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Introduction



Inspiral-merger-ringdown

Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity 
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What are the most important predictions ?

All methods (PN, GSF, NR, ...) lead to a prediction in the form:

h+ − ih× =
1

r

+∞∑
ℓ=2

ℓ∑
m=−ℓ

ĥℓm(t) e
−imψ(t) Y ℓm

−2 (θ, ϕ) +O
(

1

r2

)

The (half-)phase ψ is that of the (2, 2) mode, such that only ĥ22 ∈ R.
The (half-)frequency of the (2, 2) is denoted Ω = dψ/dt, and it is

adimensionalized in the PN parameter x =

(
GmΩ

c3

)2/3

≪ 1

Since the frequency x is monotonous in the time t (GW chirp !), most

gauge invariant results are expressed in terms of x
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Post-Newtonian theory in a nutshell

Two-body system obeys virial theorem:(v12
c

)2
≈ Gmtot

r12c2

Newton’s law of gravitation : a1 = −Gm2
r122

n12.

The quadrupole formula predicts they emit GWs as:

hTT
ij =

2G

c4R
⊥TT
ij,ab

d2Qij
dt2

,

where Qij = m1

[
yi1(t)y

i
1(t)− 1

3δ
ij |y1|2

]
+ (1 ↔ 2).

Systems that orbit faster (but not too fast!) can be described with

post-Newtonian (PN) corrections in powers of (v/c)2 ≪ 1

A correction of order (v/c)2n is said to be of order nPN.
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NR, GSF and PN-MPM

Mass ratio ln(𝑚1/𝑚2)
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Results in GR at 4.5PN &

comparison with GSF



Flux at 4.5PN

We found [Blanchet, Faye, Henry, Larrouturou & Trestini 2023a]:

F =
32c5

5G
ν
2
x
5

×
{
1 +

(
−

1247

336
−

35

12
ν

)
x + 4πx

3/2
+

(
−

44711

9072
+

9271

504
ν +

65

18
ν
2
)
x
2
+

(
−

8191

672
−

583

24
ν

)
πx

5/2

+

[
6643739519

69854400
+

16

3
π
2 −

1712

105
γE −

856

105
ln(16 x) +

(
−

134543

7776
+

41

48
π
2
)
ν −

94403

3024
ν
2 −

775

324
ν
3

]
x
3

+

(
−

16285

504
+

214745

1728
ν +

193385

3024
ν
2
)
πx

7/2

+

[
−

323105549467

3178375200
+

232597

4410
γE −

1369

126
π
2
+

39931

294
ln 2 −

47385

1568
ln 3 +

232597

8820
ln x

+

(
−

1452202403629

1466942400
+

41478

245
γE −

267127

4608
π
2
+

479062

2205
ln 2 +

47385

392
ln 3 +

20739

245
ln x

)
ν

+

(
1607125

6804
−

3157

384
π
2
)
ν
2
+

6875

504
ν
3
+

5

6
ν
4

]
x
4

+

[
265978667519

745113600
−

6848

105
γE −

3424

105
ln(16 x) +

(
2062241

22176
+

41

12
π
2
)
ν

−
133112905

290304
ν
2 −

3719141

38016
ν
3

]
πx

9/2
+ O

(
x
5)}

where m = m1 +m2 is the total mass and ν = m1m1/(m1 +m2)
2 is

the symmetric mass ratio.

The 4.5N term comes from [Marchand, Blanchet & Faye 2016]. 7



Comparison with GSF

The 1SF result (ν2 coefficient in the flux) is known analytically to very

high PN order [Tagoshi & Sasaki 1994], and we are in perfect agreeement.

The 2SF result (ν3 coefficient in the flux) was obtained numerically

[Warburton, Pound, Wardell, Miller & Durkan 2021], and we have recently found

very good agreement for all the coefficients [Warburton, Wardell, Trestini, Henry,

Pound, Blanchet, Durkan, Faye & Miller 2024]
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2SF flux versus cumulative PN flux

SF
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PN coefficients are individually consistent with 2SF
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Fluxes: PN vs GSF vs NR for q = 1
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Mode decomposition of the waveform

Decompose asymptotic waveform into spherical harmonics

h+ − ih× =
1

r

+∞∑
ℓ=2

ℓ∑
m=−ℓ

ĥℓm(t) e
−imψ(t) Y ℓm

−2 (θ, ϕ) +O
(

1

r2

)

Normalize the modes: ĥℓm =
√

64π
5 νxĤℓm.

Decompose the flux

F =

∞∑
ℓ=2

ℓ∑
m=1

Fℓm

where

Fℓm =
c3

8πG
|ḣℓm|2
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(2, 2) mode at 4PN

We find [Blanchet, Faye, Henry, Larrouturou & Trestini 2023a]:

Ĥ22 = 1 +

(
−
107

42
+

55

42
ν

)
x+ 2πx3/2 +

(
−
2173

1512
−

1069

216
ν +

2047

1512
ν2

)
x2

+

[
−
107π

21
+

34π

21
ν

]
x5/2

+

[
27027409

646800
−

856

105
γE +

2π2

3
+

(
−
278185

33264
+

41π2

96

)
ν −

20261

2772
ν2

+
114635

99792
ν3 −

428

105
ln(16x)

]
x3

+

[
−
2173π

756
−

2495π

378
ν +

40π

27
ν2

]
x7/2

+

[
−
846557506853

12713500800
+

45796

2205
γE −

107

63
π2 +

22898

2205
ln(16x)

+

(
−
336005827477

4237833600
+

15284

441
γE −

9755

32256
π2 +

7642

441
ln(16x)

)
ν

+

(
256450291

7413120
−

1025

1008
π2

)
ν2 −

81579187

15567552
ν3 +

26251249

31135104
ν4

]
x4 +O

(
x9/2

)
We exactly recover the analytical 1SF result of [Tagoshi & Sasaki 1994].

13



Disagreement 2SF at at level of individual Fℓm modes
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Energy-flux balance equation

We postulate energy conservation:

dE

dt
= −F

where E is the conservative energy of the bound system and F the

energy flux of GWs carried at infinity.

