Optimal transport of measures via autonomous vector fields

Nicola De Nitti

(joint work with X. Fernández-Real)

EPFL

August 28, 2024

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
- 7 Multi-dimensional problem
- B Further examples

Given two probability measures, μ_0 and μ_1 , find an <u>autonomous</u> (i.e., time-independent) vector field that transports μ_0 to μ_1 .

Problem I: exact controllability for ODEs (Lagrangian viewpoint)

Given two probability measures $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$, construct an *autonomous* vector field $v : \mathbb{R}^d \to \mathbb{R}^d$ such that the corresponding flow, *i.e.*

(ODE)
$$\begin{cases} \partial_t \phi(t, x) = v(\phi(t, x)), & t > 0, \\ \phi(0, x) = x, & x \in \mathbb{R}^d, \end{cases}$$

is well-defined and satisfies

(AIM:I)
$$\phi(1,\cdot)_{\#}\mu_0 \equiv \mu_1,$$

We recall that the measure denoted by $\phi(1,\cdot)_{\#}\mu_0$ is defined by

 $\left(\phi(1,\cdot)_{\#}\mu_{0}\right)(\mathcal{A})\coloneqq\mu_{0}\left(\phi(1,\cdot)^{-1}(\mathcal{A})\right),\quad\text{for every measurable set }\mathcal{A}\subset\mathbb{R}^{d}\,,$

and is called *image measure* or *push-forward* of μ_0 through $\phi(1, \cdot)$.

Problem II: exact controllability for PDEs (Eulerian viewpoint)

Given two probability measures $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$, construct an *autonomous* vector field $v : \mathbb{R}^d \to \mathbb{R}^d$ such that the solution $\mu : [0, +\infty) \times \mathbb{R}^d \to \mathbb{R}$ to the Cauchy problem

(CE)
$$\begin{cases} \partial_t \mu(t,x) + \operatorname{div}_x(v(x)\,\mu(t,x)) = 0, & t > 0, x \in \mathbb{R}^d, \\ \mu(0,x) = \mu_0(x), & x \in \mathbb{R}^d, \end{cases}$$

is well-defined and satisfies

(AIM:II)
$$\mu(1, \cdot) \equiv \mu_1.$$

If μ_0 and v are smooth, then, by the *method of characteristics*, the (unique) solution μ of (CE) can be represented using the (unique) flow ϕ of (ODE), and viceversa.

That is, Problem I and Problem II are equivalent as a consequence of the *Lagrangian representation formula* for the solution of (CE):

$$\mu(t,\cdot) \equiv \phi(t,\cdot)_{\#}\mu_0, \qquad t \geq 0.$$

[Ambrosio-Bernard, *Rend. Lincei Mat. Appl.* 2008], [Bonicatto-Gusev, *Rend. Lincei Mat. Appl.* 2019], etc.: This is not necessarily true in more general situations.

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
- 7 Multi-dimensional problem
- B Further examples

[Dacorogna–Moser, AIHP 1990]:

If μ_i (for $i \in \{0, 1\}$) is absolutely continuous with smooth and positive density $\overline{\mu}_i$, then a *time-dependent* velocity field solving Problems I and II is given by

$$v(t,x) \coloneqq \frac{\nabla f(x)}{(1-t)\,\overline{\mu}_0 + t\,\overline{\mu}_1},$$

where $f \in C^{\infty}(\mathbb{R}^d)$ is the unique solution of $-\Delta f = \bar{\mu}_1 - \bar{\mu}_0$ with zero mean.

Localized and time-dependent vector fields

[Duprez–Morancey–Rossi, *SIAM J. Control Optim.* 2019] [Duprez–Morancey–Rossi, *JDE* 2019]:

(Approximate) solution of Problems I and II using a *time-dependent* and localized perturbation of a given velocity field v:

 $v(x) + \chi_{\omega}(x) u(t, x).$

Figure: Geometric condition: the uncontrolled vector field v needs to send the support of μ_0 to ω forward in time and the support of μ_1 to ω backward in time.

[Ruiz-Balet–Zuazua, *SIAM Rev.* 2023] [Alvarez-López–Slimane–Zuazua, *Neural Networks* 2024]:

(Approximate) solution to Problems I and II with "neural" velocity functions,

$$v(t,x) \coloneqq w(t) \sigma(\langle a(t), x \rangle + b(t)),$$

with $\sigma(x) := \max\{x, 0\}$ (the so-called *activation function of the neural network*) and control parameters $a, w \in L^{\infty}((0, 1); \mathbb{R}^d)$ and $b \in L^{\infty}((0, 1); \mathbb{R})$.

