever. In this case, the training set contained 2111 RNAs,
with 957 5S rRNAs, 437 tRNAs, 377 RNase P RNAs and 340
tmRNAs, while the testing set contained 234 RNAs, with 102 5S
rRNA, 49 tRNAs, 45 RNase P RNAs and 38 tmRNAs. This set con-
tains many identical, or nearly identical structures between the train-
ing and testing sets, with a mean minimum tree edit distance of
14.16, compared to the 134.99 of our family-fold cross-validation
splits. See the Supplementary Information for more details.

(a) (b) (c)

Fig. 4. Secondary structure of three tRNAs. Despite relatively low sequence identity (<60%), their secondary structures appear nearly identical. Many machine learning model
benchmarks fail to separate these RNAs between the training and testing sets, causing significant overlap

Table 4. Performance of family-fold cross-validation on MXfold2
and UFold

F1

Family RNAstructure MXfold2 UFold

5S rRNA 0.63 0.54 0.53

SRP RNA 0.64 0.50 0.26

tRNA 0.80 0.64 0.26

tmRNA 0.43 0.46 0.40

RNase P RNA 0.55 0.51 0.41

Group I intron 0.53 0.45 0.45

16 S rRNA 0.58 0.55 0.41

Telomerase RNA 0.50 0.34 0.80

23S rRNA 0.73 0.64 0.45

Mean 0.60 0.51 0.44
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Abstract

Motivation: The secondary structure of RNA is of importance to its function. Over the last few years, several papers
attempted to use machine learning to improve de novo RNA secondary structure prediction. Many of these papers
report impressive results for intra-family predictions but seldom address the much more difficult (and practical)
inter-family problem.
Results: We demonstrate that it is nearly trivial with convolutional neural networks to generate pseudo-free energy
changes, modelled after structure mapping data that improve the accuracy of structure prediction for intra-family
cases. We propose a more rigorous method for inter-family cross-validation that can be used to assess the perform-
ance of learning-based models. Using this method, we further demonstrate that intra-family performance is insuffi-
cient proof of generalization despite the widespread assumption in the literature and provide strong evidence that
many existing learning-based models have not generalized inter-family.
Availability and implementation: Source code and data are available at https://github.com/marcellszi/dl-rna.
Contact: marcell.szikszai@research.uwa.edu.au
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribonucleic acid (RNA) molecules are extremely versatile polymers
fulfilling numerous roles essential for life, including gene regulation
and catalytic functions (Doudna and Cech, 2002; Serganov and
Patel, 2007). Part of this versatility can be attributed to the struc-
tural diversity of RNA (Caprara and Nilsen, 2000). While chemical-
ly related to DNA, RNA often functions as a single strand. As a
consequence, the molecules often fold back on themselves forming
complex structures. It is well established that these folded configura-
tions are of importance to the function of non-coding RNAs
(ncRNAs) (Seetin and Mathews, 2012).

When discussing RNA, its structure is generally divided into a
hierarchy of three levels. First, the foundation is the primary struc-
ture, which refers to the 1D sequence of the molecule. The sequences
are made up of a succession of nucleobases, represented by four let-
ters: adenine (A), cytosine (C), guanine (G) and uracil (U). Next, the
secondary structure, which refers to the set of canonical base

pairings where bases are paired with one or zero other bases. For
secondary structure, these pairs are formed by Watson–Crick base
pairings (A–U, G–C) and by wobble G–U pairs. Finally—the last level
generally considered—is the tertiary structure which refers to the 3D
structure and the additional interactions that mediate the structure.
However, since the secondary heavily informs the tertiary structure
(Miao et al., 2020; Shapiro et al., 2007; Tinoco and Bustamante,
1999), the secondary structure is usually sufficient for developing
some understanding of function.

Sequencing RNA molecules today is quick, inexpensive and ac-
curate (Stark et al., 2019); however, determining their structure is
not. While high-resolution experimental techniques—such as nu-
clear magnetic resonance spectroscopy, X-ray crystallography and
cryo-electron microscopy—exist, these methods tend to be expensive
and time consuming. The contrast in the difficulty of determining se-
quence versus structure has created a sequence–structure gap, where
there are vast amounts of sequenced RNA molecules without any
known corresponding structure. In order to bridge this gap,
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The number of known structures of proteins and RNA

• The number of known RNA structures is 100 times less than that of proteins.

公共DBにおけるRNA構造数の推移

https://www.rcsb.org/stats

The number of RNA entries 100 times smaller than that of protein entries.



SHAPE-directed folding

• RNAstructure [Deigan et al. PNAS. 2009]
– adds pseudo-energy for i-th base for base-pairing:

– shows significant improvement in prediction accuracy 

• We implemented SHAPE-directed folding in MXfold2 following this same 
approach.

brated under conditions that stabilize native RNA structure (Fig.
2A), and treated with 1-methyl-7-nitroisatoic anhydride (1M7) (24).
Sites of adduct formation were detected by a high-throughput
SHAPE approach in which the primer extension reactions, per-
formed by using color-coded fluorescently labeled DNA primers,
are resolved by capillary electrophoresis (Fig. 2B) (24, 25). SHAPE
reactivities for each primer read, covering 350–600 nt, were nor-
malized by using model-free statistics to a scale spanning 0 to !2,
where 1.0 is the average intensity for highly reactive positions (Fig.
2C). Nucleotides with normalized SHAPE reactivities "0.7 or
0.3–0.7 are considered highly and moderately reactive, respectively,
and are colored red and yellow. Unreactive nucleotides, with
SHAPE reactivities #0.3, are black (Fig. 2D).