If we have explicit expression in terms of the variable x, i.e. F(x)

and E(x), we recast the balance equation as

dx

dt
= − F

(dE/dx)
=⇒ x(t) = ... (the frequency chirp)

dψ

dx
= −c

3x3/2

Gm

dE/dx

F(x)
=⇒ ψ(x) = ... where

dψ(t)

dt
≡ Ω(t)
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Frequency chirp at 4.5PN

Define dimensionless time τ = νc3(t0 − t)/(5Gm) [x = (GmΩ/c3)2/3]

We find [Blanchet, Faye, Henry, Larrouturou & Trestini 2023b]:

x =
τ−1/4

4

{
1 +

(
743

4032
+

11

48
ν

)
τ
−1/4 −

1

5
π τ

−3/8

+

(
19583

254016
+

24401

193536
ν +

31

288
ν
2
)
τ
−1/2

+

(
−

11891

53760
+

109

1920
ν

)
π τ

−5/8

+

[
−

10052469856691

6008596070400
+

1

6
π
2
+

107

420
γE −

107

3360
ln

(
τ

256

)
+

(
3147553127

780337152
−

451

3072
π
2
)
ν −

15211

442368
ν
2
+

25565

331776
ν
3

]
τ
−3/4

+

(
−

113868647

433520640
−

31821

143360
ν +

294941

3870720
ν
2
)
πτ

−7/8

+

[
−

2518977598355703073

3779358859513036800
+

9203

215040
γE +

9049

258048
π
2
+

14873

1128960
ln 2 +

47385

1605632
ln 3 −

9203

3440640
ln τ

+

(
718143266031997

576825222758400
+

244493

1128960
γE −

65577

1835008
π
2
+

15761

47040
ln 2 −

47385

401408
ln 3 −

244493

18063360
ln τ

)
ν

+

(
−

1502014727

8323596288
+

2255

393216
π
2

)
ν
2 −

258479

33030144
ν
3
+

1195

262144
ν
4

]
τ
−1

ln τ

+

[
−

9965202491753717

5768252227584000
+

107

600
γE +

23

600
π
2 −

107

4800
ln

(
τ

256

)
+

(
8248609881163

2746786775040
−

3157

30720
π
2
)
ν −

3590973803

20808990720
ν
2 −

520159

1634992128
ν
3

]
π τ

−9/8
+ O

(
τ
−5/4)}
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The phase at 4.5PN

We find [Blanchet, Faye, Henry, Larrouturou & Trestini 2023b]:

ψ = −
x−5/2

32ν

{
1 +

(
3715

1008
+

55

12
ν

)
x− 10πx

3/2

+

(
15293365

1016064
+

27145

1008
ν +

3085

144
ν
2
)
x
2
+

(
38645

1344
−

65

16
ν

)
πx

5/2
ln

(
x

x0

)
+

[
12348611926451

18776862720
−

160

3
π
2 −

1712

21
γE −

856

21
ln(16 x)

+

(
−

15737765635

12192768
+

2255

48
π
2
)
ν +

76055

6912
ν
2 −

127825

5184
ν
3

]
x
3

+

(
77096675

2032128
+

378515

12096
ν −

74045

6048
ν
2
)
πx

7/2

+

[
2550713843998885153

2214468081745920
−

9203

126
γE −

45245

756
π
2 −

252755

2646
ln 2 −

78975

1568
ln 3 −

9203

252
ln x

+

(
−

680712846248317

337983528960
−

488986

1323
γE +

109295

1792
π
2 −

1245514

1323
ln 2 +

78975

392
ln 3 −

244493

1323
ln x

)
ν

+

(
7510073635

24385536
−

11275

1152
π
2
)
ν
2
+

1292395

96768
ν
3 −

5975

768
ν
4

]
x
4

+

[
−

93098188434443

150214901760
+

1712

21
γE +

80

3
π
2
+

856

21
ln(16x)

+

(
1492917260735

1072963584
−

2255

48
π
2
)
ν −

45293335

1016064
ν
2 −

10323755

1596672
ν
3

]
πx

9/2
+ O

(
x
5)}

Combining with the previous result yields ψ(t) !
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What accuracy do we need?

We count the number of cycles Ncycles in

the detector’s bandwidth (e.g. [fmin, fmax] = [30Hz, 1 kHz])

Rule of thumb: don’t miss a cycle

∆Ncycles < 1/2 [Cutler et al. 1993]

But nowadays, we actually need much better accuracy than that! 18



Behavior of the PN series

Cumulative contribution to the number of cycles

Ncycles = NN
cycles +N 1PN

cycles +N 1.5PN
cycles + ...

Ncycles LIGO/Virgo ET LISA

f -band [30, 103]Hz [1, 104]Hz [10−4, 10−1]Hz

M⊙ 1.4× 1.4 10× 10 1.4× 1.4 500× 500 105 × 105 107 × 107

N 2 562.599 95.502 744 401.36 37.90 28 095.39 9.534

1PN 143.453 17.879 4 433.85 9.60 618.31 3.386

1.5PN -94.817 -20.797 −1 005.78 -12.63 -265.70 -5.181

2PN 5.811 2.124 23.94 1.44 11.35 0.677

2.5PN -8.105 -4.604 -17.01 -3.42 -12.47 -1.821

3PN 1.858 1.731 2.69 1.43 2.59 0.876

3.5PN -0.627 -0.689 -0.93 -0.59 -0.91 -0.383

4PN -0.107 -0.064 -0.12 -0.04 -0.12 -0.013

4.5PN 0.098 0.118 0.14 0.10 0.14 0.065
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Behavior of the PN series for a 1.4M⊙ × 1.4M⊙ LVK binary
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Wave generation : big picture

Motion Radiation
Wave generationO(1)

Radiation reactionO(v/c)5
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Wave generation : in practice

Motion Radiation
Equationsof motion

Sector
Objects

Full MPM metric

Asymptotic metric

Conservative E
J

Dissipative

Full PN metric
Fluids

Point particles
Regularization

Hadamard Dimensional

Effacement

Linearizedmetric

Non-linearMPM iteration

MPM metric ind dimensions

Quasi-circular
Parametrizations

Quasi-Keplerian Hereditary tails Non-oscillatorymemory
Waveform
Phase Amplitude

Ambiguities

Fluxesat infinity

Asymptoticmatching

Canceledpoles (1/ε)
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The wave-generation formalism



