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A transport question by E. Zuazua

Given two probability measures, µ0 and µ1 , find an autonomous (i.e., time-
independent) vector field that transports µ0 to µ1 .

µ0 µ1
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Problem I: exact controllability for ODEs
(Lagrangian viewpoint)

Given two probability measures µ0, µ1 ∈ P(Rd), construct an autonomous vector
field v : Rd → Rd such that the corresponding flow, i.e.{

∂tϕ(t, x) = v(ϕ(t, x)), t > 0,

ϕ(0, x) = x , x ∈ Rd ,
(ODE)

is well-defined and satisfies

ϕ(1, ·)#µ0 ≡ µ1,(AIM:I)

We recall that the measure denoted by ϕ(1, ·)#µ0 is defined by

(ϕ(1, ·)#µ0) (A) := µ0

(
ϕ(1, ·)−1(A)

)
, for every measurable set A ⊂ Rd ,

and is called image measure or push-forward of µ0 through ϕ(1, ·).
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Problem II: exact controllability for PDEs
(Eulerian viewpoint)

Given two probability measures µ0, µ1 ∈ P(Rd), construct an autonomous vector
field v : Rd → Rd such that the solution µ : [0,+∞) × Rd → R to the Cauchy
problem {

∂tµ(t, x) + divx(v(x)µ(t, x)) = 0, t > 0, x ∈ Rd ,

µ(0, x) = µ0(x), x ∈ Rd ,
(CE)

is well-defined and satisfies

µ(1, ·) ≡ µ1.(AIM:II)
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Lagrangian vs Eulerian formulation

If µ0 and v are smooth, then, by the method of characteristics, the (unique)
solution µ of (CE) can be represented using the (unique) flow ϕ of (ODE), and
viceversa.

That is, Problem I and Problem II are equivalent as a consequence of the Lagrangian
representation formula for the solution of (CE):

µ(t, ·) ≡ ϕ(t, ·)#µ0, t ≥ 0.

[Ambrosio–Bernard, Rend. Lincei Mat. Appl. 2008], [Bonicatto–Gusev, Rend. Lin-
cei Mat. Appl. 2019], etc.: This is not necessarily true in more general situations.
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Dacorogna–Moser’s coupling

[Dacorogna–Moser, AIHP 1990]:

If µi (for i ∈ {0, 1}) is absolutely continuous with smooth and positive density µ̄i ,
then a time-dependent velocity field solving Problems I and II is given by

v(t, x) :=
∇f (x)

(1− t) µ̄0 + t µ̄1
,

where f ∈ C∞(Rd) is the unique solution of −∆f = µ̄1 − µ̄0 with zero mean.
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Localized and time-dependent vector fields

[Duprez–Morancey–Rossi, SIAM J. Control Optim. 2019]
[Duprez–Morancey–Rossi, JDE 2019]:

(Approximate) solution of Problems I and II using a time-dependent and localized
perturbation of a given velocity field v :

v(x) + χω(x) u(t, x).

suppµ0 suppµ1ω
v

Figure: Geometric condition: the uncontrolled vector field v needs to send the support of
µ0 to ω forward in time and the support of µ1 to ω backward in time.
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Neural transport

[Ruiz-Balet–Zuazua, SIAM Rev. 2023]
[Alvarez-López–Slimane–Zuazua, Neural Networks 2024]:

(Approximate) solution to Problems I and II with “neural” velocity functions,

v(t, x) := w(t) σ
(
⟨a(t), x⟩+ b(t)

)
,

with σ(x) := max{x , 0} (the so-called activation function of the neural network)
and control parameters a, w ∈ L∞((0, 1); Rd) and b ∈ L∞((0, 1); R).

The controls a , w , and b were constructed piecewise-constant in time with an
explicit (non-zero) lower bound on the number of jumps.

Cf. also [Li–Liu–Liverani–Zuazua, arXiv:2407.17092 ] for

v(t, x) := w σ(⟨a, x⟩+ b t + c).
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When can we solve the problems?

We can solve Problem I and Problem II under quite general assumptions.

