Nonlinear dynamics of compact object mergers in beyond General Relativity.

Maxence Corman July 15, 2024

Max Planck Institute for Gravitational Physics

Motivation

	02 2016 - 2014						
96 58 23 14 63 36 GW/0004 CATEGO	н хт 5 20 21 49 омляда однужы	п 76 60 64 10 80 60 сиглоза	35 24 8 25 56 53 ситлина	15 15 2 15 15 2 2.8 0417082	5 27 49 29 60 65 64/1003	105 CW1956-01.01978	25 18 41 GW190486.381853
30 0.3 35 24 377 56 (WHEATE BLOOKE	46 32 43 32 76 70 carronus.tuates generativ.tuates	2 14 000000 3.2 CATEGORIS DOGAZ	43 28 25 13 69 69799553 36544 27 07799353 36979	36 18 3 52 симерала сокара си	a 26 27 20 265 59 59 59	5 66 41 101 00/10/00/10.102544	156 CATIKATI
42 33 37 23 71 56 CW190621.L014389 CW190627.083898	17 40 17 M	55 24 54 41 56 синтеросо 195265 синтеросо 195255	67 36 V2 84 99 смитостик 223640 смитостраталя	13 13 2 30 0413000.222403 04	7 21 13 72	6 12 6.4 17 005 GW100725 (111728)	36 29 64 CHATROTT BECASS
12 61 42 29 20 67 CHITELTON DALAGE	37 27 44 33 62 76 омпония дали	23 26 33 36 26 55 CATHORN STREEMED (MANNE	24 10 44 26 33 76 CAMERICA DAMAGE COMPONENT (12017	35 24 4 57 Cantagouel (11147) Car	4 24 0.3 2 66 11 Controller Long	1 63 5 13 20 CM/R/R14 (27864	2) 16 35 CANNERRA J320065
40 23 8 24 61 002 GW190132.03535	12 78 12 79 19 19 19 04176933138541 0417103.03549	п 72 66 47 18 1077 смилок.нака силаного	29 5.9 V 83 <u>34</u> 20 синтека, лятка синтека, лятка	93 24 1 76 Симянат какаат	1 67 27 19 17 17 65 19 645	9 12 82 19 29 CHINESSALTINSS	25 19 41 CM494255.239063
о 73 л 12 19 32 омнеза дала	46 36 49 32 76 82 ENTITIEZZ, CASINGY. EVALUATION AND AND AND AND AND AND AND AND AND AN	 19 24 20 11 61 14 61 14 61 	50 14 42 33 7,2 71 DWYDOLFEL DUERO DWEDOLFEL DUERO	34 20 1 60 ENVEDEDE RAMAN	0 23 30 27 17 63 22000 (541) (742000 100	5 51 52 67 00000000,22380	36 27 60 24/200000 0004443
1 24 28 51 30 27 78 0W300270.032254 CW208276.230004	38 28 87 01 62 0420003.00446 CA200020.00200	27 28 40 33 64 69 0w200200.124456 0w200204.222234	70 14 50 20 32 56 GW2002255.000421 OV200202.00546		6 14 54 20 47 000000 17000 000001.1800		34 H 53 CHO200022.09153
KEY		gravit ME	ATIONAL WAVE			(LIGO)	
		D E T			HA CK	AGRA	

Motivation

Parameterized test of GR during inspiral from Sanger+ 2024, arXiv:2406.03568

Motivation

Modified gravity roadmap summarizing the possible extensions of GR from Ezquiaga and Zumalacarregui, arXiv:1807.09241

Full solution: Requires well-posed initial value problem formulation

- Same principal part as GR: Scalar-Tensor theories $D_{amour, Esposito-Farese \rightarrow Barausse+,Shibata+}$, Quadratic Gravity at weak coupling $N_{oakes \Rightarrow Held+,East+}$
- Only scalar part modified: Cubic Horndeski Figueras+, Screening theories Bezares+
- Horndeski theories: Modified Generalized Harmonic formulation $_{Kovacs and Reall} \rightarrow _{East+,Corman+}$ or modified CCZ4 formulation $_{Salo+}$

Order-by-order	Fixing
• Solve the equations <i>perturbatively</i>	
 Pros: same principal part as GR, easy to implement and flexible 	
Cons: secular effects	
Applications: EdGB and dCS	
Okounkova+,Stein+	

Order-by-order	Fixing
• Solve the equations <i>perturbatively</i>	
 Pros: same principal part as GR, easy to implement and flexible 	
Cons: secular effects	
Applications: EdGB and dCS	
Okounkova+,Stein+	
$G(g)=\lambda S$	
• λ^0 : $G(g^0) = 0$	
• λ^1 : $G(g^1) = \lambda S(g^0)$	