Field equations in general relativity

Define the quantity: hµν ≡
√
−ggµν − ηµν

Einstein field equations (without Λ) in the Landau-Lifschitz formulation:

□hµν =
16πG

c4
(−g)Tµν + Λµν [h]

∂νh
µν = 0

Also written

□hµν = (16πG/c4)τµν

, where we introduced the Landau-Lifschitz pseudo-tensor

τµν = (−g)Tµν + c4

16πG
Λµν [h]

N.B.: □ ≡ ηµν∂µ∂ν

23



Near zone vs. exterior vacuum zone

Expand in
(v12
c

)2
∼ Gm

r12c2
≪ 1 Expand in |hµν | ≪ 1

Valid only for r ≪ λGW Valid only for Tµν = 0 ⇒ r > a

Post-Newtonian (PN) expansion
Multipolar post-Minkowskian

(MPM) expansion
24



Linearized exterior vacuum solution

Einstein equations in vacuum: □hµν = Λµν [h] and ∂νh
µν = 0

First step: solve the linear vacuum equations

□hµν1 = 0 and ∂νh
µν
1 = 0

First, we solve □hµν1 = 0 and ignore ∂νh
µν
1 = 0

hµν1 =
∑
ℓ⩾0

∂L

[
r−1Kµν

L

(
t− r

c

)]
where ∂L ≡ ∂i1 ...∂iℓ and KL = Ki1...iℓ are contracted together.

25



Linearized exterior vacuum solution

We now want the solution to both the wave and gauge equations

□hµν1 = 0 and ∂νh
µν
1 = 0

We find that there exists a gauge in which the general solution reads

h00
1 = − 4

c2

∑
ℓ⩾0

(−)ℓ

ℓ!
∂L

[
r−1ML

(
t− r

c

)]
h0i
1 =

4

c3

∑
ℓ⩾1

(−)ℓ

ℓ!

{
∂L−1

[
r−1M

(1)
iL−1

(
t− r

c

)]
+

ℓ

ℓ+ 1
ϵiab∂aL−1

[
r−1SbL−1

(
t− r

c

)]}

hij1 = − 4

c4

∑
ℓ⩾2

(−)ℓ

ℓ!

{
∂L−2

[
r−1M

(2)
ijL−2

(
t− r

c

)]
+

2ℓ

ℓ+ 1
∂aL−2

[
r−1ϵab(iS

(1)

j)bL−2

(
t− r

c

)]}
where ML and SL are the mass- and current-type canonical moments.

Ask me about residual gauge freedom 26



The canonical moments

For now, the canonical moments ML and SL are just free parameters.

They are determined by matching to the near zone metric for a system of

two point particles!

Ask me about UV regularization for point particles

This can be done systematically and expression are complicated, but the

leading order is what we expect:

Mij =

∫
d3x ρ(x)x̂ij +O

(
1

c2

)
where ρ = (T 00/c2)

Ask me about the matching procedure

27



Full vacuum PM solution

The linearized metric hµν1 is the seed to construct the full metric.

Assuming h≪ 1, write the PM expansion [Blanchet & Damour 1986] of the

metric:

h = Gh1 +G2h2 +G3h3 + ...

which should solve the non-linear vacuum equation □hµν = Λµν .

Thus at each order n ≥ 2, we find

□hµνn = Λµνn [h1, ..., hn−1]

For example, at quadratic order, we have □hµν2 = Nµν [h1, h1]

At cubic order, □hµν3 = Nµν [h1, h2] +Nµν [h2, h1] +Mµν [h1, h1, h1]

28



Integrating the MPM iteration in practice (1)

At some order n, we what to solve the iterative equations:

□hµνn = Λµνn [h1, ..., hn−1] and ∂µh
µν
n = 0. How to do in practice ?

First, construct a particular solution to the wave equation. We choose:

uµνn = FP
B=0

□−1

[(
r

r0

)B
Λµνn

]
where the retarded inverse d’Alembert operator defined as

□−1f(x, t) ≡ − 1

4π

∫
dx′

|x− x′|
f

(
x′, t− |x− x′|

c

)
and where FP

B=0

[∑∞
k=−n αk(x, t)B

k
]
≡ α0(x, t)

The finite part operator in uµνn :

• is proven to yield a correct particular solution

• cures unphysical r → 0 divergences

• reduces to the usual □−1 for a regular source.

(i) is proven to yield a correct particular solution (ii) cures unphysical

r → 0 divergences ; (iii) reduces to the usual retarded inverse

d’Alembertian for a regular source.
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Integrating the MPM iteration in practice (2)

Once uµνn , compute its divergence wµn = ∂νu
µν
n . In general, wµn ̸= 0, so

uµνn does not satisfy the harmonic gauge condition.

From uµνn , it is always possible to construct a homogeneous solution vµνn

such that:

□vµνn = 0 and ∂µv
µν
n = −wµn

We then define hµνn = uµνn + vµνn , which satisfies both the wave and

harmonic gauge conditions.

We have thus constructed explicitly a MPM solution (note that there is

gauge freedom in the choice of vµνn )

30



Asymptotic properties of the metric

In theory, we have now constructed the full metric

h = Gh1 +G2h2 +G3h3 + ...

as a complicated functional of the source and gauge moments (ML, SL)

In harmonic coordinates, the r → +∞ structure (for t− r/c = const) is:

h ∼
∑
p,q

fp,q(t− r/c)
lnp(r)

rq

Is is possible to go to radiative coordinates (R, T ) to obtain the structure

h ∼
∑
p

fp(T −R/c)

Rq

Ask me about how to construct radiative coordinates
31



Leading order asymptotic metric

When R is the distance between the GW source and the GW detector,

we can only consider the leading order in 1/R.

In a transverse-traceless gauge, the metric reads:

hTT
ij = −4G

R
⊥TT
ij,ab

∞∑
ℓ=0

1

ℓ!