We consider µ0, µ1 ∈ Pa.c.(Rd), with d ≥ 1, and assume that the following
conditions hold:

suppµ0 and suppµ1 are convex;

the densities µ̄0 and µ̄1 are continuous functions (in their respective supports);

µ̄0 > 0 in suppµ0 and µ̄1 > 0 in suppµ1 .
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Dirac deltas in multi-d

If µ0, µ1 ∈ P(Rd) are superpositions of Dirac deltas, for d ≥ 2, it suffices to build
non-intersecting paths (except, maybe, at the end-points) linking xi to yi for all
i ∈ {1, . . . ,N} .

µ0 :=
1
N

∑N
i=1 δxi

µ1 :=
1
N

∑N
i=1 δyi
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Dirac deltas in 1-d

If

µ0 :=
1

N

N∑
i=1

δxi , µ1 :=
1

N

N∑
i=1

δyi ,

with {xi}i∈{1,...,N}, {yi}i∈{1,...,N} ⊂ R and xi ̸= xj , yi ̸= yj , if i ̸= j ,

then there exists v ∈ C∞(R) that solves Problem I.

x1 y1 x2 y2

x3y3 x4y4

x5 y5
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Coinciding measures

µ0 ≡ µ1

v ≡ 0
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Translated measures

µ0 µ1

v ≡ const
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µ0 := χ[1,2]L
1 and µ1 :=

1
3χ[0,3]L

1

µ0 := χ[1,2]L
1

µ1 :=
1
3χ[0,3]L

1

v(x) = (−3/2 + x) log(3)

This yields ϕ(t, x) = −3/2(−1 + 3t) + 3tx , so that ϕ(1, x) = 3x − 3.

How did we get this?
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Monge’s optimal transport problem (1781)

How to move dirt from one place (déblais) to another ( remblais) while
minimizing the “effort”?

Transport: Find a mapping T between two measures such that T#µ0 = µ1 .

Optimal: Optimize with respect to a displacement cost c(x , y).
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Idea
Realize T as time-1 map of the flow associated with an autonomous
velocity.

1 1-d case: realize the monotone transport map;

2 multi-d case: use Sudakov’s disintegration approach.

Related problems

Embedding homeomorphism into a flow: [Fort, Proc. AMS 1955].

Inverse problem for ODEs of reconstructing the vector field from the time-ti
map of the flow for some {ti}i∈{1,...,N} : [Alfaro Vigo–Álvarez–Chapiro–Garćıa–
Moreira, J. Comput. Dyn. 2020], [Kuehn–Kuntz, arXiv:2308.01213 ].
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One-dimensional Monge’s problem

Mc(µ0, µ1) := min

{∫
R
c(T(x), x) dµ0(x) : T : R → R and µ1 = T#µ0

}
,

with cost c(x , y) := |x − y |p for some p ≥ 1.

µ0 µ1

T
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Theorem 1 (One-dimensional Monge’s problem)

Let µ0, µ1 ∈ P(R) and let us assume that µ0 is non-atomic (i.e., a diffuse measure:
µ0({x}) = 0 for any x ∈ R).

Then there exists a unique (modulo countable sets) non-decreasing function T :
suppµ0 → R such that T#µ0 ≡ µ1 , given explicitly by

T(x) = sup
{
z ∈ R : µ1((−∞, z ]) ≤ µ0((−∞, x ])

}
, for x ∈ suppµ0.

Moreover, the function T is an optimal transport map (the unique optimal transport
map if p > 1) and, provided that suppµ1 is connected, it is continuous.

Finally, if µ0, µ1 ≪ L 1 and their densities µ̄0 and µ̄1 are continuous functions
and satisfy 0 < λ < µ̄0, µ̄1 < Λ < +∞ (for some λ, Λ > 0) in their respective
supports, then T is C 1 and its derivative is given by

T′(x) =
µ0(x)

µ1(T(x))
.
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Problem I in 1-d

If d = 1, (ODE) reduces to{
∂tϕ(t, x) = v(ϕ(t, x)), t > 0, x ∈ R,
ϕ(0, x) = x , x ∈ R.

