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• “[…] because of the great weakness of gravitation, the experimentalist working 
on gravitation might like to perform experiments on an astronomical scale.”

• “For example, […] take two bodies of  g mass and a density of  gram 
per cubic centimeter and whirl them about each other at high speed. He clearly 
cannot do this in the laboratory, but he may find nature performing just such 
an experiment for him if he looks hard enough.”

1033 106

• “Experiment and observation can become intertwined in this field of 
physics [gravitation], and will probably become more so in the future […]. 
While his chances of finding exactly the experimental setup that he would have 
liked is rather small, there may be many of these ‘experiments’ that have some 
bearing on his particular problem.”

Dicke (1964); reprinted as a GRG, “Golden Oldie” (2019)



Coalescing binary black holes

3



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral Plunge



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral Plunge Merger



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral Plunge Merger Ringdown



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral Plunge Merger Ringdown



Coalescing binary black holes

3

Adapted from Abbott et al. (2016) and Maggio, HOS, Buonanno and Ghosh (2023)

Inspiral Plunge Merger RingdownRingdown



The simplicity of black holes

4

Ruffini and Wheeler (1971), Carter (1971), Robinson (1975)



The simplicity of black holes

4

Cartoon by C. V. Vishveshwara

Ruffini and Wheeler (1971), Carter (1971), Robinson (1975)



The simplicity of black holes

4

Cartoon by C. V. Vishveshwara

Ruffini and Wheeler (1971), Carter (1971), Robinson (1975)



The simplicity of black holes

4

Cartoon by C. V. Vishveshwara

Spin (χ)

Mass (M)
Ruffini and Wheeler (1971), Carter (1971), Robinson (1975)
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• In general relativity, each quasinormal frequency  depends only on the hole’s mass  and spin .ωℓmn M χ

• A single  gives . Additional frequency gives two new tests about the nature of the remnant.ωℓmn (M, χ)

“[…] direct evidence of black holes with the same certainty as, say, the 21 cm line identifies interstellar hydrogen.” 
Detweiler (1980)

M
/M

⊙

χ ∈ [0,1)

Reω220/(2π)

−1/Imω220

Reω210/(2π)

Leaver (1985)

Detweiler (1980), Dreyer et al. (2004), Berti et al. (2006), …
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• How different is the quasinormal frequency spectrum of non-Kerr black holes?

• Dependence on new coupling constants, on extra field(s), and black-hole spin ?χ
• Absence of a symmetry particular to Schwarzschild black holes?

• What is the amplitude with which these quasinormal frequencies are excited?

• Hard to answer for comparable mass binaries , but answerable within 
black hole perturbation theory .

(m1/m2 ≃ 1)
(m1/m2 ≪ 1)

Today: partial answer to some of these questions based on 2404.11110 (to appear in PRD), with 
G. Tambalo, K. Glampedakis, K. Yagi, and J. Steinhoff.
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8

Why is it an useful toy model?

• Only metric as field content, if treated perturbatively in the lengthscale  .l

• Only two dimensionless parameters  (“parity preserving”) and  (“parity violating”).λe λo

• Analytical (rotating) black hole solutions.

S =
1

16πG ∫ d4x |g | [ R + l4 (λe Rμν
ρσRρσ

δγRδγ
μν + λo Rμν

ρσRρσ
δγR̃δγ

μν) ]

Gorbenko et al., de Rham de et al., Cano et al., Cardoso et al., Sennett et al., Horowitz et al., Cayuso et al., …
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Simplify, but not too much

9

Assumptions:

• Set . Hereafter, .λo = 0 λe = λ

• Consider a nonrotating black hole, but study its gravitational perturbations, .gμν = gBH
μν + hμν

[ d2

dx2
+ Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)

Mathematically, these assumptions translate into studying differential equations of the form:



Unpacking

10

[ d2

dx2
+Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)



Unpacking

10

•  : “master function”: a particular combination of metric perturbations , decomposed 
in tensor harmonics and in Fourier modes .
ψℓm hμν

ψℓm(t, x) ∼ exp(iωt) ψℓm(x)

[ d2

dx2
+Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)



Unpacking

10

•  : “master function”: a particular combination of metric perturbations , decomposed 
in tensor harmonics and in Fourier modes .
ψℓm hμν

ψℓm(t, x) ∼ exp(iωt) ψℓm(x)

•  : “source term” that drives the perturbations.sℓm

[ d2

dx2
+Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)



Unpacking

10

•  : “master function”: a particular combination of metric perturbations , decomposed 
in tensor harmonics and in Fourier modes .
ψℓm hμν

ψℓm(t, x) ∼ exp(iωt) ψℓm(x)

•  : “source term” that drives the perturbations.sℓm

•  : function that is generally position , frequency  and any-other-parameter  
dependent.
Qℓm (x) (ω) (ϑ)

[ d2

dx2
+Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)



Unpacking
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•  : “master function”: a particular combination of metric perturbations , decomposed 
in tensor harmonics and in Fourier modes .
ψℓm hμν

ψℓm(t, x) ∼ exp(iωt) ψℓm(x)

•  : “source term” that drives the perturbations.sℓm

•  : function that is generally position , frequency  and any-other-parameter  
dependent.
Qℓm (x) (ω) (ϑ)

•  : coordinate that maps the domain  to .x r ∈ [rh, ∞) x ∈ (−∞, ∞)

[ d2

dx2
+Qℓm(x, ω, ϑ)] ψℓm(x) = sℓm(ω, x)
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Wave scattering and quasinormal modes

11

Quasinormal modes are solutions for which ; they are purely ingoing into the event horizon 
and purely outgoing at spatial infinity.