Order-by-order	Fixing
 Solve the equations <i>perturbatively</i> Pros: same principal part as GR, easy to implement and flexible Cons: secular effects Applications: EdGB and dCS Okounkova+,Stein+ G(g) = λS λ⁰: G(g⁰) = 0 λ¹: G(g¹) = λS(g⁰) 	 Inspired by Israel-Stewart fixing of relativistic hydrodynamics Fix evolution equations below some short lengthscale Add new dynamical fields with driver equations

Order-by-order	Fixing		
 Solve the equations <i>perturbatively</i> Pros: same principal part as GR, easy to implement and flexible Cons: secular effects Applications: EdGB and dCS Okounkova+,Stein+ 	 Inspired by Israel-Stewart fixing of relativistic hydrodynamics Fix evolution equations below some short lengthscale Add new dynamical fields with driver equations 		
$G(g)=\lambda S$	$G(g) = \lambda S$		
• λ^0 : $G(g^0) = 0$	$ ightarrow G(g) = \Pi$		
• λ^1 : $G(g^1) = \lambda S(g^0)$	and $\tau \partial_t \Pi = -\Pi + \lambda S$		

Order-by-order	Fixing		
• Solve the equations <i>perturbatively</i>	• Inspired by Israel-Stewart fixing of		
• Pros: same principal part as GR,	relativistic hydrodynamics		
easy to implement and flexible	• Fix evolution equations below		
Cons: secular effects	some short lengthscale		
• Applications: EdGB and dCS	• Add new dynamical fields with		
Okounkova+,Stein+	driver equations		
$G(g) = \lambda S$	Pros: Corrections fully backreact		
• λ^0 : $G(g^0) = 0$	Cons: Computationally expensive		
• λ^1 : $G(g^1) = \lambda S(g^0)$	• Applications: EsGB, Higher		
	derivative theories		
	Cayuso+,Lehner+,Bezares+,Lara+,Franchini+		

Einstein scalar Gauss Bonnet gravity

$$S=rac{1}{16\pi}\int d^4x\sqrt{-g}\left[R-\left(
abla\phi
ight)^2+eta(\phi)\mathcal{G}
ight]$$

with $\mathcal{G} \equiv R^2 - 4R_{ab}R^{ab} + R_{abcd}R^{abcd}$.

- Horndeski theory \Rightarrow second order equations of motion
- Shift-symmetric $\Rightarrow \beta(\phi) = 2\lambda\phi$
- Black hole solutions with scalar hair $\sim \lambda/m^2$ (Sotiriou & Zhou) \Rightarrow energy loss through scalar radiation, -1PN (at leading order) dephasing in GW signal (Yagi)
- Well-posed initial value formulation (Kovacs and Reall)

To what extent can predictions from approximate treatments such as the order-by-order and fixing approach be confronted with gravitational wave observations? MC,Lehner,East and Dideron,2024

Black hole scalarization and saturation

Single, non-spinning black hole in axisymmetry

Order-by-order approach $\lambda^{0}: \left(g_{ab}^{(0)}, \phi^{(0)}\right) = \left(g_{ab}^{\text{GR}}, 0\right)$ $\lambda^{1}: \left(g_{ab}^{(1)}, \phi^{(1)}\right) = \left(0, \frac{\lambda}{M^{2}}\Phi\right)$

Fixing approach

- Driver equation: $\sigma g^{ab} \partial_a \partial_b \mathbf{P} = \partial_0 \mathbf{P} + \kappa (\mathbf{P} - \mathbf{S})$
 - $\mathbf{P} \rightarrow \mathbf{S}$ on timescales $T_s(\kappa, \sigma)$ and $T_f(\kappa, \sigma)$
- Solutions obtained by extrapolating ${\cal T}_s
 ightarrow 0$

Head on collisions of equal-mass scalarized black holes

All agree reasonably well but differences are small. Amplitude order-by-order solution increases by 40% compared to 3.7% for full solution, while error in peak time remain small.

Head on collisions of scalarized black holes

Different combination of fixing parameters.

Amplitude order-by-order solution increases by 40% compared to 3.7% for full solution, while error in peak time remain small.

Secular effects reflected in amplitude waveform at merger, $\Psi_4^{(2)}=\left(\frac{\lambda}{M^2}\right)^2\Delta\Psi_4.$

Secular effects reflected in amplitude waveform at merger, $\Psi_4^{(2)}=\left(\frac{\lambda}{M^2}\right)^2\Delta\Psi_4.$

Weak dependence of amplitude at merger for full solution. Order-by-order overshoots full solution.