(ODE-1d)

If the flow is unique (and defined up to time t = 1), then the map R ∋ x 7→ ϕ(1, x)
is non-decreasing.

Therefore, if a velocity v : R → R exists such that the corresponding flow ϕ exists,
is unique, and satisfies ϕ(1, ·)#µ0 ≡ µ1 , then ϕ(1, ·) must coincide with the unique
monotone transport map between µ0 and µ1

Nicola De Nitti (EPFL) Transport of measures via autonomous vector fields August 28, 2024 24 / 52



Let ϕ be the unique solution to{
∂tϕ = V (t, ϕ(t, x)), t > 0,

ϕ(0, x) = x , x ∈ R,

where V : R+ × R → R . We claim that x 7→ ϕ(1, x) is non-decreasing.

Let us suppose, by contradiction, that there exists x1 ≤ x2 such that ϕ(1, x2) <
ϕ(1, x1).

Since t 7→ ϕ(t, ·) is a continuous function, we can apply the intermediate-value
theorem: x2 = ϕ(0, x2) > ϕ(0, x1) = x1 and ϕ(1, x2) < ϕ(1, x1) imply that
ϕ(t̄, x2) = ϕ(t̄, x1) =: ϕ̄ for some t̄ ∈ (0, 1).

This means that ϕ(t, x1) and ϕ(t, x2) solve the Cauchy problem{
∂tψ(t) = V (t, ψ(t))), t > t̄,

ψ(t̄) = ϕ̄, x ∈ R.

This yields a contradiction, because the solution of the Cauchy problem was assumed
to be unique.
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Key idea

If v ∈ C∩L∞ and |v | > 0, then there exists one and only one solution of (ODE-1d)
in the following sense: ϕ(·, x) ∈ C 1((0,+∞)) for every x ∈ R and∫ ϕ(t,x)

x

1

v(ξ)
dξ = t, t > 0.(SV)

If ϕ(1, ·) ≡ T , then we have that a primitive of 1/v (i.e., F such that F ′ = 1/v )
solves Abel’s functional equation:

F (T(x)) = F (x) + 1, x ∈ suppµ0.(A)

Differentiating with respect to x yields Aczél–Jabotinsky–Julia’s equation:

v(T(x)) = T′(x) v(x), x ∈ suppµ0.(AJJ)

Viceversa, a solution v ∈ C ∩ L∞ , with |v | > 0, of (AJJ) generates a unique flow
ϕ that satisfies ϕ(1, ·) ≡ T (up to a scaling constant to achieve T at t = 1).
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Solving linear homogeneous functional equations

To solve Problems I and II, we will build a suitable solution v to Aczél–Jabotinsky–
Julia’s equation (AJJ), which belongs to the class of linear homogeneous functional
equations.

[Kuczma, Monogr. Mat. 1968];

[Zdun, Sci. Pub. Uni. Silesia 1979];

[Kuczma–Choczewski–Ger, Encycl. Math. Appl. Cambridge 1990];

[Belitskii–Tkachenko, Birkhäuser 2003].

The velocity field is non-unique: we can construct it iteratively and it is obtained
from an arbitrary prescription in an open set.

The construction is more or less delicate depending on the fixed points of T .
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Theorem 2 (Exact controllability, d = 1)

Let µ0, µ1 ∈ Pa.c.(R) be two probability measures with convex support, and con-
tinuous densities positive in their support.

Then there exists a velocity field v : Conv(suppµ0 ∪ suppµ1) → R such that

|v | > 0 in Conv(suppµ0 ∪ suppµ1) \ S,
v ≡ 0 in S,

and
T(x) = ϕ(1, x), x ∈ suppµ0,

where T is the monotone optimal transport map, S is the set of fixed points of
the map T in suppµ0 , and ϕ is the unique solution of (ODE-1d) for x ∈ suppµ0 .

Moreover, v is continuous except possibly at ∂S .

