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Covariance Models, reminder 1: basics
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▶ Statistical model for homology
families [Eddy and Durbin, 1994]

▶ built from structure-annotated
MSA

▶ Can use it to scan databases for
new homologs

→ at the base of
RFAM [Kalvari et al., 2021] through
InfeRNAl [Nawrocki and Eddy, 2013]

▶ Can produce MSA of input
sequences
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Covariance Models, reminder 2: sampling

example of 
generation

AGGG-GGCAAUUCGAGGUGCCGUCACU
insertdeletion 

▶ probability space = aligned
sequences

log P(aligned seq)) =

log P(state sequence)+

log P(symbol emissions)

=
∑

transition u→v

log P(u → v)

+
∑

emitting state u

log P(emission)
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Covariance Models, reminder 3: alignment of a sequence to the model

AGGGGGCAAUUCGAGGUGCCGUCACU

A

A

A

A

C

U

U

A

G

G

G

G

G

U

U

C

C

C

C

G

G

G
GG

-

dynamic progaming. Example for MP state:

: most likely state sequence + 
emission scenario starting at v and generating S[i:j]
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Covariance Models: highlight on some features

example of 
generation

AGGG-GGCAAUUCGAGGUGCCGUCACU
insertdeletion 

▶ stacked base-pairs are not independent
▶ no dependence accross helices though
▶ scores are position-dependent, learned from

alignment (counting)

AGGG-GGCAAUUCGAGGUGCCGUCACU
AGGGCGGCAAUUCGA--UGCCGUCACU

AGGGCGGCAAUUCGA--UGCCGUCACU
(((((_____)))((..(___)))_))

...

structure-annotated MSA
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Formulating a Pseudoknotted version: the task

Problems:
▶ Lose inside/outside separation
▶ No notions of “left/right” anymore
▶ alignment: a close problem is

NP-hard [Jiang et al., 2002].

Need equivalents of
▶ cmbuild
▶ cmemit
▶ cmalign → a parameterized algorithm ?

i.e. runtime of the form f(k)ng(k)

What probabilistic model ?
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A related precedent: LiCoRNA [Rinaudo et al., 2012]

▶ input: structure-annotated seq. Q and seq. S
▶ output: best mapping µ ∼ alignment
▶ complexity |Q| · |S|tw+1

Q

S

µ

A U U A G C A C A G U C C G U G G A A U G C A A G C

cost(µ) =
∑

i,j∈bps
bp_cost(Q[i],Q[j], S[µ(i)], S[µ(j)])

+
∑

i unpaired

unpaired_cost(Q[i], S[µ(i)]) + affine_gap_costs(µ)

▶ tw: treewidth
▶ no pseudoknots → tw=2
▶ RFAM cons. str. (with pk): tw ≤ 5

(tw = 3: 110, tw = 4: 52, tw = 5: 3)

PK stacking positional scores
InfeRNAl 7 3 3

LiCoRNA 3 7 7

we want 3 3 3
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Treewidth

1

2 3

4 5

1 2 1 3

3 4 3 5

1 2

3
4

5 6

7
1 2 3 4 2 4 7

3 4 5
4 5 6

graph tree decomposition tree decomposition: tree of bags of vertices
T = (T, {Xt}t∈T) s.t
▶ every vertex is represented in a non-empty

connected set of bags
▶ for each edge (u, v), there is a bag containing u

and v

tw(G) = min
T tree dec.

max
t∈T

|Xt| − 1

▶ NP-hard to compute but good heuristic and
solvers [Tamaki, 2019]
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Proposal: one covariance model per helix

partition into helices

▶ building: split seed alignment and build
normal CMs 3

▶ samping: sample each CM + interleave 3

▶ aligning: the hard part, in O(2c·twm · ntw+1)
(latest: O(m · ntw+1))