We analyzed 91% and 95% of the nucleotides in E. coli 16S and
23S rRNAs (1,542 and 2,904 nt, respectively). In many regions,
including domain II of 23S rRNA, agreement between SHAPE
reactivities and the secondary structure determined by comparative
sequence analysis is essentially perfect (Fig. 3). Nucleotides that
participate in canonical base pairs are unreactive; whereas, nucle-
otides in loops, bulges, and other connecting regions are reactive
(compare black with red and yellow nucleotides; Fig. 3).

In a few regions, nucleotides expected to be base paired are
scored as reactive by SHAPE (blue boxes, Fig. 3): these positions
apparently reflect regions in which evolutionarily supported base
pairs do not form when rRNA is isolated from bacteria. The number
of such nucleotides is small, !9% of all nucleotides in the 16S and 23S
rRNAs. SHAPE thus provides comprehensive, direct, and quan-
titative information regarding the structure of large RNAs.

!GSHAPE. SHAPE reactivities report fine differences in local nucle-
otide flexibility (Fig. 3) (22, 27–29) and are strongly correlated with
the extent of local disorder as measured by the NMR generalized
order parameter (30). Because base pair formation also reduces
local nucleotide flexibility and disorder, SHAPE reactivities are
inversely correlated with the probability that a nucleotide forms a
base pair. We therefore create a pseudo-free energy change term
for RNA folding at nucleotide i as

$GSHAPE% i& ! m ln'SHAPE reactivity% i& " 1( " b [1]

This model has 2 free parameters, the intercept b and slope m. The
intercept is negative and represents a favorable free energy incre-
ment for pairing nucleotides at which the SHAPE reactivity is low.
The slope is positive and penalizes base pairing at nucleotides with
high SHAPE reactivities. The $GSHAPE term was integrated into

the dynamic programming algorithm in RNAstructure (11) as an
additional nearest neighbor free energy change term (16).

The slope and intercept were parameterized against 23S rRNA
by using the secondary structure determined by comparative se-
quence analysis (15) as the target structure (Fig. 4). 23S rRNA is a
good choice for parameterization because this single RNA encom-
passes a large database of diverse and nonredundant RNA motifs.
In this analysis, we excluded nucleotides (14%) where SHAPE
shows that base pairs in the comparative structure do not form or
for which no SHAPE reactivity information was obtained (blue
boxes and gray nucleotides, Figs. 3 and S2). In the absence of the
$GSHAPE term, base pairs in 23S rRNA are predicted with a
sensitivity and PPV of 72% and 60% (0,0 point; Fig. 4). As the
absolute values of the intercept and slope increase, prediction
accuracy improves to produce a large ‘‘sweet spot’’ corresponding
to "89% sensitivity (in red, Fig. 4).

The optimal parameter regions for both sensitivity and PPV are
large. Good predictions are therefore obtained even if the $GSHAPE
parameters are varied by large increments (Fig. 4). As general
parameters for folding large RNAs, we selected a slope and
intercept of 2.6 and )0.8 kcal/mol, respectively, because this point
corresponds to a high prediction sensitivity, is adjacent only to other

Table 1. Prediction accuracy for 16S rRNA as a function of
experimental information

Experimental
constraints Target

Base pairs Helices

Sensitivity PPV Sensitivity

None 1 49.7 46.2 52
SHAPE 1 (covariation

model)
84.2 80.9 90

SHAPE 2 (with omit
regions)

91.1 83.1 95

SHAPE 3 (with local
refolding)

97.2 95.1 98

Moderate and strong
chemical modification
prohibited at internal
base pairs

(omit
pseudoknots)

71.8 67.4 75

Moderate chemical
modification prohibited
at internal base pairs;
sites of strong reactivity
required to be single
stranded

(omit
pseudoknots)

66.7 64.2 70

Normalize SHAPE reactivities for each primer

Align and correct for signal decay,
integrate peak intensities
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Fig. 2. Analysis of E. coli rRNA structure by SHAPE. (A) Total RNA isolation under
nondenaturing conditions and modification with a SHAPE electrophile. (B) Res-
olution of SHAPE reactivities by capillary electrophoresis. (C) Calculation of nor-
malized SHAPE reactivities by box-plot analysis (31). (D) Histogram of SHAPE data
and superposition on the secondary structure for E. coli 23S rRNA.
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secondary structures for 3 smaller, pseudoknot free, RNAs: yeast
tRNAAsp, domain II of the HCV internal ribosome entry sequence
(HCV IRES), and the P546 domain of the bI3 group I intron.
Inclusion of SHAPE constraints yields accurate structures in all
cases. The structure of tRNAAsp is well predicted by thermody-
namics parameters alone (95% sensitivity), but SHAPE data still
provide sufficient information to yield a perfect prediction (100%
sensitivity). The HCV IRES and bI3 intron RNAs are, like 16S
rRNA, poorly predicted by thermodynamic information alone;
critically, inclusion of SHAPE information results in nearly perfect
predictions (Table 2; structures are provided in Fig. S4).

