Formulation of Pseudoknotted Covariance Models

Bertrand Marchand Post-doc at University of Sherbrooke (Québec, Canada) with Manuel Lafond and Aïda Ouangraoua

Former PhD student of Yann Ponty and Laurent Bulteau this work: with Amibio team, in ~Paris

August 2, 2024

Covariance Models, reminder 1: basics

- Statistical model for homology families [Eddy and Durbin, 1994]
- built from structure-annotated MSA
- Can use it to scan databases for new homologs
 → at the base of

RFAM [Kalvari et al., 2021] through InfeRNA1 [Nawrocki and Eddy, 2013]

Can produce MSA of input sequences

Covariance Models, reminder 2: sampling

probability space = aligned sequences

 $\log P(\text{aligned seq})) = \log P(\text{state sequence}) + \log P(\text{symbol emissions})$ $= \sum_{\text{transition } u \to v} \log P(u \to v) + \sum \log P(\text{emission})$

emitting state u

Covariance Models, reminder 3: alignment of a sequence to the model

Covariance Models: highlight on some features

- **stacked** base-pairs are not independent
- no dependence accross helices though
- scores are position-dependent, learned from alignment (counting)

AG	GG -	GGCAA	UUC	GΑ	GG	U	GCC	GUC	A	CU
AG	GGC	GGCAA	UUC	GΑ		U	GCC	GUC	A	CU
				:						
				•						
AG	GGG	GGCAA	UUC	GA		U	GCC	GUC	A	١CU
((((()))	((()))))

structure-annotated MSA

Formulating a Pseudoknotted version: the task

Problems:

- Lose inside/outside separation
- ► No notions of "left/right" anymore
- alignment: a close problem is NP-hard [Jiang et al., 2002].

Formulating a Pseudoknotted version: the task

Problems:

- Lose inside/outside separation
- ► No notions of "left/right" anymore
- alignment: a close problem is NP-hard [Jiang et al., 2002].

Need equivalents of

- cmbuild –
 cmemit
 - What probabilistic model ?
- **cmalign** \rightarrow a parameterized algorithm ?
 - i.e. runtime of the form $f(k)n^{g(k)}$

A related precedent: LiCoRNA [Rinaudo et al., 2012]

- **input:** structure-annotated seq. *Q* and seq. *S*
- **output:** best mapping $\mu \sim$ alignment
- **complexity** $|Q| \cdot |S|^{tw+1}$

$$\begin{split} \texttt{cost}(\mu) &= \sum_{i,j \in \texttt{bps}} \texttt{bp_cost}(\boldsymbol{Q}[i], \boldsymbol{Q}[j], \boldsymbol{S}[\mu(i)], \boldsymbol{S}[\mu(j)]) \\ &+ \sum_{i\texttt{unpaired}} \texttt{unpaired_cost}(\boldsymbol{Q}[i], \boldsymbol{S}[\mu(i)]) + \texttt{affine_gap_costs}(\mu) \end{split}$$

A related precedent: LiCoRNA [Rinaudo et al., 2012]

- input: structure-annotated seq. Q and seq. S
- output: best mapping $\mu \sim$ alignment
- complexity $|Q| \cdot |S|^{tw+1}$

$$\begin{split} \texttt{cost}(\mu) &= \sum_{i,j \in \texttt{bps}} \texttt{bp_cost}(Q[i], Q[j], S[\mu(i)], S[\mu(j)]) \\ &+ \sum_{i\texttt{unpaired}} \texttt{unpaired_cost}(Q[i], S[\mu(i)]) + \texttt{affine_gap_costs}(\mu) \end{split}$$

- tw: treewidth
- no pseudoknots \rightarrow tw=2
- ► RFAM cons. str. (with pk): tw ≤ 5 (tw = 3: 110, tw = 4: 52, tw = 5: 3)

A related precedent: LiCoRNA [Rinaudo et al., 2012]

- **input:** structure-annotated seq. *Q* and seq. *S*
- output: best mapping $\mu \sim$ alignment
- complexity $|Q| \cdot |S|^{tw+1}$

- no pseudoknots \rightarrow tw=2
- ► RFAM cons. str. (with pk): tw ≤ 5 (tw = 3: 110, tw = 4: 52, tw = 5: 3)