▶ m =consensus size, n = sequence size

▶ no PK → tw = 2 → recover n3 1 normal CM per helix

9/17



How do we solve alignment ? → state variable encoding

δ(i) ∈ {0, 1}: whether consensus position i is deleted, η(i) ∈ {0, 1}: whether there is an
insert between i and i+ 1, µ(i): where i is mapped in the input sequence

ML DMP MR

IL IR

MP ML MR D

IL IR
i j

k l

δ(i) = 0, δ(j) = 0
η(i, k) = 0

η(j, l) = 0

δ(k) = 0, δ(l) = 0

ML DMP MR

IL IR

MP ML MR D

IL IR
i j

k l

δ(i) = 0, δ(j) = 0

η(i, k) = 1 η(j, l) = 1

δ(k) = 0, δ(l) = 1

▶ state sequence + emission scenario⇔ assigning δ, η, µ variables.
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Cost function network

The cost function is :∑
helices

∑
node1→node2

fnode1→node2(delta_vars1, insert_vars1, delta_vars2)

+ emission_term1(mu_vars1) + emission_term2(mu_vars2)

e.g. for two stacked bps:

δi δj δi+1 δj−1 ηi ηj−1 score contribution
0 0 0 0 0 0 log(P(MPij → MPi+1,j−1)) + emission
1 0 0 0 0 0 log(P(MRij → MPi+1,j−1)) + emission
1 0 0 1 0 0 log(P(MRij → MLi+1,j−1)) + emission

...

yields → fMATPij→MATPi+1j−1
(δi, δj, ηi, ηj−1, δi+1, δj−1) term in the costfunction
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Treewidth and cost function networks

▶ Xi: variables with domain Di

▶ purpose: minimize some∑m
i=k fk(Sk ⊂ {Xi})

▶ network: variables scored together →
connected

▶ example on the left: f1(X2,X5,X7,X8)+
f2(X2,X3,X5,X6) + . . .

May encode many problems, and solvable in O(m · Dtw+1) with D = maxi Di

T[bag, assignment] = min
x∈Dnew

[
lcost(full_assignment) +

∑
child

T[child, full_assignment∩child ]

]
assignment: on variables both in bag and its parent.
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Infrared and prototype implementation

▶ Infrared: generic framework for cost function network
optimization [Yao et al., 2024]

▶ https://gitlab.inria.fr/amibio/Infrared
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Example
▶ With domain banding (i− c ≤ µ(i) ≤ i+ c) → O(m · ctw+1)
▶ Example below: c = 5, 4 sequences, tw = 5 (RF03160, twister ribozyme), 5 minutes

▶ needs speeding-up
▶ Room for improvement in enumeration of variables, in tree decomposition

computation. . .
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Idea for speeding up 1: analyze weights + some solution
Use some solution (e.g. InfeRNAl) to give a lower bound to the best score, and use it to
rule out possibilities for µ variables

sequence

best possible score

score of some solution

▶ can compute, for each helix and i, j, the best score of mapping it into seq[i : j]. →
use it to bound µ domains
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Idea for speeding up 2: hierarchy of models[Marchand et al., 2022]

▶ Guarantee: no hits are lost → exact process
▶ Computation of the hierarchy: a few seconds.
▶ Overall speedup: x42 (24 hours → 34 min with “LiCoRNA” [Rinaudo et al., 2012])
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Conclusion
▶ Model and prototype implementation for a fully-featured generalizations of

covariance models to the pseudoknotted case → now, needs speeding up
▶ there might also be an interesting middle-ground:

model PK stacking position-dependent scores multiple interactions
InfeRNAl 7 3 3 7

LiCoRNA 3 7 7 3

LiCoRNA+probas 3 7 3 3

Pseudoknotted CMs 3 3 3 7

▶ treewidth and tree decompositions: automates the design of dynamic
programming algorithms for pseudoknotted structures

▶ Joint work with past and current members of Amibio team: Yann Ponty, Sebastian
Will, Hua-Ting Yao, Sarah Berkemer

Thank you for your attention
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