Discussion
By incorporating experimental SHAPE information as a pseudo-
free energy change term in RNAstructure, we determine the
structures of E. coli 16S rRNA and of 3 smaller RNAs almost
perfectly (Fig. 5, Tables 1 and 2). Differences between the SHAPE-
directed structures and the accepted target structures are usually

small and short-range. At this level of difference, it is not clear
whether the error lies in the predicted structure or in the accepted
structure. SHAPE-directed secondary structure determination
also gives excellent results for wide choices in the 2 free !GSHAPE
parameters and is thus tolerant of experimental and procedural
variability (Fig. 4).

16S rRNA is among the most comprehensive structure predic-
tion challenges available. The secondary structure for 16S rRNA
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Fig. 5. Accuracy of SHAPE-directed secondary structure determination for E. coli 16S rRNA. !GSHAPE parameters were intercept and slope of "0.8 and 2.6
kcal/mol, respectively. Missed base pairs are indicated by red x’s; incorrectly predicted base pairs are represented by purple lines. Nucleotides are colored by their
SHAPE reactivities. Regions where SHAPE reactivities are not consistent with the accepted phylogenetic structure are indicated with blue boxes. Regions and
specific base pairs where the experimental SHAPE information supports local refolding are indicated with green boxes and spheres, respectively.

Table 2. Prediction accuracies for nonribosomal RNAs

RNA Nucleotides

No constraints SHAPE

Sensitivity PPV Sensitivity PPV

Yeast tRNAAsp 75 95.2 95.2 100.0 100.0
HCV IRES domain II 95 56.5 59.1 95.7 100.0
P546 domain, group I

intron
155 42.9 44.4 96.4 98.2
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Training from chemical probing data

• EternaFold [Wayment-Steele et al. Nat. Methods. 2022]
– Multi-task learning based on the CONTRAfold model

• We implemented SHAPE-directed “training” in MXfold2 while avoiding the 
computation of the partition function.



Training from chemical probing data

• Key idea:
– SHAPE-directed folding make a perfect prediction, so use it as the reference structure.

• Update the model parameter ! for a sequence " with chemical probing data
1. predict secondary structure ! of " using SHAPE-directed folding with parameter #
2. predict secondary structure $! of " using normal folding with parameter #
3. update parameter: # ← # − ' ∇!)*++(!, $!)



Training from chemical probing data

• Training data
– MXfold2

– MXfold2 (SHAPE-directed training)

• This enables training on sequences for 
which few training data have been 
available so far (e.g., lncRNA, mRNA).

TrainSetA
+

simulated SHAPE reactivity of TrainSetB

TrainSetA only

[Sato et al., in prep]



Distribution of SHAPE reactivity

• [Wu et al. NAR. 2015]7254 Nucleic Acids Research, 2015, Vol. 43, No. 15

Figure 3. RNA secondary structure prediction performance with SHAPE restraints. Distributions fitted onto the SHAPE data for (A) paired bases and
(B) single-stranded bases are shown. Gray bars represent the histogram of normalized SHAPE reactivity and black lines show the maximum likelihood
fitting to the data. The distribution functions and parameters trained on Escherichia coli 23S rRNA are shown in the box. (C) Sensitivity and (D) PPV
for RME, RNAstructure-Fold and SeqFold with restraints added (dark gray), as well as the results for the corresponding controls without restraints added
(light gray), are shown. Error bars represent the standard errors across 13 tested RNAs.

than the Fisher and MPL models (Supplementary Figure
S8 B and C). We then compared the RNA secondary struc-
ture prediction performance of RME, RNAstructure-Fold
and SeqFold with and without restraints generated from
PARS and DMS-seq (Supplementary Tables S5 and S6).
For RME, we provided pairing probabilities based on the
Posterior model. For RNAstructure-Fold, PARS reactivity
(S1′-V1′) and DMS-seq reactivity (vivo′-control′) data were
transformed to a pseudo-free energy change (see ‘Materi-
als and Methods’ section). For SeqFold, the structure pref-
erence profiles generated by the Fisher model were used as
the default profiles (31). The parameters for the fitted distri-
butions (Supplementary Figures S3 and S4), RNAstructure-
Fold and RME (Supplementary Tables S5 and S6) were
trained on yeast 25S rRNA. The tested RNAs are listed in
Supplementary Tables S5 and S6.

For the PARS data, the test set included eight snoRNAs,
one yeast 5S rRNA and four domains of yeast 18S rRNA.

The performance of RME, RNAstructure-Fold and SeqFold
for all tested RNAs was shown in Supplementary Table S5.
RME showed a trend for slightly increased PPV and slightly
decreased sensitivity. We found that only some of the tested
RNAs had structures that could be better predicted with
the aid of PARS data, regardless of the method used (Fig-
ure 4A). Furthermore, we also showed that the RME and
SeqFold structure prediction performance was similar with
pairing probabilities from the Posterior, Fisher and MPL
models (Supplementary Figure S11).