[
nL−2 UabL−2 −

2ℓ

ℓ+ 1
ncL−2ϵcd(aVb)dL−2

]

where ⊥TT
ij,ab= (ninj − δij)(nanb − δab)− 1

2(nan(i − δa(i)(nj)nb − δj)b)

The asymptotic metric is thus entirely and gauge-invariantly

described by the radiative moment UL and VL.

r12

τμν

v12

R

M L , SL
U L ,V L

32



Non-linear propagation effects: quadratic effects

Goal of MPM construction: find expression for (UL,VL) in terms of

(ML,SL), which we know in terms of positions (y1,y2,v1,v2).

The 2.5PN relation between canonical and radiative moments reads

Uij = M
(2)
ij (u) +

2GM

c3

∫ ∞

0
dτ

[
ln

(
τ

2b0

)
+

11

12

]
M

(4)
ij (u− τ)

− 2G

7c5

[∫ ∞

0
dτ M

(3)
a⟨iM

(3)
j⟩a(u− τ) + (instantaneous terms)

]
+O

(
1

c6

)

Linear quadrupolar wave Tail Memory
[Blanchet 1998a] 33



Non-linear propagation effects: cubic and quartic effects

Tail-of-tail Spin-quadrupole tail Tail-of-tail-of-tail
[Blanchet 1998b] [Trestini & Blanchet 2023] [Marchand, Blanchet & Faye 2016]

Tails of memory
[Trestini & Blanchet 2023]
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I have a tail I have memory

Tails-of-memory !

8𝐺2M
7𝑐8

∞

0
d𝜌 M(4)

𝑎 𝑖(𝑢 − 𝜌) 
∞

0
d𝜏 M(4)

𝑗  𝑎(𝑢 − 𝜌 − 𝜏) ln 𝑐𝜏
2𝑏0

おお!!!

− 2𝐺
7𝑐5

∞

0
d𝜏 [M(3)

𝑎 𝑖M
(3)
𝑗  𝑎](𝑢 − 𝜏)2𝐺M

𝑐³

∞

0
d𝜏 M(4)

𝑖𝑗 (𝑢 − 𝜏) ln 𝑐𝜏
2𝑏0

Ask me about the methods used to compute the tails-of-memory 35



Tails of memory: result

After the Mij → Mij conversion, we find [Trestini & Blanchet 2023]

UM×Mij×Mij

ij =
8G2M

7c8

{∫ +∞

0
dρM

(4)
a⟨i(u− ρ)

∫ +∞

0
dτ M

(4)
j⟩a(u− ρ− τ)

[
ln

(
τ

2r0

)
−

1613

270

]
−

5

2

∫ +∞

0
dτ (M

(3)
a⟨iM

(4)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

3

2
ln

(
τ

2b0

)]
− 3

∫ +∞

0
dτ (M

(2)
a⟨iM

(5)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

11

12
ln

(
τ

2b0

)]
−

5

2

∫ +∞

0
dτ (M

(1)
a⟨iM

(6)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

3

10
ln

(
τ

2b0

)]
−

∫ +∞

0
dτ (Ma⟨iM

(7)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
−

1

4
ln

(
τ

2b0

)]
− 2M

(2)
a⟨i

∫ +∞

0
dτ M

(5)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
+

27521

5040

]
−

5

2
M

(1)
a⟨i

∫ +∞

0
dτ M

(6)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
+

15511

3150

]
+

1

2
Ma⟨i

∫ +∞

0
dτ M

(7)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
−

6113

756

] }

Here, b0 and r0 are two arbitrary constants, we checked they cancel out!

First line: “genuine” tail of memory. 36



Compact binaries: quasicircular orbits

Emission of angular momentum

via GWs ⇒ eccentric orbits

quickly circularize

Quasicircular approximation

measured by adiabatic parameter

ξ ≡ ω̇/ω2 ≪ 1 (of order 2.5PN)

where ω(t) orbital frequency ;

ϕ(t) =
∫ t
t0
ω(t′)dt′ orbital phase
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Orbital phase vs. GW phase

At 4PN, we need to distinguish:

Orbital GW

Phase ϕ ψ

Frequency ω = dϕ
dt Ω = dψ

dt

PN variable y =
(
Gmω
c3

)2/3
x =

(
GmΩ
c3

)2/3
Differ due to tail terms. The relation reads: [Blanchet, Faye, Henry, Larrouturou

& Trestini 2023a]:

ψ = ϕ− 2GMω

c3
ln

(
ω

ω0

)
where ω0 ≡

ce11/12−γE

4b0

x = y

{
1− 192

5
ν y4

[
ln

(
y

y0

)
+

2

3

]
+O(y5)

}
where y0 =

(
Gmω0

c3

)2/3
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Waveforms in scalar-tensor theory



Generalized Fierz-Pauli-Brans-Dicke theory

Action defined in Jordan frame : S = SST[gαβ, ϕ] + Sm[gαβ,m] which

reads

SST =
c3

16πG

∫
d4x

√
−g
[
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ

]
For the post-Newtonian setup, better to work in Einstein frame. Define

φ =
ϕ

ϕ0
and g̃µν =

ϕ

ϕ0
gµν where ϕ −→

r→∞
ϕ0

The action in Einstein frame then reads

S =
c3ϕ0
16πG

∫
d4x
√

−g̃
[
R̃− 3 + 2ω(ϕ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]
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Equivalence to DEF gravity

Our Einstein frame action

S =
c3ϕ0
16πG

∫
d4x
√

−g̃
[
R̃− 3 + 2ω(ϕ0φ)

2φ2
g̃αβ∂αφ∂βφ

]
+ Sm[φ

−1g̃αβ,m]

is equivalent to DEF gravity [Damour & Esposito-Farèse 1996]:

SDEF =
c3

16πG∗

∫
d4x

√
−g∗

[
R∗ − 2gαβ∗ ∂αφ̄∗∂βφ̄∗

]
+Sm

[
A(φ̄∗)g

∗
αβ,m

]
where G∗ = G/ϕ0, ḡµν = g̃µν and φ̄ = T (ϕ), where

T (x) =
1

2

∫ x

dy

√
3 + 2ω(y)

2y2

This was extended to scalar-Gauss-Bonnet by [Shiralilou et al. 2021]
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The phase at 1.5PN for quasi-circular orbits

In [Blanchet, Bernard & Trestini 2022], we found:

ϕcirc = − 1

4ζS2
−νx

1/2

[
x−1

+
3

2
+ 8β̄+ − 2γ̄ − 12β̄+γ̄

−1 − 72

5
ζ−1S−2

−

− 6ζ−1γ̄S−2
− − 12β̄−γ̄

−1S−1
− S+

+ δ
[
− 8β̄− + 12β̄−γ̄

−1 + 12β̄+γ̄
−1S−1

− S+

]
+

7

2
ν

+ 3πx1/2 log(x)
(
1 +

γ̄

2

)
+ x

{
complicated expression [Sennett, Marsat & Buonanno 2016]

}

+
πx3/2

1− ζ

{
complicated expression

}]
.

