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A transport question by E. Zuazua

Given two probability measures, 1o and g, find an autonomous (i.e., time-
independent) vector field that transports pg to .

N

Ho H1
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Problem |: exact controllability for ODEs

(Lagrangian viewpoint)

Given two probability measures g, p1 € P(R?), construct an autonomous vector
field v : RY — R? such that the corresponding flow, i.e.

6t¢(t7x) = V(¢(t7 X))v t>0,
(ODE) {(b(O,x) = X, x €RY,

is well-defined and satisfies
(AIM:1) A1, )0 = pu,
We recall that the measure denoted by ¢(1, )4 is defined by
(6(1,-)110) (A) = po (¢(1,-)"*(A)), for every measurable set A C RY,

and is called image measure or push-forward of g through ¢(1,-).
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Problem II: exact controllability for PDEs

(Eulerian viewpoint)

Given two probability measures 1o, 1 € P(R?), construct an autonomous vector
field v : RY — RY such that the solution p : [0,+00) x RY — R to the Cauchy
problem

(E) {&p(t,x) + dive(v(x) pu(t,x)) =0, t>0, xR,

N(va) = ;U'O(X)v X € Rd7
is well-defined and satisfies

(AIM:11) w(l,) = pa.
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Lagrangian vs Eulerian formulation

If o and v are smooth, then, by the method of characteristics, the (unique)
solution g of (CE) can be represented using the (unique) flow ¢ of (ODE), and
viceversa.

That is, Problem | and Problem Il are equivalent as a consequence of the Lagrangian
representation formula for the solution of (CE):

,U,(t, ) = ¢(ta ')#ﬂ07 t 2 0.

[Ambrosio—Bernard, Rend. Lincei Mat. Appl. 2008], [Bonicatto—Gusev, Rend. Lin-
cei Mat. Appl. 2019], etc.: This is not necessarily true in more general situations.
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@ Known results (time-dependent velocity)
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Dacorogna—Moser's coupling

[Dacorogna—Moser, AIHP 1990]:

If u; (for i € {0,1}) is absolutely continuous with smooth and positive density f;,
then a time-dependent velocity field solving Problems | and Il is given by

Vi(x)

t = ——
)= 0+

where f € C>°(R?) is the unique solution of —Af = ji; — Jip with zero mean.

Nicola De Nitti (EPFL) Transport of measures via autonomous vector fields August 28, 2024



Localized and time-dependent vector fields

[Duprez—Morancey—Rossi, SIAM J. Control Optim. 2019]
[Duprez—Morancey—Rossi, JDE 2019]:

(Approximate) solution of Problems | and Il using a time-dependent and localized
perturbation of a given velocity field v:

v(x) + xw(x) u(t, x).

upp sup

v

Figure: Geometric condition: the uncontrolled vector field v needs to send the support of
o to w forward in time and the support of u; to w backward in time.
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Neural transport

[Ruiz-Balet—Zuazua, SIAM Rev. 2023]
[Alvarez-Lépez—Slimane—Zuazua, Neural Networks 2024]:

(Approximate) solution to Problems | and Il with “neural” velocity functions,
v(t, x) == w(t) o((a(t), x) + b(t)),

with o(x) := max{x,0} (the so-called activation function of the neural network)
and control parameters a, w € L>((0,1); RY) and b € L*°((0,1); R).

The controls a, w, and b were constructed piecewise-constant in time with an
explicit (non-zero) lower bound on the number of jumps.

Cf. also [Li-Liu-Liverani-Zuazua, arXiv:2407.17092] for

v(t,x) =wo({a,x)+ bt + c).
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© What can we do?

Nicola De Nitti (EPFL) Transport of measures via autonomous vector fields August 28, 2024



When can we solve the problems?

We can solve Problem | and Problem Il under quite general assumptions.

We consider fig, 11 € Pac.(RY), with d > 1, and assume that the following
conditions hold:

@ supp o and supp iy are convex;
@ the densities [ip and [i; are continuous functions (in their respective supports);

@ fig >0 in supp o and fig > 0 in supp .
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© Warm-up examples
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Dirac deltas in multi-d

If o, u1 € P(Rd) are superpositions of Dirac deltas, for d > 2, it suffices to build

non-intersecting paths (except, maybe, at the end-points) linking x; to y; for all
ie{l,...,N}.
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Dirac deltas in 1-d

1 & 1<
/’LO::N;(SXH M1 ::NZ;(S”
with {xi}ieq1,.. vy itieqr,..ny CRand x; # x5, yi # yj, if i # J,

then there exists v € C*°(R) that solves Problem I.