For the DMS-seq data, the test set included three mR-
NAs and a yeast 18S rRNA (four domains). Using this
small test set, we tested RME, RNAstructure-Fold, SeqFold
as well as their corresponding controls (Supplementary Ta-
ble S6). With DMS-seq restraints, RME and RNAstructure-
Fold showed slightly improved average sensitivity and PPV
(not statistically significant) in comparison with the corre-
sponding controls. RME gave better structure prediction
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for RME, RNAstructure-Fold and SeqFold with restraints added (dark gray), as well as the results for the corresponding controls without restraints added
(light gray), are shown. Error bars represent the standard errors across 13 tested RNAs.
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and SeqFold with and without restraints generated from
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For RME, we provided pairing probabilities based on the
Posterior model. For RNAstructure-Fold, PARS reactivity
(S1′-V1′) and DMS-seq reactivity (vivo′-control′) data were
transformed to a pseudo-free energy change (see ‘Materi-
als and Methods’ section). For SeqFold, the structure pref-
erence profiles generated by the Fisher model were used as
the default profiles (31). The parameters for the fitted distri-
butions (Supplementary Figures S3 and S4), RNAstructure-
Fold and RME (Supplementary Tables S5 and S6) were
trained on yeast 25S rRNA. The tested RNAs are listed in
Supplementary Tables S5 and S6.

For the PARS data, the test set included eight snoRNAs,
one yeast 5S rRNA and four domains of yeast 18S rRNA.

The performance of RME, RNAstructure-Fold and SeqFold
for all tested RNAs was shown in Supplementary Table S5.
RME showed a trend for slightly increased PPV and slightly
decreased sensitivity. We found that only some of the tested
RNAs had structures that could be better predicted with
the aid of PARS data, regardless of the method used (Fig-
ure 4A). Furthermore, we also showed that the RME and
SeqFold structure prediction performance was similar with
pairing probabilities from the Posterior, Fisher and MPL
models (Supplementary Figure S11).

For the DMS-seq data, the test set included three mR-
NAs and a yeast 18S rRNA (four domains). Using this
small test set, we tested RME, RNAstructure-Fold, SeqFold
as well as their corresponding controls (Supplementary Ta-
ble S6). With DMS-seq restraints, RME and RNAstructure-
Fold showed slightly improved average sensitivity and PPV
(not statistically significant) in comparison with the corre-
sponding controls. RME gave better structure prediction
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Large scale training dataset including chemical probing

Current
• 4,270 sequences with complete SS

– TrainSetA+B, TestSetA+B
[Rivas et al., 2012]

New
• 19,266 sequences with complete SS

– TrainSetA+B, TestSetA+B
[Rivas et al., 2012]

– bpRNA-1m [Danaee et al., 2018]
– bpRNAnew [Sato et al., 2021]

• 48,614 sequences with chemical reactivity
– 1,456 human mRNA 3’ end,

1,098 human pri-miRNA
[de Lajarte et al., 2024]

– 46,060 Ribonanza data [He et al., 2024]

• Performance will be improved by significantly scaling up both the quality and 
quantity of training data.



Large scale training dataset including chemical probing

Values are taken from [de Lajarte et al., 2024] [Sato et al., in prep]
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RNA modifications

• play important roles in biological processes such as gene regulation [Camper et al., 

1984],
• are known to exist >170 types [Nombela et al., 2021], and

• alter RNA secondary structures [Alseth et al., 2014].
Inosine (I) Pseudouridine (ψ) N6-methyladenosine (m6A)

However, few methods are available for predicting RNA 
secondary structures that consider RNA modifications.



Methods: Representation for RNA modifications

[Rogers et al., 2010]

One-hot encoding
• Takes characters (RNAs) as inputs, and
• Identifies input characters by a set bit.

4 bits

A (1 0 0 0)
U (0 1 0 0)
G (0 0 1 0)

(0 0 0 1)C

7 bits

A (1 0 0 0 0 0 0)
U (0 1 0 0 0 0 0)
G (0 0 1 0 0 0 0)
C (0 0 0 1 0 0 0)

I (0 0 0 0 1 0 0)

Ψ (0 0 0 0 0 1 0)
m6A (0 0 0 0 0 0 1)

Fingerprint encoding
ECFP (Extended-Connectivity Fingerprint)

• Takes chemical structures as inputs, and
• Represents the presence or absence of 

substructures in 1024 bits.

1024 bits

1024 bits



Datasets

※1 Rivas et al, 2012, ※2 Boccaletto et al., 2018, ※3 Lorenz et al., 2017, Helm et al., 2006 , Guy et al., 2014 , Bilbille et al., 
2011, Swinehart et al., 2020, Keller et al., 1999, Jank et al., 1977, Kulinska et al., 1974, Hayase et al., 1974, Tinse et al., 
2000

# of 
seqs.

Modified bases (%)
I ψ m6A

TrainSetA※1 3166 0.0 0.0 0.0 RNA seqs without 
modifications

Pre-training

mod_data※2 218 0.16 8.8 0.26 tRNA seqs with 
modifications

Fine-tuning

no_mod_data※2 218 0.0 0.0 0.0 same seqs as 
mod_data, but no 
mods

Fine-tuning

pdb_data※3 11 1.7 18.0 0.0 tRNA seqs with 
modifications

Evaluation



Results

• Pre-train with TrainSetA, evaluate positions at modified bases on pdb_data

mod_data no_mod_data
Fine-tuning

• Fingerprint encoding tends to be more accurate for modified bases 
than one-hot encoding.