This is the main observable in a GW ! 41



Comparison to NR

Numerical simulations [Ma et al. 2023] found agreement with our results:
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Comparison to NR (cont’d)

even for the DC memory effect !

See also [Corman & East 2024] for a comparison in scalar Gauss Bonnet
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Extending to eccentric orbits: Kepler solution

ai = −G12mn
i

r2

r = a(1− e cosu)

ℓ = n(t− t0) = u− e sin(u)

ϕ− ϕ0 = v

v = 2arctan

[√
1 + e

1− e
tan

(u
2

)]

Figure from [gr-qc/0407049]
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The quasi-Keplerian solution at 1PN order

What happens if we now want to solve the equations of motion for the

1PN acceleration ? ai = −G12mni

r2
+ 1

c2
(many terms)i

Damour & Deruelle [Ann.IHP.Phys.Th. 43, 1 (1985), p.107] showed that the

equations of motion then reads

r = ar(1− er cosu)

ϕ− ϕ0 = Kv

n(t− t0) = u− et sin(u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]
which is the same equation as before, except:

• there are now three eccentricities er, et, eϕ

• pericenter precession appears via the factor K = 1+ k (with k ≪ 1)

• ar and n acquire post-Newtonian corrections
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Doubly periodic structure of QK motion

The time between two periastrons

is the radial period denote P , so the

mean motion n = 2π/P is the

radial frequency.

The time for the angular coordinate ϕ

to go from 0 to 2π is P/K, so ω = nK

is the angular frequency

Thus, K = 1 + k with k ≪ 1 is a

measure of the pericenter precession

(1)
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The quasi-Keplerian solution at 2PN order

Damour & Schäfer [Nuovo Cim.B 101 (1988) 127] showed that the QK

parametrization reads at 2PN

r = ar(1− er cosu)

ϕ− ϕ0 = K
[
v + fϕ sin(2v) + gϕ sin(3v)

]
n(t− t0) = u− et sin(u)+ft sin(v) + gt(v − u)

v(u) = 2 arctan

[√
1 + eϕ
1− eϕ

tan
(u
2

)]

Here, the new parameters fϕ, gϕ, ft and gt are all of order O(1/c4),

while all other parameters acquire 2PN corrections.

I determine these parameters in [Trestini 2024a] at 2PN order

⇒ analytically solved the equations of motion !
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Application: 2.5PN evolution of frequency

In [Trestini 2024b (in prep)], I obtain:

〈
dx

dt

〉
=

2c3ζνx4

3G̃αm

{
4S2

−
(
1 + 1

2e
2
t

)
(1− e2t )

5/2

+
x

15(1− e2t )
7/2

(
X1 + e2tX2 + e4tX3

)
− 8π

(
1 + 1

2 γ̄
)
S2
−φ

s
1(et)x

3/2

+ x2

(
X4 + e2tX5 + e4tX6 + e6tX7

(1− e2t )
9/2

+
X8 + e2tX9 + e4tX10

(1− e2t )
4

)

+ 4π
(
1 + 1

2 γ̄
)
x5/2

(
X11φ2(et) + X12φ

s
2(et) + X13α

s
1(et) + X14θ

s
1(et)

+
(
X15 + e2tX16

)φs
1(et)

1− e2t
+ X17

φ̃s
1(et)

(1− e2t )
3/2

+ X18φ
s
0(et)

)}
where the enhancement functions of et can be obtained numerically or as

a small et expansion. 48



Application: 2.5PN evolution of frequency

In [Trestini 2024b (in prep)], I obtain:

〈
det

dt

〉
= −

c3ζνx3et

G̃αm

{
2S2

−
(1 − e2t )

3/2

+
x

15(1 − e2t )
5/2

(
E1 + e

2
tE2

)
+

8π

3

(
1 + 1

2
γ̄
)
S2
−

(
φ
s
1(et) −

φ̃s
1√

1 − e2t

)
x
3/2

+ x
2

(
E3 + e2tE4 + e4tE5

(1 − e2t )
7/2

+
E6 + e2tE7

(1 − e2t )
3

)

+ 4π
(
1 + 1

2
γ̄
)
x
5/2

[
E8

1 − e2t

e2t

(
φ2(et) −

φ̃2√
1 − e2t

)
+ E9

1 − e2t

e2t

(
φ
s
2(et) −

φ̃s
2√

1 − e2t

)

+ E10
1 − e2t

e2t

(
α
s
1(et) −

α̃s
2√

1 − e2t

)
+ E11

1 − e2t

e2t

(
θ
s
2(et) −

θ̃s2√
1 − e2t

)

+
E12

e2t

(
φ
s
1(et) −

φ̃s
1√

1 − e2t

)
+ E13φ

s
1(et) +

E14√
1 − e2t

φ̃
s
1(et) + E15

1 − e2t

e2t
φ
s
0(et)

]}

where the enhancement functions of et can be obtained numerically or as

a small et expansion.
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Conclusion



Conclusion

In GR:

• flux and phase at 4.5PN for circular orbit [Blanchet, Faye, Henry,

Larrouturou & Trestini 2023]

• (2, 2) mode at 4PN for circular orbits [idem]

• perfect agreement with 1SF and 2SF [Warburton, Wardell, Trestini, Henry,

Pound, Blanchet, Durkan, Faye & Miller 2024]