If, additionally, |µ̄0− µ̄1| > 0 in ∂S , then v can be taken to be continuous also at
∂S . If, furthermore, µ̄0 and µ̄1 are Lipschitz continuous, v can be taken Lipschitz
continuous up to ∂S .
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Corollary 3 (Approximate controllability, d = 1)

Let µ0, µ1 ∈ Pa.c.(R) be two probability measures with convex support, and con-
tinuous densities positive in their support.

For every ε > 0 , there exists µε
1 ∈ Pa.c.(R) such that dist(µ1, µ

ε
1) < ε (in the sense

of the L1 or of the Wasserstein distance) and there exists a continuous velocity field
vε : Conv(suppµ0 ∪ suppµε

1) → R such that

|vε| > 0 in Conv(suppµ0 ∪ suppµ1) \ S,
vε ≡ 0 in S,

and
T(x) = ϕ(1, x), x ∈ suppµ0,

where T is the monotone optimal transport map, S of fixed points of the map T
in suppµ0 , and ϕ is the unique solution of (ODE-1d).

If, furthermore, µ̄0 and µ̄1 are Lipschitz continuous, µε
1 and vε can be taken

Lipschitz continuous.
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Remarks
We claim that ϕ exists and is unique, even if v is not globally continuous
and can vanish on S . In particular, we get uniqueness because v satisfies an
Osgood-type condition on S :

For any x̄ ∈ ∂S and ε > 0,∫
A±,ε

dx

|v(x)|
= ∞ whenever A±,ε ̸= ∅,

where

A+,ε := (x̄ , x̄ + ε) ∩ suppµ0, A−,ε := (x̄ − ε, x̄) ∩ suppµ0.

There exist measures µ0 and µ1 , satisfying the hypotheses, such that µ̄0(x̄) =
µ̄1(x̄) and either v cannot be taken bounded, or there is no uniqueness of the
flow (ODE-1d) (more precisely, it is not true |v | > 0 outside of S ). Moreover,
if v is continuous outside of x̄ , then it does not belong to L1loc around x̄ .
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The v constructed also gives a solution to Problem II in the appropriate sense
(inspired by [Aizenman, Duke Math. J. 1978]).

The velocity fields constructed do not have to be L1loc in general at points ∂S ,
and thus µ(t, ·) ≡ ϕ(t, ·)#µ0 need not be a distributional solution across ∂S ,
but it satisfies (CE) as follows:

There exists a discrete set ∂S = ∂{x = T(x)} where v ≡ 0 such that
µ(t, ·) satisfies (CE) in the distributional sense in supp(µ(t, ·)) \∂S , and
it satisfies a no-flow condition through ∂S ; namely, trajectories starting
outside of ∂S never reach ∂S in finite time.
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If T does not have fixed points, the construction of a solution is easy. If T has a
fixed point, say at x = a , the situation is more difficult.

Heuristics

As x → a+ , we can approximate v(T(x)) ≈ v(x) and T′(x) ≈ T′(a) and, heuris-
tically, reduce (AJJ) to

ṽ(x) ≈ T′(a)v(x).

For two functions v1, v2 we obtain

ṽ1(x)− ṽ2(x) ≈ T′(a)(v1(x)− v2(x)).
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Case without fixed-points

For the moment, let us assume

M0 := suppµ0 = (a0, b0), M1 := suppµ1 = (a1, b1).

Case 1: M0 ∩M1 = ∅ . We can fix v ≡ 1 in M0 , so that v in M1 is given by

v(x) := T′(T−1(x))v(T−1(x)) = T′(T−1(x)) ∈
[
λ

Λ
,
Λ

λ

]
, for x ∈ M1.

In particular, v can be chosen continuous and with v(x) ∈
[
λ
Λ ,

Λ
λ

]
for x ∈

Conv(M0 ∪M1) to satisfy (AJJ).
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Case 2: M0 ∩ M1 ̸= ∅ . Without loss of generality, a0 < a1 (and therefore,
T (x) > x for x ∈ M0 ).

