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Classifying input data into a set of categories is a fundamental task in machine learning. To this end, we
explore a neuro-inspired approach called associative memory (AM), where a system is able to dynamically
retrieve  a  set  of  pre-stored  information.  AM is  a  particular  example  of  attractor  networks  whose  temporal
evolution settles on stable solutions. Here, a system stores a set of memory states in the form of stable fixed
points. Through its dynamics, the system identifies the stored pattern that is most similar to the clue, according
to a properly defined distance. The most prominent example in the classical  domain is the Hopfield neural
network (HNN), which consists of a network of all-to-all connected binary neurons [1]. 

In view of the success of classical AM, a number of research contributions have addressed the issue of
modelling quantum versions of  AM. Among the different approaches,  we can distinguish between digital  or
circuit-based models, based on Grover's search algorithm [2], and analogue or dynamical-based models, based
on the original idea of Hopfield [3]. The latter are mostly direct generalisations of the classical HNN, where
binary neurons are replaced by qubits and the classical dynamics is encoded in the jump operators of an open
quantum system. However, these models suffer from the same limitations as their classical counterparts, since
the learning rule used to encode the memory states is the same [4]. Additional works focus on unleashing the
storage  of  quantum patterns  by  exploring  different  systems  such  as  quantum walks  [5]  or  single  driven-
dissipative resonators [6, 7]. Here, recent models that are compatible with generic quantum neural networks
seem to identify a potential quantum advantage [8]. However, clarifying the applicability of these results in the
quantum AM scenario  remains  a  challenge.  Indeed,  within  the  analogue approach,  and  despite  the  many
instances  of  quantum models  of  AM mentioned  above,  a  general  paradigm defining  these systems is  still
lacking.

The goal of our work is to define a general
theory for open quantum AM, that includes the
existing  quantum models  and  through  which
their  strengths  and  limitations  can  be
analyzed.  In  assuming  a  general  approach,
our starting point are the necessary properties
that  a  generic  open  quantum  system  must
show  to  be  regarded  as  an  associative
memory.  This  will  allow  us  to  draw  further
considerations  upon  the  amount  of  quantum
states  that  can  be  stored  by  these  kind  of
systems.  We  demonstrate  the  feasibility  of
encoding non-orthogonal states and achieving
enhanced  storage  capacity  in  contrast  to
classical models. Nonetheless, challenges arise from the retrieval of classical information through measurement
processes and the inherent linearity of quantum mechanics, potentially limiting storage capacity. Our findings lay
the  groundwork  for  advancing  quantum  associative  memory  systems,  holding  promise  for  applications  in
quantum machine learning or quantum error correction.
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Figure 1 – Quantum model for AM. The points represent the
elements in a basis of the Hilbert space, and the quantum
states {ρj} represent the patterns. The figure highlights the

division of the Hilbert space into basins of attraction,
containing the initial conditions that converge towards the

corresponding pattern.