• required the computation of tails of memory [Trestini & Blanchet 2023]

In ST theory

• flux, phase and modes at relative 2.5PN for circular orbit [Bernard,

Blanchet & Trestini 2022]

• QK parametrization for eccentric orbits at 2PN [Trestini 2024a]

• averaged energy and angular momentum fluxes at relative 2.5PN

[Trestini 2024b (in prep)]

• secular evolution of x and et at 2.5PN [Trestini 2024b (in prep)]
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Backup slides



Solving for the PN metric in the near-zone

Ansatz for the metric in terms of potentials

g00 = −1 +
2

c2
V − 2

c4
V 2 +

8

c6

(
X̂ + ViVi + V 3

)
+O

(
1

c8

)
g0i = − 4

c3
Vi −

8

c5
R̂i +O

(
1

c7

)
gij = δij

(
1 +

2

c2
V +

2

c4
V 2

)
+

4

c4
Ŵij +O

(
1

c6

)
Injecting metric into field equations ⇒ potentials must satisfy:

□V = −4πG

c2
(T 00 + T kk)

□Vi = −4πG

c
T 0i

□Ŵij = −4πG
(
T ij − δijT

kk
)
− ∂iV ∂iV

where Tµν is for two point particles (with δ functions)
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UV divergences

Solving these equations, we find e.g.

V =
Gm1

r1
+
Gm2

r2
+O

(
1

c2

)
In various steps of computation (evaluating Tµν , equations of motion),

need to evaluate the metric at location of particles, e.g.

(g00)1 = −1 +
2

c2
(V )1 +O

(
1

c2

)
This blows up! We need a prescription to remove “self-energy”, as in

Newtonian gravity.
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Hadamard regularization

Historically, this was solved with Hadamard regularizaton, which consists

in noticing that the structure of any potential F in the vicinity e.g. of

particle 1 reads

P (x) =
∑
p

rp1f
1
p(n1)

When r1 → 0, the p ≥ 1 terms vanish, and we discard the divergent

p ≤ −1 terms. The Hadamard regularization consists in keeping only

p = 0 and averaging over angles:

(P )1 =
1

4π

∫
dΩf

1
0(n1)

Problem: in general, (FG)1 ̸= (F )1(G)1 [this stems from the

impossibility to define products in distribution theory]. This leads to

ambiguities in PN results at 3PN order.

Solution: dimensional regularization ! 53



Dimensional regularization

Solution: dimensional regularization was introduced. Rewrite field

equations in arbitrary d dimensions, and set ε = d− 3. Modifies

definitions of potentials, Green functions, etc. !

Instead of computing an expression the potential P for any field point x

and then setting x = y1, we use the fact the the potential P satisfied

□P = F , where the source has the structure

F (d)(x) =
∑
p

rp+qε1 f
1

(d)
p,q(n1)

Solving □P = F in a PN sense actually involves the inverse d’Alembert

operator

□
−1
ret =

1

∆− 1
c2
∂t

=
∑
k≥0

1

c2k
∂kt∆

−k−1
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Dimensional regularization (cont’d)

Our main challenge is to compute

Q(d) = ∆−1F (d) = − 1

(d− 2)Ωd−1

∫
ddx′

|x− x′|d−2
F (d)(x′)

in the singular limit x = y1, but this immediately well-defined by analytic

continuation in d ∈ C ! However, impossible to get closed form

expression for arbitray d ⇒ we can only get the ϵ→ 0 limit.

For this, first compute (Q)1 in 3D in a Hadamard sense. Then, we can

compute the difference DQ1 = Q(d)(y1)− (Q)1 using the formula

DQ1 = − 1

(d− 2)Ωd−1

{∑
q

(
1

qε+ ln r′1 − 1

)
⟨f
1

(ε)
−2,q⟩

+
∑
q

(
1

(q + 1)ε
+ ln s2

)∑
ℓ≥0

(−1)ℓ

ℓ!
∂L

(
1

rε+1
12

⟨nL2 f
2

(ε)
−ℓ−3,q⟩

)
+O(ε)

}

Individual pieces of the computation have poles in 1/ε, but we check

that these all disappear in physical observables!
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Linearized exterior vacuum solution

We now want the solution to both the wave and gauge equations

□hµν1 = 0 and ∂νh
µν
1 = 0

Imposing harmonic gauge condition ⇒ complicated structure described

by 6 moments (function of retarded time only) that are STF in their

indices L

• mass (or electric) source moment IL(t− r/c)

• current (or magnetic) source moment JL(t− r/c)

• gauge moments WL, XL, YL, ZL

such that hµν1 = kµν1 [IL, JL] + (∂φ1)
µν [WL,XL,YL,ZL]
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Solution to the linearized equations

Explicitly we have hµν1 = kµν1 [IL, JL] + ∂φµν1 [WL,XL,YL,ZL] where

k001 = − 4

c2

∑
ℓ⩾0

(−)ℓ

ℓ!
∂L
[
r−1IL

]
k0i1 =

4

c3

∑
ℓ⩾1

(−)ℓ

ℓ!

{
∂L−1

[
r−1I

(1)
iL−1

]
+

ℓ

ℓ+ 1
ϵiab∂aL−1

[
r−1JbL−1

]}
kij1 = − 4

c4

∑
ℓ⩾2

(−)ℓ

ℓ!

{
∂L−2

[
r−1I

(2)
ijL−2

]
+

2ℓ

ℓ+ 1
∂aL−2

[
r−1ϵab(iJ

(1)
j)bL−2

]}
φ0
1 =

4

c3

∞∑
ℓ=0

(−1)ℓ

ℓ!
∂L
[
r−1WL

]
φi
1 = − 4

c4

∞∑
ℓ=0

(−1)ℓ

ℓ!

{
∂iL

[
XL

r

]
+∂L−1

[
YiL−1

r

]
+

ℓ

ℓ+ 1
ϵiab∂aL−1

[
ZbL−1

r

]}
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Why keep φ1 free?

The reason why we keep the residual gauge freedom φ1 is that it will be

determined by matching to a post-Newtonian source. Indeed, there exists

explicit expressions which univocally determine all moments (gauge

moments as well !) general by a post-Newtonian source, e.g.