	PK	stacking	positional scores
InfeRNAl	×	\checkmark	1
LiCoRNA	1	×	×
we want	 Image: A start of the start of	\checkmark	1

Treewidth

tree decomposition: tree of bags of vertices $\mathcal{T} = (T, \{X_t\}_{t \in T})$ s.t

- every vertex is represented in a non-empty connected set of bags
- for each edge (u, v), there is a bag containing u and v

$$tw(G) = \min_{\mathcal{T} \text{ tree dec.}} \max_{t \in \mathcal{T}} |X_t| - 1$$

 NP-hard to compute but good heuristic and solvers [Tamaki, 2019]

Proposal: one covariance model per helix

- ▶ building: split seed alignment and build normal CMs ✓
- samping: sample each CM + interleave ✓
- ▶ aligning: the hard part, in O(2^{c·tw}m · n^{tw+1}) (latest: O(m · n^{tw+1}))
- m =consensus size, n =sequence size

• no PK
$$\rightarrow tw = 2 \rightarrow$$
 recover n^3

How do we solve alignment $? \rightarrow$ state variable encoding

 $\delta(i) \in \{0, 1\}$: whether consensus position *i* is deleted, $\eta(i) \in \{0, 1\}$: whether there is an insert between *i* and *i* + 1, $\mu(i)$: where *i* is mapped in the input sequence

state sequence + emission scenario \Leftrightarrow assigning δ, η, μ variables.

Cost function network

The cost function is :

$$\sum_{\mathsf{helices}} \sum_{\mathsf{node}_1 \to \mathsf{node}_2} f_{\mathsf{node}_1 \to \mathsf{node}_2}(\mathsf{delta_vars}_1, \mathsf{insert_vars}_1, \mathsf{delta_vars}_2)$$

 $+ emission_term_1(mu_vars_1) + emission_term_2(mu_vars_2)$

e.g. for two stacked bps:

$\delta_i \delta_j \delta_{i+1} \delta_{j-1} \eta_i \eta_{j-1}$	score contribution
000000	$\log(P(MP_{ij} \rightarrow MP_{i+1,j-1})) + \text{emission}$
$1 \ 0 \ 0 \ 0 \ 0$	$\log(P(MR_{ij} \rightarrow MP_{i+1,j-1})) + \text{emission}$
100100	$\log(P(MR_{ij} \rightarrow ML_{i+1,j-1})) + emission$
	:

yields $\rightarrow f_{\text{MATP}_{ij} \rightarrow \text{MATP}_{i+1j-1}}(\delta_i, \delta_j, \eta_i, \eta_{j-1}, \delta_{i+1}, \delta_{j-1})$ term in the costfunction

.

Treewidth and cost function networks

- X_i : variables with domain D_i
- purpose: minimize some $\sum_{i=k}^{m} f_k(S_k \subset \{X_i\})$
- network: variables scored together \rightarrow connected
- example on the left: $f_1(X_2, X_5, X_7, X_8) + f_2(X_2, X_3, X_5, X_6) + \dots$

May encode **many** problems, and solvable in $O(m \cdot D^{tw+1})$ with $D = \max_i D_i$

$$T[\texttt{bag},\texttt{assignment}] = \min_{x \in D_{\texttt{new}}} \left[\texttt{lcost}(\texttt{full}_\texttt{assignment}) + \sum_{\texttt{child}} T[\texttt{child},\texttt{full}_\texttt{assignment} \cap \texttt{child} \right]$$

assignment: on variables both in bag and its parent.

Infrared and prototype implementation

- Infrared: generic framework for cost function network optimization [Yao et al., 2024]
- https://gitlab.inria.fr/amibio/Infrared

Infrared and prototype implementation

 Infrared: generic framework for cost function network optimization [Yao et al., 2024]

https://gitlab.inria.fr/amibio/Infrared

align a set of sequences in a fasta file to a pseudoknotted covariance model.

positional arguments	
pkcm_file	.pkcm file to align to
helix_file	.helix file describing helix arrangement
fasta_file	.fasta of sequences to align
options:	
–h, ––help	show this help message and exit
-c C	upper bound on max insert length
-f FORMAT	output file format
assert-sequence	add assert that aligned sequence without the gaps is the input sequence.
🖬 🖕 ~/Doc/code/ph	d_projects/ pk-covariance-models) 🕫 🦻 main !6 🔪 🗍

