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What 1s hydrodynamics? —— Effective theory

Water

Neutron star

merger

@mplicated molecular dynamics

Collective description: hydrodynamics

— Two scales well separated:

/ Complicated QCD dynamics

Hydrodynamics \
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Hydrodynamics: viscosity
— 2
Effective field theory B + + T
l Oth order  1st 2nd
=0 Dynamical equations

Real-time evolutions are required!!

Ideal hydro — Well posed

Viscous hydro —— Difficulties...

But... 1s viscosity relevant? ——  Yes!

<< 1



Quark-gluon plasma: viscosity

Viscosity 1s expected to be relevant in the physics of the quark-gluon plasma because the scale of
the system and the microscopic scale of QCD are comparable

<

P~

Hydrodynamic
Evolution

This 1s confirmed by experiments:

— when including viscosity, better fits to the experimental data
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Neutron star mergers: viscosity

Black hole mergers

1
Rm} _ERQMV — KTuv =) Ruv =0

Neutron star mergers

1
Ruv — ERQW — K Tuv
Matter must be specified

— Gravity coupled to QCD

mm) Hydrodynamics provides a good description
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Neutron star mergers: viscosity

Picture from simulations:

NS + NS HMNS BH+torus

Highly dynamical post merger region

— We must include all the relevant physics

Weak Plfoceﬁses Upzrls (o~ [Effective bulk viscosity!

fimescales that ate comparab.e. M. Alford, A. Harutyunyan, A. Sedrakian ‘22

n—-pt+e + E. R. Most, A. Haber, S. P. Harris, Z. Zhang, M. G. Alford, J. Noronha‘22
Alford, Haber, Harris, Zhang 21

Pp+e 2R+, Alford, Harutyunyan, Sedrakian ‘21

Most, Harris, Plumberg, Alford, Noronha, Noronha-Hostler, Pretorius, Witek, Yunes 21
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Relativistic hydrodynamics:
effective description of the
real-time dynamics

Transport properties: allow to
distinguish phases




Relativistic Navier-Stokes: Plan

1 - Historical perspective, well posedness and alternative theories

y (fm)

2 - The equations

1
TH = (e + A) (u“ u” + gA‘”’) + Q*u” +ut Q¥ — not”

3 - Real-time evolutions




Relativistic Navier-Stokes

Historical perspective, well-posedness and alternative theories
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Relativistic Navier-Stokes

The relativistic version of Navier-Stokes equations was originally formulated by Eckart
(1940) and Landau&Lifshitz (1959)

Written 1n this form, these equations suffer severe issues
Hiscock, Lindblom ‘85

A theory that 1s meant to provide the effective description of any relativistic viscous fluid,
would seem to be unphysical...

This puzzling theoretical question remained unsolved for many years...

From a modern perspective:
—— Eckart and Landau frames related by field redefinitions
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Alternative: MIS theories

Meanwhile the experimental analysis of the quark-gluon plasma required of some viscous
hydrodynamical description

Hy
Evolution

An approach that provides such a description by Miiller, Israel and Stewart (MIS)

Muller ‘67
Different variants: -BRSSS Israel <76
-DNMR Israel, Stewart <79
-Divergence type
etc.

MIS-type theories

Problems alleviated — allows to describe the experimental data!

(Still, lack of a well-posedness proof...)



Well-behaved relativistic Navier-Stokes

The problem with relativistic version of Navier Stokes remained unsolved...

In recent years a well-behaved version of relativistic Navier-Stokes has been proposed

Bemfica, Disconzi, Noronha ‘17
Bemfica, Disconzi, Noronha ‘19

Kovtun *19

The key sight was to realize that by performing specific field redefinitions, good
properties can be restored.

Nomenclature

BDNK = Relativistic first-order viscous hydrodynamics = Relativistic Navier-Stokes
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Well posedness well established for many physically relevant equations:

Maxwell equations
Einstein equations
Ideal hydrodynamics

— However, limited results 1n relativistic viscous hydrodynamics

Relativistic Navier-Stokes

Bemfica, Disconzi, Noronha 20

Proofs of well-posedness obtained Bemtfica, Disconzi, Graber "20

.. .. ‘ Bemfica, Disconzi. Noronha 19
in different levels of generality 1n . . > o7

v & ty Bemfica, Disconzi, Rodriguez, Shao ‘19
recent years

Disconzi ‘17
Bemfica, Disconzi, Noronha ‘17

Local well-posedness of the initial value problem (Cauchy problem) for initial
data in Sobolev spaces, in non-conformal theories in the presence of charge.