Interpretation of fingerprint encoding

• The fingerprint encoding can share the results of the training for common bits.

C GI C



How to prepare sequence data with structures including modified bases?

• Few sequence data are available that contain modified bases with complete 
secondary structures.

• Chemical probing data with modified bases has also never been available.
• We plan to combine experimental data in different experiments as in:

ARTICLE

Secondary structure prediction for RNA sequences
including N6-methyladenosine
Elzbieta Kierzek 1✉, Xiaoju Zhang2, Richard M. Watson2, Scott D. Kennedy 2, Marta Szabat1,
Ryszard Kierzek1 & David H. Mathews 2✉

There is increasing interest in the roles of covalently modified nucleotides in RNA. There has

been, however, an inability to account for modifications in secondary structure prediction

because of a lack of software and thermodynamic parameters. We report the solution for

these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an

alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined

nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for

helices and loops containing m6A, using experiments. Interestingly, N6-methylation

decreases folding stability for adenosines in the middle of a helix, has little effect on folding

stability for adenosines at the ends of helices, and increases folding stability for unpaired

adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated

protein recognition site from MALAT1 and human transcriptome-wide effects of N6-

methylation on the probability of adenosine being buried in a helix.

https://doi.org/10.1038/s41467-022-28817-4 OPEN

1 Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland. 2 Department of Biochemistry and Biophysics
and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA.
✉email: Elzbieta.Kierzek@ibch.poznan.pl; David_Mathews@urmc.rochester.edu
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binding than the unmethylated RNA. Additionally, enzymatic
cleavage by RNase S1, which has specificity for loop regions of
RNA, demonstrated increased cleavage 5′ and 3′ to the methy-
lated A, supporting increased accessibility.

We used RNAstructure to predict the lowest free energy
structure of the 32 nucleotide RNA. We predicted the structure to
be a hairpin stem-loop as previously modeled for the unmethy-
lated sequence (Fig. 4A, closed structure)57. However, our
structure prediction was unchanged for the methylated sequence.
For HNRNPC to bind, the site composed of the five Us starting at
position 10 must be unpaired58. We can therefore estimate the
accessibility as the ΔG°37 for the breaking of the three base
pairs adjacent to the hairpin loop (Fig. 4A, open structure)59.
The ΔΔG°37 is the difference in the accessibility with and without
the N6-methylation at position 22 is 0.6 ± 0.4 kcal/mol (where
the uncertainty is propagated from the uncertainties of two
nearest neighbor stacks that change from the introduction of
the methylation). This is consistent with the ΔΔG°37 of
1.26 ± 0.22 kcal/mol determined by filter binding assay57.

Our model therefore is that the N6-methylation of the
MALAT1 hairpin does not open the binding site, but instead
facilitates the HNRNPC protein-mediated breaking of base pairs
at the binding site. To test this, we probed the 32 nucleotide RNA
(extended with a 3′ structural cassette) by chemical mapping with
CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-
p-toluenesulfonate), DMS (dimethyl sulfate), and kethoxal
(Supplementary Fig. S3). The chemical mapping data and the
prior enzymatic mapping57 data are consistent with the proposed
structure, and only minor differences are observed with and
without the methylation. We also collected NMR spectra with and
without methylation and assigned the imino resonances, following
previous NMR studies on the same sequence60. The NOESY walk
(Supplementary Fig. S4) confirms the hairpin conformation, and
Supplementary Fig. S5 shows that a number of NMR peaks are
observed at high RNA concentration because of duplex formation.
Supplementary Fig. S6 also shows that the imino resonance

chemical shifts are largely unchanged in a higher Na+ buffer
(95mM NaCl and 38mM sodium phosphate) as a result of N6-
methylation, although chemical shift changes close to the
methylation site are observed because of the proximity of the
methyl group (Supplementary Table S7). Additionally, we tested
whether Mg2+ alters the conformation of the N6-methylated
sequence differently than the unmethylated sequence. The Mg2+
titration in Supplementary Fig. S7 shows that the imino
resonances are similarly affected for the two sequences. The U10
imino resonance shifts by ~0.2 ppm in both sequences, and this
was resolved by NOESY spectra (Supplementary Fig. S8). Taken
together, the modeling and experimental data show that the
MALAT1 RNA conformation is not directly switched by N6-
methylation. Instead, the methylation poises the RNA to be more
accessible to HNRNPC binding.

Transcriptome-wide predictions with m6A. To further test our
m6A nearest neighbor parameters and software, we predicted
structures for 18,026 mRNAs that were identified as having N6A
methylation by whole transcriptome sequencing61 and for which
PARS structure mapping data are available62. We used the nearest
neighbor parameters and RNAstructure package to estimate the
probability that the methylation site is buried in a helix, i.e., in a
base pair stacked between two other base pairs, for both the
unmethylated and methylated sequence (Fig. 4B). We used 800
nucleotide fragments of local sequence to estimate the pairing
probability because we previously found that pairing probability
estimates for 800 nucleotide fragments closely match those for
global secondary structure prediction28. This is a reasonable
balance between accuracy and total calculation time.