IL(u) = FP
B=0

∫
d3x

(
r

r0

)B ∞∑
k=0

(r
c

)2k {aℓ,k
c2

x̂L
d2k
(
τ00 + τaa

)
du2k

+
bℓ,k
c3
x̂iL

d2k+1τ0i

du2k+1
+
cℓ,k
c4
x̂ijL

d2k+2τ ij
dt2k+2

}
At lowest PN order, we recover the usual Newtonian formulas, e.g.

Iij =

∫
d3x ρ(x)x̂ij +O

(
1

c2

)
where ρ = (T 00/c2).
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Canonical construction (1)

Recall that the most general linearized metric reads

hµν1 = kµν1 [IL, JL] + ∂φµν1 [WL,XL,YL,ZL], and that the gauge

moments are typically chosen to be nonzero because of matching.

But there are a lot of moments, this is tedious ! What happens if we

insist that φµν1 = 0 ? We get a metric parametrized by two canonical

moments ML and SL, namely

hµν1,can = kµν1 [ML, SL]

One then iterates the MPM algorithm in the same way, and find that the

two metric are physically equivalent but differ by a (nonlinear)

coordinate transformation and a moment redefinition.
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Canonical construction (2)

The nonlinear transformation under the coordinate transformation

xµ → x′µ = xµ + φµ(x) reads :

hµνgen(x
′) =

1

|J |
∂x′µ

∂xρ
∂x′ν

∂xσ
(hρσcan + ηρσ)− ηµν

where we can expand hµνgen(x′) =
∑

n
1
n!φ

λ1 ...φλn∂λ1...λnh
µν
gen(x).

Specializing to the MPM expansion, we can show that at each order, the

two metrics are related by

hµνn,gen[IL, JL,WL, ...] =h
µν
n,can[ML, SL] + ∂φµνn
+Ωµνn [φ1, ..., φn−1;h1,can, ..., hn−1,can]

where Ωn is an explicitly known functional, and the moments are related

by relation such as

Mij = Iij + 4G
(
W(2)Iij −W(1)I

(1)
ij

)
+O(G2)
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Radiative construction (1)

The canonical construction in harmonic coordinates also exhibits

annoying far zone logarithm. Solution: remove them at every order in the

radiative construction [Blanchet 1987]. Since depart from harmonic

coordinates, a divergence term appears in the Einstein equations:

∂hµν − ∂Hµν = Λµν [h]

where Hµ = ∂ρh
µρ . The equivalence with the Einstein equations is now

ensured order-by-order by the construction itself.

At linearized order, remove ln(r) due to tails thanks to “tortoise

coordinates”.

h1,rad[ML,SL] = h1,harm[ML, SL] + ∂ξµν

where h1,harm has the same functional form as before, and

ξµ = 2Mη0µ ln(r/b0) 61



Radiative construction (2)

At every order n ≥ 2, we want to solve

∂hµνn − ∂Hµν
n = Λµνn [h]

Define kµ = (1, ni). When r → +∞, we crucially have the structure

Λµνn = r−2kµkνσn(u,n) +O(1/r3)

The n-th order is defined by:

hµνn = uµνn + vµνn + ∂ξµνn

where

uµνn = FP
B=0

□−1
[
(r/r0)

B Λµνn

]
□vµνn = 0 ∂νv

µν
n = −∂νuµν

ξµνn ≡ FP
B=0

□−1

[(
r

r0

)B ckµ

2r2

∫ ∞

0
dτ σn(u− τ,n)

]
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Relation between harmonic and radiative constructions

Yet again, the canonical metric in the harmonic and radiative

construction are related by

• a coordinate transformation, described by a nonlinear gauge

transformation and every MPM order:

hµνn,rad[ML,ML] =h
µν
n,harm[ML, SL] + ∂φµνn

+Ωµνn [φ1, ..., φn−1;h1,can, ..., hn−1,can]

• a moment redefinition, for example [Trestini et al. 2023]:

Mij = Mij −
26

15

GM

c3
M

(1)
ij +

124

45

G2M2

c6
M

(2)
ij

+
G2M

c8

[
− 8

21
Ma⟨iM

(4)
j⟩a −

8

7
M

(1)
a⟨iM

(3)
j⟩a −

8

9
ϵab⟨iM

(3)
j⟩aSb

]
.
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The different types of moments

Moment type Source Gauge
Canonical

(harmonic)

Canonical

(radiative)
Radiative

Notation IL, JL
WL,XL

YL, ZL

ML, SL ML, SL UL, VL

What does

it parametrize

Linearized metric,

general gauge

Linearized metric,

harmonic

canonical gauge

Linearized metric,

radiative

canonical gauge

Full metric,

asymptotically

Value of ∂νh
µν = 0 = 0 = 0 ̸= 0 = O(1/r2)

How to

compute

Matching to PN

(stress-energy tensor)
ML = IL + ... ML = ML + ... UL = M

(ℓ)

L + ...

hTT ∼
r→+∞

1

r

∞∑
ℓ=2

n̂L

(
UL(u) + ϵVL(u)

)
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General integration technique

How to integrate in practice uµνn = FP
B=0

□−1

[(
r
r0

)B
Λµνn

]
?

We first want to compute the master integral

ΨL = □−1 [n̂L S(r, u)] , (2)

where S(r, u) = O(rℓ+5) when r → 0 with u kept fixed. We define

Rα(ρ, s) ≡ ρℓ
∫ ρ

α
dλ

(ρ− λ)ℓ

ℓ!

(
2

λ

)ℓ−1

S(λ, s)

where α is an arbitrary constant. Then the solution reads

ΨL =

∫ t−r

−∞
ds ∂̂L

[
Rα
(
t−r−s

2 , s
)
−Rα

(
t+r−s

2 , s
)

r

]
If S(r, u) does not converge fast enough, consider (r/r0)

BS(r, u)

instead, and take the finite part when B → 0, denoted FP
B=0

.
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Quadratic integration formulas

How to integrate in practice uµν2 = FP
B=0

□−1

[(
r
r0

)B
Λµν2

]
?