() o :
00000 ¢ @ D @
X1 N X2 Yo u t_/

Nicola De Nitti (EPFL) Transport of measures via autonomous vector fields August 28, 2024



Coinciding measures

Mo = M1
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Ho

1

v = const
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po = XL and pi1 = 35X gL

Ho = 'X[l,z]ff1

H1 = %X[oz]azjl

-— —_—

v(x) = (=3/2 4 x) log(3)

This yields ¢(t,x) = —3/2(—1 + 3*) + 3'x, so that ¢(1,x) = 3x — 3.

How did we get this?
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Monge's optimal transport problem (1781)

866 MEMOIRES DE L'AcADEMIE ROYALE

MEMOIRE

SUR LA

THEORIE DES DEBLAIS
ET DES REMBLAIJ.

-h'—‘"‘-_'—--_,
Prr M. M oNGE

How to move dirt from one place (déblais) to another (remblais) while
minimizing the ‘“effort”?

Transport: Find a mapping T between two measures such that Tujig = fi1.

Optimal: Optimize with respect to a displacement cost ¢(x, y).
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Realize T as time-1 map of the flow associated with an autonomous
velocity.

@ 1-d case: realize the monotone transport map;
@ multi-d case: use Sudakov's disintegration approach.

Related problems

e Embedding homeomorphism into a flow: [Fort, Proc. AMS 1955].

@ Inverse problem for ODEs of reconstructing the vector field from the time-¢;
map of the flow for some {t;};c1,... .ny: [Alfaro Vigo—Alvarez—Chapiro—Garcia—
Moreira, J. Comput. Dyn. 2020], [Kuehn—Kuntz, arXiv:2308.01213].
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© One-dimensional problem
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One-dimensional Monge's problem

M. (0, 441) == min {/ c(T(x),x)duo(x): T:R =R and p; = T#ﬂo} ,
R

with cost ¢(x,y) = |x — y|P for some p > 1.

T

N

o 11
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Theorem 1 (One-dimensional Monge's problem)

Let po, p1 € P(R) and let us assume that i is non-atomic (i.e., a diffuse measure:
po({x}) =0 forany x e R).

Then there exists a unique (modulo countable sets) non-decreasing function T :
supp o — R such that Ty o = p1, given explicitly by

T(x) = sup {z ER: p((—o00,2]) < uo((—oo,x])}7 for x € supp pp.

Moreover, the function T is an optimal transport map (the unique optimal transport
map if p > 1) and, provided that supp u1 is connected, it is continuous.

Finally, if po, p1 < Z* and their densities jig and fi; are continuous functions
and satisfy 0 < A\ < g, fi1 < A < 400 (for some X\, N > 0) in their respective
supports, then T is C' and its derivative is given by

’ _ ﬂO(X)
Tl = ey
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Problem | in 1-d

If d =1, (ODE) reduces to

- R
(ODE-1d) Be(t,x) = v(4(t,x)), t>0, x €R,
¢(07X):X, x € R.
If the flow is unique (and defined up to time t = 1), then the map R > x — ¢(1, x)
is non-decreasing.

Therefore, if a velocity v : R — R exists such that the corresponding flow ¢ exists,
is unique, and satisfies ¢(1,)xuo = p1, then ¢(1,-) must coincide with the unique
monotone transport map between g and g
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Let ¢ be the unique solution to

orp = V(t,9(t,x)), t>0,
¢(0,x) = x, x €R,

where V : Ry x R — R. We claim that x — ¢(1, x) is non-decreasing.
Let us suppose, by contradiction, that there exists x; < xp such that ¢(1,x) <

¢(1,X1).

Since t — ¢(t,-) is a continuous function, we can apply the intermediate-value
theorem: x = ¢(0,%) > ¢(0,x1) = x1 and #(1,x2) < #(1,x) imply that
o(t,x2) = P(t, x1) = ¢ for some t € (0,1).