Example

▶ With domain banding $(i - c \le \mu(i) \le i + c) \rightarrow O(m \cdot c^{tw+1})$

Example below: c = 5, 4 sequences, tw = 5 (RF03160, twister ribozyme), 5 minutes

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	s/pkcm_experiments 🗧 🖰 main 71 🖒 pkcmalign –c 5assert-sequence pkcm_models/RF03160.pkcm_pkcm_models/RF03160.pkcm_bels/RF03160.pkcm.helix_short_sequences_RF03160.fa	TSTP 🗴 < 25s 🗄 🕻 🔍 🖉 pkcn_env 👁
aligning seq1		
c value: 5		
score: -103.88		
aligning seq2		
c value: 5		
score: -90.85		
aligning seqs		
c value; 5		
score: -os./2		
c value: 5		
score: -75.22		
CLUSTAL X (1.81) multiple sequence .	alignment	
accordent (area) marcapica sequence :		
seq1	UGUGUAAUSCUACUAUGAUAGCACAUUGCGAAUCAUACGGGUUGCAA	
seq2	UUEGUAAUGEGGECEGUGEUGGUAAEGUUEEAGEGEGAEGGUEEEAA	
seq3	AGEGUAAUSUAGECUAGUECGAEGAEUAGAGGGUUEAEA	
seq4	CUUGUAAUGCGGCCGUGUAAAUAAUUUACACGUCGGUCUCAA	
#=GC_SS_cons	(///(///B8<<<< <aaa< td=""><td></td></aaa<>	
#=GC_RF	uuuuUAAuGCaGCCaguaucucauuagauacuGcCGGUCCCAA	
seq1	GUECEUCAAGEAGANGEACACAG	
seq2	GCECG-AAAAAGGAAGAA	
seq3	GCECCUUDA-JACAGANGACGCA	
seq4		
#=0C_55_C015	00_355;;;;;1/1/1==0dd()//)	
#=0%_ftr	uccognummucaumouaaaa	
>> > ~/Documents/code/phd_project	s/pkcn_experiments in plan at D	🖉 🧹 5m 13s 🗶 💿 🤇 pkcn_env 👁

Example

▶ With domain banding $(i - c \le \mu(i) \le i + c) \rightarrow O(m \cdot c^{tw+1})$

Example below: c = 5, 4 sequences, tw = 5 (RF03160, twister ribozyme), 5 minutes

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	s/pkcm_experiments 💴 🖉 main 71 > pkcmalign -c 5assert-sequence pkcm_models/RF03160.pkcm_pkcm_models/RF03160.pkcm_helix_short_sequences_RF03160.fa	TSTP x < 25s 🗄 🔍 🔍 pkcn_env 👁
aligning seq1		
c value: 5		
score: -103.88		
aligning seq2		
c value: 5		
score: -90.85		
aligning seq3		
c value: 5		
score: -85.72		
aligning seq4		
c value: 5		
score: -75.22		
CLUSTAL X (1.81) multiple sequence	alignment	
6003		
seq1		
seq2		
seqa		
seya #=60 SS cons		
#=6C BE		
#	douters de casa	
seal	GUECEUEAAGEAGAGEAEAEG	
seq2	GCCCG-AAAAAGGCAGAGAA	
seg3	GCCCUUUAA-UACAGAUGACGCA	
seg4	GCCCG-AUAAACGCAGAGAGCAAG	
#=GC_SS_cons	bb_>>>,))))aaa))))	
#=GC_RF	GCCCGALIAAAuGCaGAGGGaaaa	
>> > ~/Documents/code/phd_project	s/pkcn_experiments • # P main ?1 •	Sm 13s 🛛 🔍 pkcn_env 👁

needs speeding-up

Room for improvement in enumeration of variables, in tree decomposition computation...