— Existence and uniqueness of solutions
Respect the principles of relativity: characteristics not faster than speed of light

— Sufficiently good properties for applications in systems of interest
like neutron star mergers and quark-gluon plasma.



Navier-Stokes vs MIS

[f MIS theories provide a good description of experimental data:
—> Why do we need another formulation of viscous hydrodynamics?

— [s one theory ‘better’ than the other?



Navier-Stokes vs MIS

[f MIS theories provide a good description of experimental data:
—> Why do we need another formulation of viscous hydrodynamics?

— [s one theory ‘better’ than the other?

Three relevant arguments:

1 - Well-posedness
2 - Characteristic velocities

3 - Strong shockwaves



Navier-Stokes vs MIS

* Well posedness of MIS unknown until 2020.

Nonlinear Constraints on Relativistic Fluids Far From Equilibrium

Fabio S. Bemfica,! Marcelo M. Disconzi,”? Vu Hoang,? Jorge Noronha,* and Maria Radosz®

! Escola de Ciéncias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil*
2Department of Mathematics, Vanderbilt University, Nashville, TN, USAT
? Department of Mathematics, The University of Texas at San Antonio,
One UTSA Circle, San Antonio, TX 78249, USA%
4 Department of Physics, University of Ilinois,
1110 W. Green St., Urbana IL 61801-3080, USA?
(Dated: May 26, 2020)
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* (Check in realistic simulations:

Causality violations in realistic simulations of heavy-ion collisions

Christopher Plumberg,! Dekrayat Almaalol,?> Travis Dore,! Jorge Noronha,! and Jacquelyn Noronha-Hostler!
Ullinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2Department of Physics, Kent State University, Kent, OH 44242, USA
(Dated: March 31, 2021)
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Causality violations in realistic simulations of heavy-ion collisions

Christopher Plumberg,! Dekrayat Almaalol,?> Travis Dore,! Jorge Noronha,! and Jacquelyn Noronha-Hostler!

Ullinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2Department of Physics, Kent State University, Kent, OH 44242, USA

(Dated: March 31, 2021)
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— Significant violations!
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T=0.80 fm/c 7=1.80 fm/c T=2.80 fm/c T=13.80 fm/c T=4.80 fm/c

y (fm)

fee

IP-Glasma + free-streaming KeMPaST + MUSIC cre B _ 4 .. 4 . e
/iolated 1o not decide Satistied

-10 0 10 -10 0 10 -10 0 10 =10 0 10 -10 0 10
x (fm) x (fm) x (fm) x (fm) x (fm) 1l

If we were able to use Navier-Stokes, this would look like this:

7=0.80 fm/c =1.80 fm/c T=2.80 fm/c T=3.80 fm/c T=4.80 fm/c

y (fm)

IP-Glasma + free-streaming KeMPaST + MUSIC

=10 0 10 =10 0 10 =10 0 10 =10 0 10 =10 0 10
X (fm) x (fm) x (fm) X (fm)i X (fmi)

| 7 x(m) X (fm) X (fm) T x(fm) X (fm)
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Navier-Stokes vs MIS: neutron star mergers

Only very recently the first viscous neutron star mergers were constructed

Chabanov, Rezzolla ‘23 (a)
Chabanov, Rezzolla ‘23 (b)

‘ low visc. med. visc. high vise. ‘

T T [T T (T —m—_—— [

But even in the case that for all those examples the conditions were satiesfied

We still would have to check those conditions pointwise in every future evolution
For Navier Stokes this is ensured for every evolution

Thus, at a fundamental level, Navier-Stokes promising alternative to MIS

(In this specific sense the theory 1s ‘better’)
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* Ideal hydro TH — ¢ (u""’ u’ + % A““) mm) V.71 =0 well posed!!

Landau frame

* First order hydr v v 1 L v § i
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In the spirit of effective field theory:
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Navier-Stokes equations

— Conformal theory

* Ideal hydro TH — ¢ (u""’ u” + % A““) mm) V.71 =0 well posed!!