This means that ¢(t,x1) and ¢(t, x2) solve the Cauchy problem

{amm)j V(t.9(1), t>1
w(H =9 xR

This yields a contradiction, because the solution of the Cauchy problem was assumed
to be unique.
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If v € CNL*>® and |v| > 0, then there exists one and only one solution of (ODE-1d)
in the following sense: ¢(-,x) € C1((0,+00)) for every x € R and

¢>(f7X) 1
(SV) / L de—t, >0

If #(1,-) =T, then we have that a primitive of 1/v (i.e., F such that F' =1/v)
solves Abel’s functional equation:

(A) F(T(x))=F(x)+1, x € supppug.

Differentiating with respect to x yields Aczél-Jabotinsky—Julia's equation:

(AJJ) v(T(x)) = T'(x) v(x), x € supp po-

Viceversa, a solution v € CN L, with |v| > 0, of (AJJ) generates a unique flow
¢ that satisfies ¢(1,-) =T (up to a scaling constant to achieve T at t =1).
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Solving linear homogeneous functional equations

To solve Problems | and Il, we will build a suitable solution v to Aczél-Jabotinsky—

Julia's equation (AJJ), which belongs to the class of linear homogeneous functional
equations.

[Kuczma, Monogr. Mat. 1968];
[Zdun, Sci. Pub. Uni. Silesia 1979];

[Kuczma—Choczewski-Ger, Encycl. Math. Appl. Cambridge 1990];
[Belitskii—Tkachenko, Birkhduser 2003].

The velocity field is non-unique: we can construct it iteratively and it is obtained
from an arbitrary prescription in an open set.

The construction is more or less delicate depending on the fixed points of T'.
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Theorem 2 (Exact controllability, d = 1)

Let po, 1 € Pac.(R) be two probability measures with convex support, and con-
tinuous densities positive in their support.

Then there exists a velocity field v : Conv(supp o U supp 1) — R such that

[v| >0 in Conv(supp o Usupppui) \S,
v=0 in S,

and
T(x) = ¢(1,x),  x € supp po,

where T is the monotone optimal transport map, S is the set of fixed points of
the map T in supp po, and ¢ is the unique solution of (ODE-1d) for x € supp pg -

Moreover, v is continuous except possibly at 0S .

If, additionally, |fio — 11| > 0 in OS, then v can be taken to be continuous also at
0S. If, furthermore, g and fi; are Lipschitz continuous, v can be taken Lipschitz
continuous up to 0S .
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Corollary 3 (Approximate controllability, d = 1)

Let pg, p11 € Pac.(R) be two probability measures with convex support, and con-
tinuous densities positive in their support.

For every € > 0, there exists u5 € Pa..(R) such that dist(u1, pj) < € (in the sense
of the L' or of the Wasserstein distance) and there exists a continuous velocity field
ve : Conv(supp po U supp u5) — R such that

[v¥| >0 in Conv(supp o Usupppui) \'S,
ve = in S,
and
T(x) = ¢(1,x),  x € supp ko,
where T is the monotone optimal transport map, S of fixed points of the map T

in supp o, and ¢ is the unique solution of (ODE-1d).

If, furthermore, [ip and [iy are Lipschitz continuous, u§ and v® can be taken
Lipschitz continuous.
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RENEIS

o We claim that ¢ exists and is unique, even if v is not globally continuous
and can vanish on S. In particular, we get uniqueness because v satisfies an
Osgood-type condition on S:

For any X € S and € > 0,

d.
/ Yo winemever Ap o #0,
A

where

A= (X,X+e)Nsupppo, A= (X—¢,X)Nsupp po.

@ There exist measures po and pus, satisfying the hypotheses, such that fg(x) =
f1(X) and either v cannot be taken bounded, or there is no uniqueness of the
flow (ODE-1d) (more precisely, it is not true |v| > 0 outside of S). Moreover,
if v is continuous outside of X, then it does not belong to L,loc around X.
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@ The v constructed also gives a solution to Problem |l in the appropriate sense
(inspired by [Aizenman, Duke Math. J. 1978]).