Idea for speeding up 1: analyze weights + some solution

Use *some* solution (e.g. InfeRNAl) to give a lower bound to the best score, and use it to rule out possibilities for μ variables

can compute, for each helix and i, j, the best score of mapping it into seq[i : j]. → use it to bound µ domains

- ► Guarantee: no hits are lost → exact process
- Computation of the hierarchy: **a few seconds**.
- Overall speedup: x42 (24 hours \rightarrow 34 min with "LiCoRNA" [Rinaudo et al., 2012])

- ► Guarantee: no hits are lost → exact process
- Computation of the hierarchy: **a few seconds**.
- Overall speedup: x42 (24 hours \rightarrow 34 min with "LiCoRNA" [Rinaudo et al., 2012])

- ► Guarantee: no hits are lost → exact process
- Computation of the hierarchy: **a few seconds**.
- Overall speedup: x42 (24 hours \rightarrow 34 min with "LiCoRNA" [Rinaudo et al., 2012])

- ► Guarantee: no hits are lost → exact process
- Computation of the hierarchy: **a few seconds**.
- Overall speedup: x42 (24 hours \rightarrow 34 min with "LiCoRNA" [Rinaudo et al., 2012])

Conclusion

- Model and prototype implementation for a fully-featured generalizations of covariance models to the pseudoknotted case → now, needs speeding up
- there might also be an interesting middle-ground:

model	PK	stacking	position-dependent scores	multiple interactions
InfeRNAl	×	 Image: A set of the set of the	✓	×
LiCoRNA	 Image: A start of the start of	×	×	\checkmark
LiCoRNA+probas	 Image: A start of the start of	×	✓	\checkmark
Pseudoknotted CMs	 Image: A start of the start of	 ✓ 	\checkmark	×

- treewidth and tree decompositions: automates the design of dynamic programming algorithms for pseudoknotted structures
- Joint work with past and current members of Amibio team: Yann Ponty, Sebastian Will, Hua-Ting Yao, Sarah Berkemer

Conclusion

- Model and prototype implementation for a fully-featured generalizations of covariance models to the pseudoknotted case → now, needs speeding up
- there might also be an interesting middle-ground:

model	PK	stacking	position-dependent scores	multiple interactions
InfeRNAl	×	✓	\checkmark	×
LiCoRNA	1	×	×	\checkmark
LiCoRNA+probas	1	×	\checkmark	\checkmark
Pseudoknotted CMs	 Image: A start of the start of	✓	\checkmark	×

- treewidth and tree decompositions: automates the design of dynamic programming algorithms for pseudoknotted structures
- Joint work with past and current members of Amibio team: Yann Ponty, Sebastian Will, Hua-Ting Yao, Sarah Berkemer

Thank you for your attention

📄 Eddy, S. R. and Durbin, R. (1994).

Rna sequence analysis using covariance models. *Nucleic acids research*, 22(11):2079–2088.

- Jiang, T., Lin, G., Ma, B., and Zhang, K. (2002).
 A general edit distance between RNA structures. Journal of computational biology, 9(2):371–388.
- Kalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., et al. (2021).

Rfam 14: expanded coverage of metagenomic, viral and microrna families. *Nucleic Acids Research*, 49(D1):D192–D200.

- Marchand, B., Ponty, Y., and Bulteau, L. (2022).
 Tree diet: reducing the treewidth to unlock FPT algorithms in RNA bioinformatics.
 Algorithms for Molecular Biology, 17(1):1–17.
- Nawrocki, E. P. and Eddy, S. R. (2013).

Infernal 1.1: 100-fold faster RNA homology searches. *Bioinformatics*, 29(22):2933–2935.

Rinaudo, P., Ponty, Y., Barth, D., and Denise, A. (2012).

Tree Decomposition and Parameterized Algorithms for RNA Structure-Sequence Alignment Including Tertiary Interactions and Pseudoknots.

In Raphael, B. and Tang, J., editors, *Algorithms in Bioinformatics*, pages 149–164, Ljubljana, Slovenia. Springer.

🔋 Tamaki, H. (2019).

Positive-instance driven dynamic programming for treewidth. *Journal of Combinatorial Optimization*, 37(4):1283–1311.

Yao, H.-T., Marchand, B., Berkemer, S. J., Ponty, Y., and Will, S. (2024). Infrared: a declarative tree decomposition-powered framework for bioinformatics. *Algorithms for Molecular Biology*, 19(1):13.