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Approaches to studying modifications to general relativity

Full solution: Requires well-posed initial value problem formulation

• Same principal part as GR: Scalar-Tensor theories Damour, Esposito-Farese →

Barausse+,Shibata+, Quadratic Gravity at weak coupling Noakes ⇒ Held+,East+

• Only scalar part modified: Cubic Horndeski Figueras+, Screening theories Bezares+

• Horndeski theories: Modified Generalized Harmonic formulation Kovacs and Reall

→ East+,Corman+ or modified CCZ4 formulation Salo+
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Approaches to studying modifications to general relativity

Order-by-order

• Solve the equations perturbatively

• Pros: same principal part as GR,

easy to implement and flexible

• Cons: secular effects

• Applications: EdGB and dCS

Okounkova+,Stein+

G (g) = λS

• λ0 : G (g0) = 0

• λ1 : G (g1) = λS(g0)

Fixing

• Inspired by Israel-Stewart fixing of

relativistic hydrodynamics

• Fix evolution equations below

some short lengthscale

• Add new dynamical fields with

driver equations

• Pros: Corrections fully backreact

• Cons: Computationally expensive

• Applications: EsGB, Higher

derivative theories

Cayuso+,Lehner+,Bezares+,Lara+,Franchini+



Einstein scalar Gauss Bonnet gravity

S =
1

16π

∫
d4x

√−g
[
R − (∇ϕ)2 + β(ϕ)G

]

with G ≡ R2 − 4RabR
ab + RabcdR

abcd .

• Horndeski theory ⇒ second order equations of motion

• Shift-symmetric ⇒ β(ϕ) = 2λϕ

• Black hole solutions with scalar hair ∼ λ/m2
(Sotiriou & Zhou) ⇒ energy loss through

scalar radiation, -1PN (at leading order) dephasing in GW signal (Yagi)

• Well-posed initial value formulation (Kovacs and Reall)



To what extent can predictions from approximate treatments such as the

order-by-order and fixing approach be confronted with gravitational wave

observations?

MC,Lehner,East and Dideron,2024



Black hole scalarization and saturation
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Order-by-order approach

λ0:
(
g
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ab , ϕ(0)
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=

(
gGR
ab , 0
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λ1:
(
g
(1)
ab , ϕ(1)

)
=

(
0, λ

M2Φ
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Fixing approach

• Driver equation:

σgab∂a∂bP = ∂0P+ κ (P− S)

P → S on timescales Ts(κ, σ) and

Tf (κ, σ)

• Solutions obtained by extrapolating

Ts → 0



Head on collisions of equal-mass scalarized black holes
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Quasi-circular inspirals of scalarized black holes

150 175 200 225 250 275 300
Linsp

35

40

45

50

55

60

65

|rM
∆

Ψ
4
| m

ax

Secular effects reflected in amplitude waveform

at merger, Ψ
(2)
4 =

(
λ
M2

)2
∆Ψ4.

−100 −50 0 50 100
(t− tpeak)/M

−0.4

−0.2

0.0

0.2

0.4

r/
M

R
e[
h

22
]

−2 0 2
0.40

0.45

GR

λORA = 0.02m2
2

λFull = 0.02m2
2

λORA = 0.04m2
2

λFull = 0.04m2
2

λORA = 0.10m2
2

λFull = 0.10m2
2

Weak dependence of amplitude at merger for full

solution. Order-by-order overshoots full solution.



Quasi-circular inspirals of scalarized black holes

150 175 200 225 250 275 300
Linsp

35

40

45

50

55

60

65

|rM
∆

Ψ
4
| m

ax

Secular effects reflected in amplitude waveform

at merger, Ψ
(2)
4 =

(
λ
M2

)2
∆Ψ4.

−100 −50 0 50 100
(t− tpeak)/M

−0.4

−0.2

0.0

0.2

0.4

r/
M

R
e[
h

22
]

−2 0 2
0.40

0.45

GR

λORA = 0.02m2
2

λFull = 0.02m2
2

λORA = 0.04m2
2

λFull = 0.04m2
2

λORA = 0.10m2
2

λFull = 0.10m2
2

Weak dependence of amplitude at merger for full

solution. Order-by-order overshoots full solution.



Quasi-circular inspirals of scalarized black holes
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Quasi-circular inspirals of scalarized black holes
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Take aways comparison study

To what extent can predictions from approximate treatments such as the order-by-order

and fixing approach be confronted with gravitational wave observations?