* Furst order hydro |, b X ‘ V., TH =0 Ill-posed
Landau frame |-~ ¢ (u T3 A = ! ’

In the spirit of effective field theory:
e—>et+ A, A =2 (45 +V u) Most general field redefinition compatible
a 1V e with Poincare and conformal symmetries.
1 Sl ot P 7 = =
£ 4 ) Q —\\ggn (?L = A = )
* First order hydro: general frame
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— Conformal theory

* Ideal hydro TH — ¢ (u""’ u’ + % A““) mm) V.71 =0 well posed!!

* First order hydro |,,,,,, b X ‘ V, T =0 Tll-posed
Landau frame |-~ ¢ (u T3 A = ' ’

In the spirit of effective field theory:
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{a1,a2} = {0,0} Landau frame Bemfica, Disconzi, Noronha 17719

Kovtun ’19



Navier-Stokes equations

— Conformal theory

* Ideal hydro TH — ¢ (u""’ u’ + % A““) mm) V.71 =0 well posed!!
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* First order hydro: general frame
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{a1,a2} = {0,0} Landau frame Bemfica, Disconzi, Noronha 17719

Kovtun ’19
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Navier-Stokes equations 3¢ ¢

— Conformal theory s

* Ideal hydro TH — ¢ (u"“" u’ + 1 AW)
3

* First order hydro
Landau frame

1
T e (u‘” i@ 3 A*‘”") =

utt — ut +

E+P
* First order hydro: geneyal
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{a1,a2} ={0,0} Landau frame
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* First order hydro
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Evolving relativistic Navier-Stokes

Mathematical results have been established, but... do these equations admit solutions?

Studies of real-time evolutions: Bea, Figueras ’23

Bantilan, Bea, Figueras 22
Pandya, Most, Pretorius *22
Pandya, Most, Pretorius *22

Pandya, Pretorius *21

First conclusion —— They admit physically sensible solutions!

Sound waves, Riemann problem, shockwaves, etc.
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Frame independence

If we want to implement Navier-Stokes in these physical systems of interest,
we first need to understand the effect of using different frames

We make precise and provide evidence for the statement:
The arbitrarily chosen frame does not affect the physics up to first order,

as long as the system is in the effective field theory regime Bea, Figueras *23

To make this precise we define 3 criteria: A, B and C



Criteria

Criterion A

Motivated by effective field theory:

If hierarchy

-+

-+

() 4

==

()

==

()

—

1
TH = (e + A) (u‘“ w’ + 3&”’) + QM ¥ + ut Q¥ — not

Solution 1s 1n the effective
field theory regime

(Notice: solutions might not be 1n the hydrodynamic regime)

Criterion B

If

(1f we change

==

—

The physics to first order
1s independent on the
arbitrarily chosen frame

, by a factor of 2, this 1s still much smaller than first order physics, namely



Sound wave

Frame { 1, »} = {55}
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Sound wave

Frame { 1, 2} = {55} T = (e + A) (u’”‘ u” + ;A‘“’) + Q¥ v¥ + ut QY — not
A:—aln(3€+v-fu)
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Sound wave

Frame { 1, o} = {55} TH = (e + A) (uﬂ u’ + ;’Aﬁ“f’) + QY +ut QY — not
3¢
A:—aln(€+v-fu)
4e
IV
Q! := aum (1},‘” + - L€)
4 €
i Tzan.___\ /0 -
0.~ ' Bea, Figueras ‘23
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= [deal term 00 Approx a; term
0.0]F = Shear term = Second order
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Sound wave

Frame { 1, o} = {55} TH = (e + A) (u’”‘ u’ + ;Aw) + QY +ut QY — not
3¢
A:—aln(EJrV-u)
4 e
1VH
QM := aqm (,{L# 4+ = Lﬁ)
4 €
BL e T UxT Criterion A satisfied
W\~ 1 Beg Figueras ‘23 O ®
l ' - - - - >> >>
= [deal term 00 Approx a; term . . . .
00]l —— Shearterm  —— Second ml o Solution is in the effective field theory regime
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Sound wave

Frame { 1, o} = {55}
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Criterion A satisfied