We find that the unmethylated A at the methylation site is less
likely to be buried in a helix than adjacent nucleotides (Fig. 4B).
This is intuitive because adjacent nucleotides at the consensus site
are often G or C, and A is more predominant in loops in RNAs
with known structure. There is a substantial shift in the
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Fig. 4 Tests of the m6A nearest neighbor parameters and RNAstructure software. A The structure of MALAT1 RNA. The predicted secondary structure
for the HNRNPC binding site is the closed conformation both with and without N6-methylation at A22 (green arrow). This is also supported by the NMR
NOESY walk (Supplementary Fig. S4) and the similar chemical shifts for imino proton resonances with and without methylation (Supplementary Fig. S6).
We model the binding of HNRNPC protein as the conformation that exposes the recognition sequence (marked in red nucleotides). When A22 is
methylated to m6A, we estimate the cost of opening the binding site is reduced by 0.6 kcal/mol as compared to the unmethylated sequence. B The
average probability that A or m6A are buried in a helix at the position of high-confidence m6A sites in the human transcriptome. The mean probability that
an A or m6A is base paired and stacked between two adjacent pairs for 18,026 sites of N6-methylation, as estimated by RNAstructure. Position 0 is the site
of methylation. N6-methylation is estimated to further open the structure at the methylation site. C The average PARS scores for accessibility for the
18,026 sites of N6-methylation in the human transcriptome. Lower PARS scores indicate higher counts of nuclease S1 cleavage relative to nuclease V1
cleavage and therefore a higher likelihood of being unpaired. The RNAstructure predictions and the PARS data both show considerable single-stranded
character at the site of N6-methylation.
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RNA pseudoknotted secondary structure

• Pseudoknots play several roles in RNA functions
– Regulation of translation & splicing, etc.

• Pseudoknots assist the overall 3D folding
→ Pseudoknots should be considered for structural 

analysis

pseudoknot

Connect base
pairs with arcs

5’—UCAGCAGAAAGC—3’

Crossing5’—UC
AGACG

GC—3’

A

A
A

--

--



Prediction of RNA secondary structures

1980 1990 2000 2010 2020

1978 Nussinov algorithm
1981 Mfold (Zuker algorithm) 1994 RNAfold

2004 RNAstructure
2006 CONTRAfold

2009 CentroidFold

2011 ContextFold

2011 IPknot

1999 PKNOTS

2021 MXfold2

2012 TORNADO

2019 SPOT-RNA
2018 Knotty

2022 IPknot++

2018 MXfold

2003 Pfold

2010 HotKnots 2.0
2005 HotKnots

2007 SimFold 2019 LinearFold

2003 NUPACK
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Problem Solving Protocol

Prediction of RNA secondary structure including
pseudoknots for long sequences
Kengo Sato and Yuki Kato

Corresponding author: Kengo Sato, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. Tel.: +81-45-566-1511; E-mail: satoken@bio.keio.ac.jp

Abstract
RNA structural elements called pseudoknots are involved in various biological phenomena including ribosomal frameshifts.
Because it is infeasible to construct an efficiently computable secondary structure model including pseudoknots, secondary
structure prediction methods considering pseudoknots are not yet widely available. We developed IPknot, which uses
heuristics to speed up computations, but it has remained difficult to apply it to long sequences, such as messenger RNA and
viral RNA, because it requires cubic computational time with respect to sequence length and has threshold parameters that
need to be manually adjusted. Here, we propose an improvement of IPknot that enables calculation in linear time by
employing the LinearPartition model and automatically selects the optimal threshold parameters based on the
pseudo-expected accuracy. In addition, IPknot showed favorable prediction accuracy across a wide range of conditions in
our exhaustive benchmarking, not only for single sequences but also for multiple alignments.

Key words: RNA secondary structure prediction; pseudoknots; integer programming

Introduction
Genetic information recorded in DNA is transcribed into RNA,
which is then translated into protein to fulfill its function. In
other words, RNA is merely an intermediate product for the
transmission of genetic information. This type of RNA is called
messenger RNA (mRNA). However, many RNAs that do not fit
into this framework have been discovered more recently. For
example, transfer RNA and ribosomal RNA, which play central
roles in the translation mechanism, nucleolar small RNA, which
guides the modification sites of other RNAs, and microRNA,
which regulates gene expression, have been discovered. Thus,
it has become clear that RNAs other than mRNAs are involved
in various biological phenomena. Because these RNAs do not
encode proteins, they are called non-coding RNAs. In contrast
to DNA, which forms a double-stranded structure in vivo, RNA
is often single-stranded and is thus unstable when intact. In the
case of mRNA, the cap structure at the 5′ end and the poly-A
strand at the 3′ end protect it from degradation. On the other

Kengo Sato is an assistant professor at the Department of Biosciences and Informatics at Keio University, Japan. He received his PhD in Computer Science
from Keio University, Japan, in 2003. His research interests include bioinformatics, computational linguistics and machine learning.
Yuki Kato is an assistant professor at Department of RNA Biology and Neuroscience, Graduate School of Medicine, and at Integrated Frontier Research for
Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan. His research interests include biological
sequence analysis and single-cell genomics.
Submitted: 16 June 2021; Received (in revised form): 13 August 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

hand, for other RNAs that do not have such structures, single-
stranded RNA molecules bind to themselves to form three-
dimensional structures and ensure their stability. Also, as in the
case of proteins, RNAs with similar functions have similar three-
dimensional structures, and it is known that there is a strong
association between function and structure. The determination
of RNA three-dimensional (3D) structure can be performed by X-
ray crystallography, nuclear magnetic resonance, cryo-electron
microscopy, and other techniques. However, it is difficult to apply
these methods on a large scale owing to difficulties associated
with sequence lengths, resolution and cost. Therefore, RNA sec-
ondary structure, which is easier to model, is often computation-
ally predicted instead. RNA secondary structure refers to the set
of base pairs consisting of Watson–Crick base pairs (A–U, G–C)
and wobble base pairs (G–U) that form the backbone of the 3D
structure.

