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Tensor networks, originally stemming from condensed matter physics, are factorizations of high-dimensional tensors into
networks of smaller tensors that have found successful applications in physics, mathematics, and more recently, in
machine learning.

A significant challenge in using a tensor network as a compressed and efficient representation of a tensor is identifying the
smaller tensors that make up the network. One method to build a tensor network is through iterative optimization, as
seen in the Density Matrix Renormalization Group (DMRG) algorithm, used to compute ground states of quantum
many-body systems as Matrix Product States (MPS), also known as Tensor Trains (TT) [1]. This method returns a tensor
already in tensor network form, rather than decomposing a given tensor. Alternatively, from a provided tensor, one can
construct tensor networks directly using sequential matrix factorization techniques, such as singular value decomposition
(SVD) [2, 3]. However, this kind of decomposition is only feasible for low-dimensional regimes, where the original tensor is
fully accessible.

For high-dimensional tensors, algorithms like TT-Cross [4] and TT-Recursive Sketching (TT-RS) [5] have been developed to
construct tensor networks using only partial information from the tensor. While both algorithms can decompose functions
expressed as high-dimensional tensors, the latter is more appropriate for sparse functions like densities. However, the
accuracy of TT-RS depends on effectively extracting relevant information from the tensor. For example, for Markovian
densities, each MPS core can be efficiently recovered using information from neighboring sites only.

In our work, we propose an adaptation of the TT-RS algorithm [5] that utilizes the information from the given density
function (the high-dimensional tensor to decompose), along with a set of samples extracted from the corresponding
distribution. This scenario is common in machine learning, where both the trained model (the density) and a training or
test dataset are available. This technique can also be applied in condensed matter physics, as it facilitates finding tensor
network representations of states given with black-box access. This approach may aid in the interpretability and analysis of
Quantum Neural States [6].
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