• Order-by-order approach cannot faithfully track the solutions when the corrections

to general relativity are non-negligible.

• Fixing approach can provide consistent solutions, provided the ad-hoc timescale

over which the dynamical fields are driven to their target values is made short

compared to the physical timescales → computationally feasable?



Black hole-neutron star mergers in EsGB gravity
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Motivation for black hole-neutron star mergers in EsGB gravity
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Questions

1. Are PN predictions accurate enough to model inspiral?

2. What does the GW signal look like in non-linear regime?

3. Can we comment on the ringdown signal?



Are PN predictions accurate enough to model inspiral?(MC and East 2024)
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What does the GW signal look like in non-linear regime?(MC and East 2024)
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Can we comment on the ringdown signal?(MC and East 2024)
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Conclusion

1. Are PN predictions accurate enough to model inspiral?

We find reasonable agreement up to the end of inspiral.

2. What does the GW signal look like in non-linear regime? We find weak

dependence of amplitude GW signal on coupling at merger.

3. Can we comment on the ringdown signal? Sign of shift in frequencies consistent

with perturbation theory but main effect is on amplitude GW signal.





Order by order approach in EsGB

□ϕ+ λG = 0, Rab −
1

2
gabR −∇aϕ∇bϕ+

1

2
(∇ϕ)2 gab + 2λδefcdijg(agb)dR

ij
ef∇g∇cϕ = 0

gab = g
(0)
ab +

∞∑

k=1

ϵkh
(k)
ab ,

ϕ =
∞∑

k=0

ϵkϕ(k)

0th order: G
(0)
ab

[
g
(0)
ab

]
= 0, □(0)ϕ(0) = 0

1st order: G
(1)
ab

[
g
(0)
ab , h

(1)
ab

]
= 0, □(0)ϕ(1) = −λG(0)

2nd order:

G
(0)
ab

[
h
(2)
ab

]
= 8πT

(2)
ab − 2λδefcdijg(ag

(0)
b)dR

(0)ij
ef∇(0)g∇(0)

c ϕ(1),

□(0)ϕ(2) = 0



Fixing approach in EsGB

□ϕ+ λG = 0, Rab −
1

2
gabR −∇aϕ∇bϕ+

1

2
(∇ϕ)2 gab + 2λδefcdijg(agb)dR

ij
ef∇g∇cϕ = 0

□ϕ+Π(ϕ) = 0, Rab −
1

2
gabR −∇aϕ∇bϕ+

1

2
(∇ϕ)2 gab +Π

(g)
ab = Fab,

σgab∂a∂bP = ∂0P+ κ (P− S)



Modified generalized harmonic formulation (Kovacs & Reall, 2020)

• Well-posed initial value problem ⇔ strongly hyperbolic system

⇒ Certain matrix M iξi to be diagonizable with real eigenvalues

• Harmonic gauge in GR: M iξi is diagonizable but eigenvalues are degenerate

• Weakly coupled four-derivative scalar tensor theory can be viewed as a small

deformation of GR

⇒ In harmonic gauge, M iξi is not diagonizable in generic weakly coupled

background (Papallo & Reall,2017)

• Problem: mixing between pure gauge and gauge-condition violating solutions

⇒ Solution: give modes different characteristic speeds



Modified generalized harmonic formulation (Kovacs & Reall, 2020)

• Introduce two auxiliary Lorentzian metrics: g̃ab and ĝab

• Gauge condition:

C a ≡ Ha − g̃ab∇a∇bx
c = 0

• Gauge-fixed equation

E ab − 1

2

(
δabĝ

ab + δbd ĝ
ac − δcd ĝ

ab
)
∇cC

d = 0

so constraint propagates as

0 = ĝab∇a∇bC
c + . . .

• Gauge-condition violating solution propagate along ĝab, pure gauge solutions

along g̃ab and physical solutions along gab.

• If null cones do not intersect ⇒ Horndeski theories are strongly hyperbolic in

weakly coupled regime ⇒ λ << L2



Loss of hyperbolicity?





Are PN predictions accurate enough to model inspiral?(MC,Ripley and East 2022)
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What does the GW signal look like in non-linear regime?
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Comparison scalar waveforms to PN theory (Witek+2018)
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Comparison scalar waveforms to PN theory (Witek+2018)
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Orbital phase in PN theory (Sennet+2016)
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Are PN predictions accurate enough to model inspiral?
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