RNA secondary structure prediction is conventionally based
on thermodynamic models, which predict the secondary
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IPknot: Integer Programming-based prediction of RNA pseudoKNOTs
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Integer 
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Maximum expected
accuracy structure
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Input
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Approximate probability distribution

• Approximate a probability distribution over pseudoknotted structures by its 
factorization

Pseudoknotted

Pseudoknot
free

Level 1

Level 2

Level 3



• Consider only base pairs whose pairing probabilities are larger than thresholds
→Threshold cut

Find y = (y(1),…, y(m)) that maximizes (*)

Objective function (expected accuracy)

(*)

Predicted base pairTo be positive

i j

yij = 1……• yij(1) such that

• yij(m) such that
Thresholds



Constraints

• The following hold for all levels p (1 £ p £ m) and q (< p)

Level p

Level q

Each base can be
paired with at most
one base

No pseudoknots

Each base pair at the level p
is pseudoknotted to at least 
one base pair at the lower 
level q



Prediction accuracy for pseudoknotted structures
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IPknot integrated with MXfold2

• IPknot approximates a probability distribution over pseudoknotted structures 
by its factorization of pseudoknot-free structures:
– (2011 version) CONTRAfold model, ViennaRNA model, NUPACK model
– (2022 version) LinearFold-C model, LinearFold-V model

• We implemented new IPknot that integrates MXfold2 as a probability 
distribution over pseudoknot-free structures.

Pseudoknotted

Pseudoknot
free

Level 1

Level 2

Level 3



IPknot integrated with MXfold2

• We are participating in CASP16 as RNA_Dojo team with a workflow based on 
the new IPknot with MXfold2, FARFAR2, and RNA-BRiQ.

Ongoing Participation Report on RNA 3D structure prediction at CASP16: 

Usage and limitations of AlphaFold3  
○Junichi Iwakiri1, Takumi Otagaki1, Kazuteru Yamamura1, Shunsuke Sumi2,3, Jiro Kondo4 and Kengo Sato5  
(1 Graduate School of Frontier Sciences, The University of Tokyo, 2 Institute for Quantitative Biosciences (IQB), The University of Tokyo, 3 Graduate 
School of Advanced Science and Engineering, Waseda University, 4 Department of Materials and Life Sciences, Sophia University, 5 School of System 
Design and Technology, Tokyo Denki University) 

Since the emergence of AlphaFold2 with its overwhelming accuracy in protein 3D structure prediction at CASP14 in 2020, confidence in the computational structure prediction methods has soared, 
marking a significant turning point in molecular biology and biophysics research. Two years later, at CASP15 in 2022, the scope of structure prediction targets was expanded to include not only pro-
teins but also RNA, with 15 RNAs provided as prediction targets. Inspired by AlphaFold2, several deep learning-based RNA 3D structure prediction methods were proposed. Unfortunately, these deep 
learning-based methods could not achieve high accuracy for the 15 RNA targets in CASP15. Now, in 2024, CASP16 is taking place, and during the annual meeting of the RNA Society of Japan, RNA 
structure prediction is actively ongoing as part of CASP16. In May 2024, AlphaFold3 was suddenly emerged, capturing significant attention for its ability to predict the structures of not only proteins 
but also RNA, DNA, and their complexes. 
In this year, enthusiastic members from the RNA structure prediction community in Japan has launched an online group to actively participate in CASP16. At this annual meeting, we will present not 
only our trials and errors in RNA 3D structure prediction during CASP16 but also the actual usage/limitation of AlphaFold3 for RNA 3D structure prediction.  

Prediction workflow of RNA_Dojo team 

2D+pseudoknot prediction 

(newMXfold2 + IPknot) 

3D prediction (FARFAR2) 

Clustering (DBSCAN) 

Scoring (RNA-BRiQ) Team discussion in slack 

 (Blast, clustalw, RNApdbee 

AlphaFold3)  

Input RNA sequence 

Output RNA 3D structure 

feedback 

feedback 

● AF3 attempts to excessively fold RNAs for unknown sequences in the PDB. 

● The predicted structures often involved artifacts (A-A, C-C, G-G, U-U base-pairs). 

Poly-A (100nt) 

Poly-U (100nt) 

Poly-C (100nt) 

Poly-G (100nt) 

Effect of G-quadruplex? 