Ain = 0

As long as  as , the general physical solution is Qℓm ≃ ω2 x → ± ∞

Wave scattering:

𝒮ℓm(ω) ≡ (−1)ℓ+1 Aout

Ain
= exp(2iδℓm) .

Complex-valued poles of the scattering matrix: a boundary-value problem.
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A pair of equations

where  and . Hereafter,  (the “effective potential”).λℓ = (ℓ + 2)(ℓ − 1)/2 Λℓ = λℓ + 3M/r V (±)
ℓm = ω2 − Q(±)

ℓm

Regge-Wheeler (1957): Q(−)
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where p = (ℓ − 1)(ℓ + 2) + 2

∫
+∞

−∞
[2(V(±)

ℓ )3 + (V′ (±)
ℓ )2] dx =

1
26880M5

(16p3 − 83p2 + 150p − 87)

Likewise for , , …5V4 + 10VV′ 2 + V′ ′ 2 14V5 + 70V2V′ 2 + 14VV′ ′ 2 + V′ ′ ′ 2

If two potentials are to have the same reflection and transmission coefficients they must satisfy an 
infinite hierarchy of integral equalities, in which the integrands are, formally, conserved quantities 
of the Korteweg-de Vries equation.

This implies that the quasinormal-frequency spectrum is the same, .ω(+)
ℓmn = ω(−)

ℓmn

Chandrasekhar (1980), Lenzi and Sopuerta (2021).
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• Effective potentials are corrected by  terms.𝒪(λl4/M4)

• The “tower of integral identities” is broken already at lowest order:  ω(+)
ℓmn ≠ ω(−)

ℓmn

• Perturbations have a position-dependent propagation speed .c2
s

[ d2

dx2
+

ω2

c2
s (r)

− V (±)
ℓm (x)] ψ(±)

ℓm (x) = s(±)
ℓm (x)

de Rham de et al. and Cano et al.
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• “Axipolar” symmetry is broken.
• For , (nontrivial) agreement with de Rham et al. (2020) and Cano et al. (2022).n = 0
• Overtones are more sensitive to the lengthscale .l
• Scaling with  is nonlinear and depends on  and .ε = λl4/M4 ℓ n

λl4/M4 ∈ [0, 0.05]
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• Interpretation of  as the mode oscillation frequency is only true for . 
At fixed , this means small overtone numbers.

Re ωℓn Re ωℓn ≫ Im ωℓn
ℓ

• “Proper” mode frequency

2M
Re

ω 2
n

2MIm ω2n

Maggiore (2008)

fℓn = ϖ/(2π) = [Re(ωℓn)2 + Im(ωℓn)2]1/2

ℓ = 2
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• Lengthscale associated to the wavelength of the modes

                    εf = λ (l fℓn)4 = ε (M fℓn)4 ≪ 1/ε

• High-frequency waves probe deeper the potential barrier, hence the near-horizon region of the 
spacetime.
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• The large-  quasinormal frequencies in Schwarzschild can be 
computed analytically: Motl and Nietzke (2003), Maasen van den Brink (2004), 
Andersson and Howls (2004)

n

Mωℓn ≃ (8π)−1 log 3 − i(n + 1/2)/4

• For , one has the cutoff  above which the EFT 
breaks down.

ε = 1 nmax ∼ 𝒪(25)

Hence:

• One cannot describe the full quasinormal frequency spectrum 
within the EFT.

• “  is high! It doesn’t matter in ‘real life’!”n = 25

• EFT breaks  ultraviolet (UV) completion required.→
• Overtones as probes of the UV regime of gravity?
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Quasinormal mode contribution the time-domain signal:

ψℓm(t, x) = − Re∑
n

[Cℓmn e−iωℓmn(t−x)]

Neither have been computed in any beyond-general-relativity 
spacetime. I don’t know why!

Leaver (1986)

ℓ = 2, n = 0

ℓ = 2, n = 0, …, 5

The excitation coefficient  can be factorised into 
“background-” (excitation factor ) and “source-dependent” 
parts.
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λl4/M4 ∈ [0, 0.05]
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Glampedakis and Andersson (2001, 2003)
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• To test general relativity with the “ringdown” one must know both the quasinormal frequencies 
and their excitation.

• Began systematic study in a simple toy-problem.

• Overtones (and their excitation factors) are very sensitive to the new lengthscale. Forced us 
to think about the meaning of “being in the regime of validity of the EFT.”

• Argued that a description of the full quasinormal-frequency spectrum is impossible.

• Preliminary study of isospectrality breaking in the gravitational wave amplitude.

• The explanation of these results relies little on the type of modification to general relativity. All 
that is required is that there is a new lengthscale that modifies the spacetime near the horizon.

• Conjecture 1: similar results for any extension to general relativity of this type, with or 
without extra fields. Cf. Hirano et al. 2404.09672.

• Conjecture 2: a “natural” realization of the pseudospectrum instability?

• A lot to explore!