The velocity fields constructed do not have to be L} _ in general at points 95,

and thus p(t,-) = ¢(t,-)xo need not be a distributional solution across 0S,
but it satisfies (CE) as follows:

There exists a discrete set 0S = 9{x = T(x)} where v = 0 such that
w(t,-) satisfies (CE) in the distributional sense in supp(u(t,-))\dS, and
it satisfies a no-flow condition through OS; namely, trajectories starting
outside of OS never reach OS in finite time.
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If T does not have fixed points, the construction of a solution is easy. If T has a
fixed point, say at x = a, the situation is more difficult.

Heuristics

As x — a™, we can approximate v(T(x)) ~ v(x) and T’(x) =~ T’(a) and, heuris-
tically, reduce (AJJ) to
v(x) ~ T'(a)v(x).

For two functions vq, v» we obtain

vi(x) = Va(x) & T'(a) (v (x) — va(x))-
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@ Sketch of the proof
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Case without fixed-points

For the moment, let us assume
Mo = supp jio = (a0, bo), ~ My = supp iy = (a1, b1).
Case 1: MoNM; =0. We can fix v=1 in My, so that v in My is given by
v(x) =T (T (x)v(T1(x)) = T(TY(x)) € [ } , for xe M.

In particular, v can be chosen continuous and with v(x) € [3,%] for x €
Conv(My U My) to satisfy (AJJ).
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Case 2: Mo N My # (). Without loss of generality, ag < a1 (and therefore,
T(x) > x for x € Mp).

We define ag = ap, a1 = a1 = T(ap), and «; = T(aj_q) for i = 1,2,....
Then, there exists N € N such that ay € (bo, b1]. Indeed, i — «; is increasing
(owing to the monotonicity of T) and, if a; < by, ajr1 < by. If the sequence
{@;}; had an accumulation point & < by, then T(&) = @ and & is a fixed point
for T, which do not exist by assumption. Hence, the sequence must be finite.

Let us now fix v(x) € [2, %] to be any smooth function in [ag, a1] with
(R-1) v(a1) = T'(a0)v(a0) = “2%0) 50y,
p(ar)

We then define, recursively, and denoting ayy1 == by,
(R-2) v(T(x)) =T (x)v(x) for x € [aj,ajt1], i=1,2,...,N.

This defines v in the interval [ag, b1] in a continuous way.
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Case with one fixed-point

Let X be the unique fixed point for T, and let us assume, without loss of generality,
that X = by = by

The sequence «; is no longer finite, and «; — by = by as i — +o0.

This allows us to recursively define a (continuous) vector field v in (ag, by) by
means of (R-2), after fixing it in (ag, T(ag)) first. A priori, it could degenerate
when approaching X, though.

If fio(X) # [f1(X), then we necessarily have T’(x) < 1, which helps (studying
(R-2)) to gain continuity up to X.
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General case

Generalizing the arguments above, we can deal with the two remaining cases:
@ transport map with exactly two fixed points;

@ transport maps with arbitrarily many fixed points.

Finally, we remove the compact support assumption.
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@ Multi-dimensional problem
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Multi-d problem via Sudakov's decomposition

Decompose multi-d optimal transport along 1-d segments (optimal transport rays).

Supp fio optimal transport rays {/1},ca
Supp fu1
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Theorem 4 (Exact controllability, d > 1)

Let pig, 11 € Pac.(RY), with d > 1, be two probability measures with convex
support, and continuous densities positive in their support.

Then, there exists a vector field v : RY — R? such that
T(x) =¢(1,x),  x€R?,
where T is Sudakov's transport map (T(x) = To(x) if x € I}, where T, : I} — I}

is the monotone transport map on the ray /1) and ¢ is the unique solution of
(ODE) for x € supp (g -
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© Further examples
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Transport map with no fixed points

Let fio == X[o,11-Z" and p1 = $Xp.4L*. The monotone transport map between
o and g is
T(x) = 2x + 2.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:

log |2 + x|
log(2)
v(x) = (log(4) + xlog(2)), x € R.

F(x)=c+ ceR, xeR,

This yields ¢(t,x) = —2+ 2'(2 + x), so that ¢(1,x) =2x + 1.