Hybrid method (our prediction & AlphaFold3) 
Target R1203: Rev response element stem-loop II 

Native(8UO6) Predicted (newMXfold2) 

 
R1203             GCCCGGAUAGCUCAGUCGGUAGAGCAGCGGGCA------CUAUGGG-----------CGC 
8SP9_1|Chain      GCCCGGAUAGCUCAGUCGGUAGAGCAGCGGUAAAACAGCCUGUGGGUUGAUCCCACCCAC 
                  ******************************  *      ** ****           * * 
 
R1203             AGUGUCAAU-GGACGCUGACGGUACAG-GCCAGACAAUUAUUGUCUGGUAUAGUGCCCGC 
8SP9_1|Chain      AGGGCCCAUUGGGCGCUAGCACUCUGGUAUCACGGUACCUUUGUGCGCCUGUUUUACCGC 
                  ** * * ** ** ****  *  *   *   **    *   ****  *      *  **** 
 
R1203             GGGUCCAGGGUUCAAGUCCCUGUUCGGGCGCCA 
8SP9_1|Chain      GGGUCCAGGGUUCAAGUCCCUGUUCGGGCGCCA 
                  ********************************* 

tRNA scaffold was perfectly aligned to the homologous RNA (8SP9). 

tRNA scaffold (Sequence alignment with the homologous structure) 

Inserted region (secondary structure prediction) 

newMXfold2 successfully predicted the near-native 2D structure 
which was necessary for the native-like 3D structure prediction 
using FARFAR2. 

Native(8UO6): white 
Predicted: orange  

← 
tRNA scaffold  
(AlphaFold3) 

→ 
Inserted region 
(our prediction) 

(RMSD8.4Å) 

Our method (newMXfold2 & FARFAR2 without AF3)  

tRNA scaffold truncated 

in this target 

Homolog (8SP9): white 
Predicted: orange  

(RMSD 3.8Å) 

missing 

Coxsackievirus B3 (CVB3)

cloverleaf RNA  

 
R1211             ----------------------------GGUAAAACAGCCUGUGGGUUGAUCCCACCCAC 
8SP9_1|Chain      GCCCGGAUAGCUCAGUCGGUAGAGCAGCGGUAAAACAGCCUGUGGGUUGAUCCCACCCAC 
                                              ******************************** 
 
R1211             AGGGCCCAUUGGGCGCUAGCACUCUGGUAUCACGGUACCUUUGUGCGCCUGUUUUACC-- 
8SP9_1|Chain      AGGGCCCAUUGGGCGCUAGCACUCUGGUAUCACGGUACCUUUGUGCGCCUGUUUUACCGC 
                  **********************************************************   
 
R1211             --------------------------------- 
8SP9_1|Chain      GGGUCCAGGGUUCAAGUCCCUGUUCGGGCGCCA 

Homologous structure (8SP9) 
w/o tRNA scaffold 

Predicted (newMXfold2) 

● Native structure (8UO6) recently published just after submission close in CASP16. 
● Published 2024-05-17, CASP16 submission close: 2024-05-16  

● Homologous structure (8SP9) includes tRNA scaffold of this target. 
● Inserted region (Rev response element stem-loop II) was not known in PDB. 

● Native structure has not been published in CASP16. 
● Homologous structure (8SP9): CVB3 Cloverleaf RNA with tRNA scaffold 
● The tRNA scaffold is truncated in this target (R1211). 
● Our method predicted a 8SP9-like structure only from the input sequence.  
● Appropriate scoring method required for selecting the 8SP9-like 

structure. 
● AlphaFold3 was not used for this target. 

Secondary structure prediction Sequence alignment with the homologous structure 

Target R1255: SL5 SARS-CoV-2: rotated junction  

Target R1211: CVB3 cloverleaf RNA in complex with 3C protease  

Homolog (8UYS): white 
Predicted: orange  

(RMSD 7.4Å) 

Mutations (A-U pair → G-C pair) 

Mutations (G-C pair → A-U pair) 

Homologous structure 
(8UYS) 

Predicted (newMXfold2) 

Secondary structure prediction 

● Native structure has not been published in CASP16. 
● Homologous structure (8UYS): SARS-CoV-2 5' proximal stem-loop 5 
● 4 mutations in the four-way junction of this target. 

● A-U pair changed to G-C pair 
● C-G pair changed to A-U pair 

● Our method predicted a 8UYS-like structure only from the input sequence.  
● Appropriate scoring method required for selecting the 8UYS-like 

structure. 

 
R1255           GGACACGAGUAACUCGUCUAUCUGCUGCAGGCUGCUUACGGUUUCGUCCGUGUUGCAGCC 
8UYS            GGACACGAGUAACUCGUCUAUCUUCUGCAGGCUGCUUACGGUUUCGUCCGUGUUGCAGCC 
                *********************** ************************************ 
 
R1255           GAUCAUCAGAACAUCUAGGUUUCGUCCGGGUGUUACCGAAAGGUCAGAUGGAGAGCCUUG 
8UYS            GAUCAUCAGCACAUCUAGGUUUCGUCCGGGUGUGACCGAAAGGUAAGAUGGAGAGCCUUG 
                ********* *********************** ********** *************** 
 
R1255           UCCC 
8UYS            UCCC 
                **** 

Sequence alignment with the homologous structure 

Difficult RNA targets  
Target R1242: RaiA RNA motif (205 nt) Target R1248: GOLLD 3primedomain env46 (407 nt) 

Current limitation of AlphaFold3 

● Long RNA (> 200nt) 

● complex pseudoknotted RNA 

● Long loop 

● No homologs data in PDB  

● Multi-way junction 
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