The source is typically of the form r−kn̂LF (t− r). In the case k = 2, the

integral converges so we can discard the finite part:

□−1
[ n̂L
r2
F (t− r)

]
= −n̂L

∫ ∞

1
dxQℓ(x)F (t− rx)

where Qℓ(x) =
1
2Pℓ(x) ln

(
x+1
x−1

)
−
∑ℓ

j=1
1
jPℓ−j(x)Pj−1(x) and Pℓ(x) is

the Legendre polynomial.

For k ≥ 3, we can recursively bring ourselves to the case k = 2.

Asymptotically,∫ ∞

1
dxQℓ(x)F (t− rx) ∼

r→∞

1

r

∫ ∞

0
dτ ln(τ/r)F (t− r − τ)

⇒ these are the tails (the ln(r) cancel out in the radiative construction)66



Cubic integration formula

Most difficult integral to compute for the M×Mij ×Mij interaction:

ΨL
k,m

= FP
B=0

□−1

[(
r

r0

)B
r−kG(t− r)

∫ +∞

1
dxQm(x)F (t− rx)

]
where F and G identically vanish for t < −T and Qm is the Legendre

function of second kind.

For k ≥ 3, we can recursively bring ourselves to the case where k = 1

and k = 2. In the latter case, we don’t need the finite parts:

ΨL
k,m

= − n̂L
2r

∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) Kℓ

k,m
(ρ, τ, r) ,

where the kernel reads

Kℓ
k,m

(ρ, τ, r) = τ1−k
∫ 2τ

ρ

2τ
ρ+2r

dy yk−2Qm(y + 1)Πℓ

(
1− ρy

τ
, 1 +

ρ

r

)
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Seperating the logarithms

We now know how to integrate all terms, but we want to make sure that

the far-zone logarithms explicitly vanish in the radiative construction. To

do this, we explicitly extract the logarithmic dependency of the kernels,

e.g.

Kℓ
1,m

(ρ, τ, r) =
1

4
ln2
(
r

r0

)
− 1

2
ln

(
r

r0

)[
ln

(
τ

2r0

)
+ 2Hm

]
+ Kℓ

1,m
(ρ, τ)

This leads to defining elementary functionals

Ψℓ
k,m

[F,G] ≡
∫ +∞

0
dρG(u− ρ)

∫ +∞

0
dτ F (u− ρ− τ) Kℓ

k,m
(ρ, τ)
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Tails-of-memory: raw result

With the two types of elementary functionals and kernels in hand, namely

Ψℓ
k,m

[F,G] ≡
∫ +∞

0

dρG(u− ρ)

∫ +∞

0

dτ F (u− ρ− τ) Kℓ
k,m

(ρ, τ)

χℓ
k,m

[F,G] ≡
∫ +∞

0

dρG(u− ρ)

∫ +∞

0

dτ F (u− ρ− τ) Lℓ
k,m

(ρ, τ)

we find the explicit but untractable result

UM×Mij×Mij

ij =
G2M

c8

∑
m,ℓ,n

{
An

m,ℓ Ψℓ
1,m

[
M

(n)

a⟨i ,M
(8−n)

j⟩a
]
+ Bn

m,ℓ Ψℓ
2,m

[
M

(n)

a⟨i ,M
(7−n)

j⟩a
]

+ Cn
n,ℓ χℓ

1,m

[
M

(n)

a⟨i ,M
(8−n)

j⟩a
]
+Dn

m,ℓ χℓ
2,m

[
M

(n)

a⟨i ,M
(7−n)

j⟩a
]}

+ (terms that have a more standard and tractable form)

Impossible to get a simpler integration formula, but one can hope for a simpler

end result. Idea: integrate by parts to have only one derivative

combination
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Simplification method

Introducing a regularizing lower bound ϵ which we be taken to 0 at the
end, we can integrate by parts. We find

UM×Mij×Mij

ij = M

∫ +∞

ϵ

dρMa⟨i(u− ρ)

∫ +∞

0

dτ M
(8)

j⟩a(u− ρ− τ) Ω(ρ, τ)

+ (surface term)ϵ + (standard terms)

One would expect Ω(ρ, τ) to be insanely complicated, with
polylogarithms, etc. But actually, all the complicated terms neatly cancel
out:

Ω(ρ, τ) =
7613764

165375
− 1024076

18375

τ

ρ
− 2074

63

(
τ

ρ

)2

− 104

15

(
τ

ρ

)3

+
634076

55125
ln

(
ρ

2r0

)
+

384

175

τ

ρ
ln

(
ρ

2r0

)
− 144

175
ln

(
ρ

2r0

)2

+
8

7
ln

(
τ

2r0

)
This can then be massaged into a tractable form (and finite when ϵ→ 0)
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Tails-of-memory: result

After the Mij → Mij conversion, we find [Trestini & Blanchet 2023]

UM×Mij×Mij

ij =
8G2M

7c8

{∫ +∞

0
dρM

(4)
a⟨i(u− ρ)

∫ +∞

0
dτ M

(4)
j⟩a(u− ρ− τ)

[
ln

(
τ

2r0

)
−

1613

270

]
−

5

2

∫ +∞

0
dτ (M

(3)
a⟨iM

(4)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

3

2
ln

(
τ

2b0

)]
− 3

∫ +∞

0
dτ (M

(2)
a⟨iM

(5)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

11

12
ln

(
τ

2b0

)]
−

5

2

∫ +∞

0
dτ (M

(1)
a⟨iM

(6)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
+

3

10
ln

(
τ

2b0

)]
−

∫ +∞

0
dτ (Ma⟨iM

(7)
j⟩a)(u− τ)

[
ln

(
τ

2r0

)
−

1

4
ln

(
τ

2b0

)]
− 2M

(2)
a⟨i

∫ +∞

0
dτ M

(5)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
+

27521

5040

]
−

5

2
M

(1)
a⟨i

∫ +∞

0
dτ M

(6)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
+

15511

3150

]
+

1

2
Ma⟨i

∫ +∞

0
dτ M

(7)
j⟩a(u− τ)

[
ln

(
τ

2r0

)
−

6113

756

] }
.
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