Lack of resolution to resolve T_s and/or T_f ?

The smaller T_s the closer scalar charge to full solution and faster inspiral. Can we extrapolate to $T \rightarrow 0$?

To what extent can predictions from approximate treatments such as the *order-by-order* and *fixing* approach be confronted with gravitational wave observations?

- Order-by-order approach cannot faithfully track the solutions when the corrections to general relativity are non-negligible.
- Fixing approach can provide consistent solutions, provided the ad-hoc timescale over which the dynamical fields are driven to their target values is made short compared to the physical timescales → computationally feasable?

Black hole-neutron star mergers in EsGB gravity

Observation of gravitational waves from two neutron star-black hole coalescences

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

(Dated: June 30, 2021)

ABSTRACT

We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105-162426 and GW200115-042309, abbreviated as GW200105 and GW200115: the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses $8.9^{\pm1.2} M_{\odot}$ and $1.9^{+0.3}_{-0.2} M_{\odot}$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-1.2} M_{\odot}$ and $1.5^{+0.7}_{-0.2} M_{\odot}$ (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%-96% and 87%-98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280^{+110}_{-110} Mpc and 300^{+150}_{-100} Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45^{+75} Gpc⁻³ yr⁻¹ when assuming that GW200105 and GW200115 are representative of the NSBH population, or 130^{+112} Gpc⁻³ yr⁻¹ under the assumption of a broader distribution of component masses.

Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M_{\odot} Compact Object and a Neutron Star

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

ABSTRACT

We report the observation of a coalescing compact binary with component masses 2.5–4.5 M_{\odot} and 1.2 2.0 M_{\odot} (all measurements quoted at the 90% credible level). The gravitational-wave sigmal GW230529.181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 20 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M_{\odot} at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star mass, we find the most probable similar to the source of V2 May 2002.181500; assuming that the source is a neutron star–black hole merger, GW230029.181500-like sources on star back holes observed in the expected rate of neutron star–black hole coalescences. The dissystem implies an increase in the expected rate of neutron star–black hole coalescences. The dissystem implies an increase in the expected rate of neutron star–black hole coalescences.

Motivation for black hole-neutron star mergers in EsGB gravity

Posteriors on $\sqrt{\alpha_{\rm GB}}$ from the leading -1PN correction and those including higher PN corrections (up to 2PN). Taken from Lyu+2022.

Posteriors on $\sqrt{\alpha_{\rm GB}}$ from the theory-specific test of FTI framework. Taken from Sanger+2024.

- 1. Are PN predictions accurate enough to model inspiral?
- 2. What does the GW signal look like in non-linear regime?
- 3. Can we comment on the ringdown signal?

Are PN predictions accurate enough to model inspiral?(MC and East 2024)

PN predictions taken from Sennet+2016 and mapped to Einstein frame using recipe outlined in Julie+2022 or more recently Julie+2024.

What does the GW signal look like in non-linear regime?(MC and East 2024)

GW200115, $\{M_{\rm BH}, M_{\rm NS}\} = \{5.7, 1.5\} M_{\odot}$

GW230529, $\{M_{
m BH}, M_{
m NS}\} = \{3.5, 1.4\} M_{\odot}$

Can we comment on the ringdown signal?(MC and East 2024)

- 1. Are PN predictions accurate enough to model inspiral? We find reasonable agreement up to the end of inspiral.
- 2. What does the GW signal look like in non-linear regime? We find weak dependence of amplitude GW signal on coupling at merger.
- 3. Can we comment on the ringdown signal? Sign of shift in frequencies consistent with perturbation theory but main effect is on amplitude GW signal.

Order by order approach in EsGB

$$\Box \phi + \lambda \mathcal{G} = 0, \quad R_{ab} - \frac{1}{2} g_{ab} R - \nabla_a \phi \nabla_b \phi + \frac{1}{2} \left(\nabla \phi \right)^2 g_{ab} + 2\lambda \delta^{efcd}_{ijg(a} g_{b)d} R^{ij}{}_{ef} \nabla^g \nabla_c \phi = 0$$

$$g_{ab} = g_{ab}^{(0)} + \sum_{k=1}^{\infty} \epsilon^k h_{ab}^{(k)}$$
 $\phi = \sum_{k=0}^{\infty} \epsilon^k \phi^{(k)}$