Solution 1s in the effective field theory regime

Criterion B satisfied

==

The physics to first order is independent
of the arbitrarily chosen frame
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After analyzing a variety solutions, we conclude:
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The physics to first order is independent
of the arbitrarily chosen frame




Sound wave

Frame { 1, 2} = {55} TH = (et 4) (u’“‘ u” + ;A‘“’) + Q*u” +uH Q¥ — not”
~

1.010 "
1.005 - U
Ty 1.000 ¢
T 0995 ’ . 6)
0.990 =y L=
0

After analyzing a variety solutions, we conclude:
10

20

Y
1 - Criterion A mmm)  Criterion B > O
| = ]deal term .
0.0]F = Shear tern d theory rcgime
a;term  Practical perspective: think of novel terms as ‘mere regulators’,
_ work as in the Landau frame.
Q 1074

Iy

1G9t The physics to first order 1s independent

of the arbitrarily chosen frame
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Evolutions 1n different frames (criterion C)
Frame { 1 2} = {515}
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Bea, Figueras ‘23
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Evolutions 1n different

rames (criterion C)

Frame { 1, o} = {55}
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Evolutions 1n different

rames (criterion C)

Frame { 1, o} = {55}
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Evolutions 1n different

rames (criterion C)
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1.010 ¢
1.005 |
T, 1.000
& 0995
0.990
0
s 10
20 0
t T l\\ _f_.»"'/ X T
30N -10
. L2
Bea, Figueras ‘23
1
0.01F
Ideal term o Approx a; term
0.0]} == Shear term — Second order

— 3y tETM

Ideal term  swees= ldeal term — Tyisel_Tyise2
Shear term =~ seees Shear term  —— TYiscl_ideal

ajterm = sssss a; term {T;;“'—T_}gfﬂ )ﬂllal}-'tical—
Second order === Second order - {T;EC’ _T:i(cl{ealjanﬂlytical 1




Evolutions 1n different

rames (criterion C)
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Evolutions 1n different frames (criterion C)

Frame { 11 2} —

Criterion C

Perform a third evolution using ideal hydro

==

The physics to first order is independent of the arbitrarily chosen frame
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Evolutions 1n different frames (criterion C)

Frame { 1, 2} = Criterion C  Perform a third evolution using ideal hydro
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Evolving relativistic Navier-Stokes

We study solutions well in the non-linear regime: Bea, Figueras 23
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Evolving relativistic Navier-Stokes

. . . . E C
We study solutions well in the non-linear regime: Bea, Figueras 23
0.8F
TT=20S =Pt ee— T e— 65

07— '“”}q

- 0.6+ \
0.5 \
0.4f 1\
0.3

30 40 50 60
xT
Large amplitude gaussian perturbation Shockwaves

Motivated by the physics of the quark-gluon plasma:
— We also study solution marginally in the hydrodynamic regime

10

~— ODEs solution {aj.a:}={%.%)

8
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&
4 0.10
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5 = 0.00 ~J \/
~0.05
-1.0-05 00 05 10
0 xT
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xT

It is robust! mmmmp Criterion A only marginally satisfied but still Criterion C satisfied
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Navier-Stokes: Initial data

— [f we are given initial data: we change frame to our working causal frame
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Use the prescription of effective field theory: b '
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Navier-Stokes: Initial data

— [f we are given initial data: we change frame to our working causal frame

Use the prescription of effective field theory:
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Navier-Stokes: Initial data

— [f we are given initial data: we change frame to our working causal frame

Use the prescription of effective field theory:
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Navier-Stokes: Initial data

— [f we are given initial data: we change frame to our working causal frame

3¢€
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Use the prescription of effective field theory: o ' p
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— As the change is of second order, we could use same initial data as in Landau frame



Towards Navier-Stokes description of the QGP

MIS description of the quark-gluon plasma

But these evolutions find limitations
We have seen explicit examples
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Towards Navier-Stokes description of the QGP

MIS description of the quark-gluon plasma

But these evolutions find limitations e o0 fmc
We have seen explicit examples

T=2.80 fm/c

T=3.80 fm/c

T=4.80 fm/c

y (fm)

x (fm) x (fm) X (fm) x (fm) x (fm)

T=2.80 fm/c 7=3.80 fm/c T=4.80 fm/c
Well behaved once a causal frame is
chosen

y (fm)

-10 0 10 -10 0
x (fm) x (fm)

10 =10 0 10

-10 0 10 -10 0
x (fm) x (fm) x (fm)

Now that we have good control on the frame dependence and initial data, we can
proceed with implementation

10

‘ Description of the experimental data for radial flows in central collisions

[In progress...]