We define α0 := a0 , α1 := a1 = T(α0), and αi := T(αi−1) for i = 1, 2, . . . .
Then, there exists N ∈ N such that αN ∈ (b0, b1] . Indeed, i 7→ αi is increasing
(owing to the monotonicity of T) and, if αi ≤ b0 , αi+1 ≤ b1 . If the sequence
{αi}i had an accumulation point ᾱ ≤ b0 , then T(ᾱ) = ᾱ and ᾱ is a fixed point
for T , which do not exist by assumption. Hence, the sequence must be finite.

Let us now fix v(x) ∈
[
λ
Λ ,

Λ
λ

]
to be any smooth function in [a0, a1] with

(R-1) v(a1) = T′(a0)v(a0) =
µ0(a0)

µ1(a1)
v(a0).

We then define, recursively, and denoting αN+1 := b1 ,

(R-2) v(T(x)) = T′(x)v(x) for x ∈ [αi , αi+1], i = 1, 2, . . . ,N.

This defines v in the interval [a0, b1] in a continuous way.
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Case with one fixed-point

Let x̄ be the unique fixed point for T , and let us assume, without loss of generality,
that x̄ = b0 = b1

The sequence αi is no longer finite, and αi → b0 = b1 as i → +∞ .

This allows us to recursively define a (continuous) vector field v in (a0, b0) by
means of (R-2), after fixing it in (a0,T(a0)) first. A priori, it could degenerate
when approaching x̄ , though.

If µ̄0(x̄) ̸= µ̄1(x̄), then we necessarily have T′(x) < 1, which helps (studying
(R-2)) to gain continuity up to x̄ .
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General case

Generalizing the arguments above, we can deal with the two remaining cases:

transport map with exactly two fixed points;

transport maps with arbitrarily many fixed points.

Finally, we remove the compact support assumption.
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Multi-d problem via Sudakov’s decomposition

Decompose multi-d optimal transport along 1-d segments (optimal transport rays).

suppµ0 optimal transport rays {I 1α}α∈A
suppµ1
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Theorem 4 (Exact controllability, d ≥ 1)

Let µ0, µ1 ∈ Pa.c.(Rd) , with d ≥ 1 , be two probability measures with convex
support, and continuous densities positive in their support.

Then, there exists a vector field v : Rd → Rd such that

T(x) = ϕ(1, x), x ∈ Rd ,

where T is Sudakov’s transport map (T(x) := Tα(x) if x ∈ I 1α , where Tα : I 1α → I 1α
is the monotone transport map on the ray I 1α ) and ϕ is the unique solution of
(ODE) for x ∈ suppµ0 .
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Transport map with no fixed points

Let µ0 := χ[0,1]L
1 and µ1 := 1

2χ[2,4]L
1 . The monotone transport map between

µ0 and µ1 is
T(x) = 2x + 2.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:

F (x) = c +
log |2 + x |
log(2)

, c ∈ R, x ∈ R,

v(x) = (log(4) + x log(2)), x ∈ R.

This yields ϕ(t, x) = −2 + 2t(2 + x), so that ϕ(1, x) = 2x + 1.

The map T has a fixed point at x = −2, but it does not belong to the intervals
where µ0 and µ1 are supported (and F is not defined there).
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Transport map with one “good” fixed point

Let µ0 := χ[1,2]L
1 and µ1 := 1

3χ[0,3]L
1 . The monotone transport map between

µ0 and µ1 is
T(x) = 3x − 3.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:

F (x) = c +
log(−3/2 + x)

log(3)
, c ∈ R, x ∈ R,

v(x) = (−3/2 + x) log(3), x ∈ R.

This yields ϕ(t, x) = −3/2(−1 + 3t) + 3tx , so that ϕ(1, x) = 3x − 3.

We observe that the map T has a fixed point, x̄ = 3/2 and v(3/2) = 0, while F
is not defined there.
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Gaussian measures

Let µ0 := N
(
m0, σ

2
0

)
and µ1 := N

(
m1, σ

2
1

)
be two Gaussian measures in R : the

densities are
1

σ
√
2π

e−
1
2 (

x−m
σ )2 .