0th order:
$$G_{ab}^{(0)} \left[g_{ab}^{(0)} \right] = 0$$
, $\Box^{(0)} \phi^{(0)} = 0$
1st order: $G_{ab}^{(1)} \left[g_{ab}^{(0)}, h_{ab}^{(1)} \right] = 0$, $\Box^{(0)} \phi^{(1)} = -\lambda \mathcal{G}^{(0)}$
2nd order:
 $G_{ab}^{(0)} \left[h_{ab}^{(2)} \right] = 8\pi T_{ab}^{(2)} - 2\lambda \delta_{ijg(a}^{efcd} g_{b)d}^{(0)} R^{(0)ij}{}_{ef} \nabla^{(0)g} \nabla_{c}^{(0)} \phi^{(1)},$
 $\Box^{(0)} \phi^{(2)} = 0$

$$\Box \phi + \lambda \mathcal{G} = 0, \quad R_{ab} - \frac{1}{2} g_{ab} R - \nabla_a \phi \nabla_b \phi + \frac{1}{2} (\nabla \phi)^2 g_{ab} + 2\lambda \delta^{efcd}_{ijg(a} g_{b)d} R^{ij}{}_{ef} \nabla^g \nabla_c \phi = 0$$
$$\Box \phi + \Pi^{(\phi)} = 0, \quad R_{ab} - \frac{1}{2} g_{ab} R - \nabla_a \phi \nabla_b \phi + \frac{1}{2} (\nabla \phi)^2 g_{ab} + \Pi^{(g)}_{ab} = F_{ab},$$
$$\sigma g^{ab} \partial_a \partial_b \mathbf{P} = \partial_0 \mathbf{P} + \kappa (\mathbf{P} - \mathbf{S})$$

Modified generalized harmonic formulation (Kovacs & Reall, 2020)

- Well-posed initial value problem \Leftrightarrow strongly hyperbolic system \Rightarrow Certain matrix $M^i \xi_i$ to be **diagonizable** with **real** eigenvalues
- Harmonic gauge in GR: $M^i \xi_i$ is diagonizable but eigenvalues are **degenerate**
- Weakly coupled four-derivative scalar tensor theory can be viewed as a small deformation of GR

 \Rightarrow In harmonic gauge, $M^i \xi_i$ is not diagonizable in **generic** weakly coupled background (Papallo & Reall,2017)

• Problem: mixing between pure gauge and gauge-condition violating solutions \Rightarrow Solution: give modes different characteristic speeds

Modified generalized harmonic formulation (Kovacs & Reall, 2020)

- Introduce two auxiliary Lorentzian metrics: \tilde{g}^{ab} and \hat{g}^{ab}
- Gauge condition:

$$C^a \equiv H^a - \tilde{g}^{ab} \nabla_a \nabla_b x^c = 0$$

• Gauge-fixed equation

$$E^{ab} - \frac{1}{2} \left(\delta^a{}_b \hat{g}^{ab} + \delta^b{}_d \hat{g}^{ac} - \delta^c{}_d \hat{g}^{ab} \right) \nabla_c C^d = 0$$

so constraint propagates as

$$0 = \hat{g}^{ab} \nabla_a \nabla_b C^c + \dots$$

- Gauge-condition violating solution propagate along \hat{g}^{ab} , pure gauge solutions along \tilde{g}^{ab} and physical solutions along g^{ab} .
- If null cones do not intersect \Rightarrow Horndeski theories are strongly hyperbolic in weakly coupled regime $\Rightarrow \lambda << L^2$

Loss of hyperbolicity?

Main idea

Separation of causal cones of different types of mode solutions

- (i) "pure gauge" modes propagate along the null cone of $\tilde{g}^{\mu\nu}$
- (ii) "gauge condition violating" modes propagate along the null cone of $\hat{g}^{\mu
 u}$
- (iii) "physical" polarizations
 - propagate along the null cone of $g^{\mu\nu}$ is Einstein-scalar-field theory
 - propagate along characteristic hypersurfaces that are "almost null" in weakly coupled 40ST and are gauge-invariant [Reall (2021)]

If characteristic polynomial for physical d.o.f is hyperbolic then the theory admits a well-posed formulation (e.g. in a suitable choice of the modified harmonic gauge condition and gauge fixing), otherwise the theory breaks down independently of gauge choice. (See also [Hegade, Ripley, Yunes (2023)])

Are PN predictions accurate enough to model inspiral? (MC, Ripley and East 2022)

PN predictions taken from Sennet+2016 and mapped to Einstein frame using recipe outlined in Julie+2022 or more recently Julie+2024.

Comparison scalar waveforms to PN theory (Witek+2018)

Orbital phase in PN theory (Sennet+2016)

Are PN predictions accurate enough to model inspiral?

