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This work deals with the problem of representing functions in matrix product states (MPS), also known as
quantized tensor trains (QTT). These representations can circumvent the exponential scaling with respect to
dimension suffered by the tensor representations of some categories of functions, known as the curse of
dimensionality. Furthermore, it enables their subsequent use in quantum-inspired numerical methods[1,2], which
can yield up-to exponential advantages with respect to other conventional techniques. To this end, this work
proposes an algorithm based on the Chebyshev approximation framework, relying on a finite precision
non-linear algebra that enables linear combinations and multiplications of MPS. This algorithm avoids the
exponential scaling of the standard approach based on the Schmidt decomposition, instead requiring polynomial
resources. Moreover, it converges stably and according to the theoretical convergence properties of Chebyshev
expansions, which are excellent for analytical and highly-differentiable functions. In its general form, this
algorithm enables the compositions of generic univariate functions on arbitrary matrix product states. This
enables it to encode multivariate functions whose algebraic structure is given by the composition of univariate
ones. In addition, it can be generalized to compose multivariate functions, as well as to operate on matrix
product operators (MPO).

This work evaluates the performance of the MPS/QTT Chebyshev approximation for a collection of univariate
and multivariate functions. The results for the univariate functions show how the algorithm converges according
to the theoretical convergence rates and requires computational resources that scale algebraically, both in time
and memory. This provides exponential savings in memory with respect to their vector representation, and in
time with respect to the standard approach based on the Schmidt decomposition. More precisely, the algorithm
yields a sublinear runtime scaling with respect to the number of qubits of the MPS, and close-to-linear with the
order of the approximating polynomial. This justifies its application for function composition, as well as its
generalization to the multivariate case. In the multivariate scenario, the algorithm exhibits an analogous
performance, showing stable convergence and requiring polynomial resources both in time and memory for
functions with up-to 10 dimensions.

We compare the performance of this method with two other algorithms of the state-of-the-art, namely, multiscale
interpolative constructions[3] and tensor cross-interpolation (TCI)[4]. Our findings show that, in the univariate case,
the algorithm is less performant when loading univariate functions by one order of magnitude with respect to the
former, and two with respect to the latter. However, as opposed to the former, it can be applied for other tasks,
such as for generic function composition or for encoding multivariate functions in any qubit order; and as
opposed to the latter, it requires two orders of magnitude less function evaluations, and shows advantageous
scaling rates. Moreover, in the multivariate case, the algorithm shows a performance for loading multivariate
analytical distributions that can be compared to that of TCI while using six orders of magnitude less evaluations.
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