The monotone transport map between µ0 to µ1 is given by

T(x) =
σ1
σ0

x − σ1
σ0

m0 +m1

(here, we take σ0, σ1 > 0). T coincides with the identity map if m0 = m1 and
σ0 = σ1 ; has no fixed points if σ0 = σ1 and m0 ̸= m1 ; and has one fixed point
at x̄ = σ0

m0−m1

σ0−σ1
if σ0 ̸= σ1 . At x̄ , the densities of the two measures measures do

not coincide.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:

F (x) = c +
log

(∣∣∣x − σ1m0−σ0m1

σ1−σ0

∣∣∣)
log

(
σ1

σ0

) , x ∈ R, for any c ∈ R,

v(x) = x log

(
σ1
σ0

)
− log

(
σ1
σ0

)
σ1m0 − σ0m1

σ1 − σ0
, x ∈ R.
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Figure: The vector field transporting a Gaussian µ̄0(x) = e−x2 into a translated and

rescaled Gaussian µ̄1(x) = 2e−4(x−1)2 is given by the linear function v here depicted. In
particular, since the supports are unbounded, even if we are in a setting where the velocity
field is smooth, it does not need to be globally bounded.
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Affine transport maps

If, in general, µ0(dx) := f (x)L 1(dx) and µ1(dx) := αf (α(x − β))L 1(dx) for
some α > 0, β ∈ R , where the density f is positive and continuous in its (convex)
support, then the monotone map transporting µ0 into µ1 is

T(x) =
x

α
+ β

which has a single fixed point at

xαβ :=
αβ

α− 1
.

If α = 1, this was just a translation and we can fix v ≡ c constant in the whole
space. Otherwise, we can take

v(x) =

{
x − xαβ if α ∈ (0, 1),
xαβ − x if α > 1,

and then adjust a multiplicative constant on v so that∣∣∣∣∣
∫ β

0

dx

x − xαβ

∣∣∣∣∣ = 1.
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Transport map with one “bad” fixed point

Let µ0 :=
1
2χ[0,2]L

1 and µ1 :=
(
1
2 − 1

9x
)
χ[0,3]L

1 . The monotone transport map
that brings µ1 to µ0 is

T−1(x) = x − 1

9
x2

It has a single fixed point at x̄ = 0, where the densities of both measures coincide.
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Figure: The velocity field v (in blue) can be constructed arbitrarily in the interval [2, 3] ,
and this fixes the values uniquely in [0, 2] as well. In this case, we have chosen a linear
construction that matches the end-points in [2, 3] . This extends to a continuous map,
but since we are not trying to match higher derivatives, such a v is not C 1 .
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Transport map with two “good” fixed points

Let µ0 := (1 − x)χ[−1/2,1/2]L
1 and µ1 := (1 + x)χ[−1/2,1/2]L

1 . The monotone
transport map between µ0 and µ1 is

T =
1

2
(−2 +

√
2(3 + 4x − 2x2)),

which has two fixed points, S = {−1/2, 1/2} . Moreover, µ̄0 ̸= µ̄1 on S .

Using Theorem 2, we can construct a Lipschitz continuous velocity field in
[−1/2, 1/2] solving Problems I and II.
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Transport map with a sequence of “good” fixed points

Let µ0 := χ[0,1]L
1 and T(x) = x + 1

5x
3 sin(π/x) ∈ C 1([0,+∞)), which has fixed

points

S = {0} ∪
{

1

n
: n ∈ Z \ {0}

}
.

In S , 0 is an accumulation point. We define µ1 := T#µ0 (so we have µ1 = µ̄1L 1 ,
with µ̄1 = (T−1)′ χ[0,1] ∈ C ([0, 1]) ∩ C∞((0, 1))). Moreover, µ̄0 ̸= µ̄1 in S \ {0} .

Using Theorem 2, we can construct a Lipschitz continuous velocity field solving
Problem I in (0, 1].
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Thank you for your attention!

Nicola De Nitti and Xavier Fernández-Real. Optimal transport of measures via au-
tonomous vector fields. 2024. arXiv:2405.06503 [math.OC].
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