Towards viscous neutron star mergers

MIS Neutron star mergers

i [km]

Evolutions with MIS find limitations

100

We have seen explicit examples il
Chabanov, Rezzolla ‘23 (a)
Chabanov, Rezzolla ‘23 (b)




Towards viscous neutron star mergers

low vise. med. visc.

MIS Neutron star mergers

Evolutions with MIS find limitations
We have seen explicit examples

100

Chabanov, Rezzolla ‘23 (a)
Chabanov, Rezzolla ‘23 (b)

Navier-Stokes neutron star mergers

Now that we have control on the numerical evolutions: first steps of this implementation

Bea, Bezares, Figueras, Palenzuela, Shum [in progress]
—— 3+1 decomposition of the equations

— First tests in spherical symmetry




Towards viscous neutron star mergers

low vise.

B

high vise.

med. visc.

10!

I

MIS Neutron star mergers

T [MeV

Evolutions with MIS find limitations
We have seen explicit examples

10°

Chabanov, Rezzolla ‘23 (b)

Navier-Stokes neutron star mergers

Now that we have control on the numerical evolutions: first steps of this implementation
Bea, Bezares, Figueras, Palenzuela, Shum [in progress]

—— 3+1 decomposition of the equations

— First tests in spherical symmetry

Relevant to obtain accurate templates for
future experiments like Einstein telescope

100 Mpc]

h2 x 10
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Summary & main message

* MIS theories present limitations at a fundamental level (well-posedness)

— Shown 1n explicit examples

* Relativistic Navier-Stokes good properties

Our studie

e Th
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ng as

Thank you!!

* Pr:

— Ready for implementation in the QGP and NS mergers

as a promising alternative to MIS




Backup slides



Backup slide 1: MIS equations

* (Conformal theory

* Ideal hydrodynamics
T =gt a4 pAFY ‘ V,.T" =0 Well posed!!

* First order hydro: Landau frame

TH =eutu” + pA* _pot* ‘ V,T"" =0 Tll-posed...

* Usual fix: MIS-type
THY = eu u"” 4 p A* - TIH

. 3
" = —po*” — nry (J{“”} + —c""V -u

p Problems alleviated!

New variable
\
THY = eut u” 4+ p A*Y + TIH

" = —no™” — 7, (H{“”} + %H“”Vn) »

New equation

VT =0

" = —no™" — (H{‘W} + %H“VV’H,)



Backup slide 2
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SL'C'UI'[EJ. UH.]'.\I'

o 0.010

0002 7
£ 000l F 0.005
0,000 {0,000
0
6
C'riterion B
B 10% Shear
B a1 term
B a2 term
(L0018 " 0.003
EE 0010 — {1002
S 0.0005! 0.001!
(AR R
1]
6
C'riterion O
. ].U‘% {T:.'.ir..-i-::'l . 'I‘Ji_l:L-:'.'LJ}
. "I""l.'i.!f-t'] Lo T'\':ih‘l:"_"'
s o of rr
0020 00,000
I Tax 0,004
K Sk
Ty { o
g ol & nooz
00005
RN (1,00

{l




Backup slide 4
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Backup slide 5

On

Convergence test
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Backup slide 7
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Holography
— Excellent framework to study the applicability of hydrodynamics.

— Far from equilibrium strongly coupled field theories from first principles.

Holography = AdS/CFT duality = gauge/gravity duality



Holography

* CFT on Minkowski in 3+1 dim

* Decoupled sector of the stress tensor

Holography

* Gravity with A in 4+1 dim :

— 3+1 F( — 2N)




Holography

_ o _ Bantilan, Bea, Figueras ‘22
* CFT on Minkowski in 3+1 dim Bea, Figueras [in progress]

* Decoupled sector of the stress tensor

Deformed plasma

{ Real-time quantum dynamics J

Numerical Holography

Relati

Dynamical classical gravity 1

* Gravity with A in 4+1 dim :

— 3+1 F( — 2N)