The map T has a fixed point at x = —2, but it does not belong to the intervals
where 1o and py are supported (and F is not defined there).
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Transport map with one “good” fixed point

Let o = X[Lg].i”l and pp = %X[(,ﬁ]iﬂl. The monotone transport map between
o and gy is
T(x) =3x — 3.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:

log(—3/2 + x)
log(3)
v(x) =(-3/2+x)log(3), x€R.

F(x)=c¢ ceR, xR,

This yields ¢(t,x) = —3/2(—1 + 3*) + 3'x, so that ¢(1,x) = 3x — 3.

We observe that the map T has a fixed point, X = 3/2 and v(3/2) =0, while F
is not defined there.
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Gaussian measures

Let yio =N (mo,03) and p1 == N (my1,07) be two Gaussian measures in R: the
densities are

1 1 x—m)Q
—e 2\ /.
oV2m
The monotone transport map between g to pp is given by
o o
T(x) = = Lmo+m
0o 0o

(here, we take og, o1 > 0). T coincides with the identity map if mg = m; and
0o = o01; has no fixed points if g = 01 and mg # m;; and has one fixed point
at X = oy ’;’Z::ll if o9 # o1. At X, the densities of the two measures measures do
not coincide.

A solution to Abel’s and Julia’s equations can be given explicitly as follows:
O1MmMg—ogm
log (‘x — A )
)
g
log (U—;)

v(x) = xlog () log () oimo —com o
0o

x € R, for any ¢ € R,

01— 0o
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1 1 1 1 1 1
-3 -2 -1 0 1 2 3
T

. . . . - — 2 .
Figure: The vector field transporting a Gaussian jig(x) = e~ into a translated and

N 41 - - . . .
rescaled Gaussian [i1(x) = 2e A1) g given by the linear function v here depicted. In
particular, since the supports are unbounded, even if we are in a setting where the velocity
field is smooth, it does not need to be globally bounded.
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Affine transport maps

If, in general, po(dx) == f(x)£(dx) and pi(dx) = af(a(x — B)) L(dx) for
some a > 0, 8 € R, where the density f is positive and continuous in its (convex)
support, then the monotone map transporting po into g is

X
T(x) = —
(x)=_+8
which has a single fixed point at
vy B
BT a1

If a =1, this was just a translation and we can fix v = ¢ constant in the whole
space. Otherwise, we can take

| x—xap if ae€(0,1),
V(X)_{ XaB — X if a>1,

and then adjust a multiplicative constant on v so that

/B dx
0 X_Xa[-}

=1
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Transport map with one “bad” fixed point

Let 0 == 3X[02L* and p1 = (3 — §x) x[0,3-Z*. The monotone transport map
that brings py to pg is
1
T Hx) =x— §X2

It has a single fixed point at X = 0, where the densities of both measures coincide.
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021 7

Figure: The velocity field v (in blue) can be constructed arbitrarily in the interval [2,3],
and this fixes the values uniquely in [0,2] as well. In this case, we have chosen a linear
construction that matches the end-points in [2,3]. This extends to a continuous map,
but since we are not trying to match higher derivatives, such a v is not C*.
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Transport map with two “good” fixed points

Let o == (1 — x)x[1/2,1/2)L" and p1 = (1 4+ X)x[=1/2,1/2-L". The monotone
transport map between pg and p; is

T= (24 V3B T ax - 2)),

which has two fixed points, S = {—1/2,1/2}. Moreover, fig # iy on S.

Using Theorem 2, we can construct a Lipschitz continuous velocity field in
[-1/2,1/2] solving Problems | and IlI.
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Transport map with a sequence of “good” fixed points

Let o = xo,11-¢" and T(x) = x + £x3sin(m/x) € C}([0,+00)), which has fixed
points

1
Sz{O}U{n: neZ\{O}}.
In &, 0 is an accumulation point. We define 117 := Txpuo (so we have puy = ﬁl.i”l,
with iy = (T™) xp,y € C([0,1]) N C>((0,1))). Moreover, fig # i1 in S\ {0}.

Using Theorem 2, we can construct a Lipschitz continuous velocity field solving
Problem I'in (0,1].
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Thank you for your attention!

@ Nicola De Nitti and Xavier Fernandez-Real. Optimal transport of measures via au-
tonomous vector fields. 2024. arXiv:2405.06503 [math.0C].
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