The controls a, w, and b were constructed *piecewise-constant in time* with an explicit (non-zero) *lower bound* on the number of jumps.

Cf. also [Li-Liu-Liverani-Zuazua, arXiv:2407.17092] for

$$v(t,x) \coloneqq w \sigma(\langle a,x \rangle + b t + c).$$

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
 - 4 Warm-up examples
 - 5 One-dimensional problem
- 6 Sketch of the proof
- 7 Multi-dimensional problem
- B Further examples

We can solve Problem I and Problem II under quite general assumptions.

We consider $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R}^d)$, with $d \geq 1$, and assume that the following conditions hold:

- supp μ_0 and supp μ_1 are convex;
- the densities $\bar{\mu}_0$ and $\bar{\mu}_1$ are continuous functions (in their respective supports);
- $\bar{\mu}_0 > 0$ in supp μ_0 and $\bar{\mu}_1 > 0$ in supp μ_1 .

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
 - 5 One-dimensional problem
- 6 Sketch of the proof
- 7 Multi-dimensional problem
- B Further examples

Dirac deltas in multi-d

If μ_0 , $\mu_1 \in \mathcal{P}(\mathbb{R}^d)$ are superpositions of Dirac deltas, for $d \ge 2$, it suffices to build non-intersecting paths (except, maybe, at the end-points) linking x_i to y_i for all $i \in \{1, ..., N\}$.

lf

$$\begin{split} \mu_0 &\coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{x_i}, \qquad \mu_1 \coloneqq \frac{1}{N} \sum_{i=1}^N \delta_{y_i}, \\ \text{with } \{x_i\}_{i \in \{1, \dots, N\}}, \ \{y_i\}_{i \in \{1, \dots, N\}} \subset \mathbb{R} \text{ and } x_i \neq x_j, \ y_i \neq y_j, \text{ if } i \neq j, \end{split}$$

then there exists $v \in C^{\infty}(\mathbb{R})$ that solves Problem I.

Coinciding measures

 $v \equiv 0$

Translated measures

 $v \equiv \text{const}$

$\mu_0 \coloneqq \chi_{[1,2]} \mathscr{L}^1$ and $\mu_1 \coloneqq \frac{1}{3} \chi_{[0,3]} \mathscr{L}^1$

 $\mu_0 \coloneqq \chi_{[1,2]} \mathscr{L}^1$

$$v(x) = (-3/2 + x) \log(3)$$

This yields $\phi(t,x) = -3/2(-1+3^t) + 3^t x$, so that $\phi(1,x) = 3x - 3$.

How did we get this?

Nicola De Nitti (EPFL)

Monge's optimal transport problem (1781)

How to move dirt from one place (déblais) to another (remblais) while minimizing the "effort"?

Transport: Find a mapping T between two measures such that $T_{\#}\mu_0 = \mu_1$. **Optimal:** Optimize with respect to a displacement cost c(x, y).

Idea

Realize ${\rm T}$ as time-1 map of the flow associated with an autonomous velocity.

- **1**-d case: realize the monotone transport map;
- **2** multi-d case: use Sudakov's disintegration approach.

Related problems

- Embedding homeomorphism into a flow: [Fort, Proc. AMS 1955].
- Inverse problem for ODEs of reconstructing the vector field from the time-t_i map of the flow for some {t_i}_{i∈{1,...,N}</sub>: [Alfaro Vigo-Álvarez-Chapiro-García-Moreira, J. Comput. Dyn. 2020], [Kuehn-Kuntz, arXiv:2308.01213].

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- 4 Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
- 7 Multi-dimensional problem
- 8 Further examples

/

$$\begin{split} \mathrm{M}_{\mathrm{c}}(\mu_{0},\mu_{1}) &\coloneqq \min\left\{ \int_{\mathbb{R}} \mathrm{c}(\mathrm{T}(x),x) \, d\mu_{0}(x) : \ \mathrm{T}: \mathbb{R} \to \mathbb{R} \text{ and } \mu_{1} = \mathrm{T}_{\#}\mu_{0} \right\},\\ \text{with cost } \mathrm{c}(x,y) &\coloneqq |x-y|^{p} \text{ for some } p \geq 1. \end{split}$$

Theorem 1 (One-dimensional Monge's problem)

Let μ_0 , $\mu_1 \in \mathcal{P}(\mathbb{R})$ and let us assume that μ_0 is non-atomic (i.e., a diffuse measure: $\mu_0(\{x\}) = 0$ for any $x \in \mathbb{R}$).

Then there exists a <u>unique</u> (modulo countable sets) <u>non-decreasing</u> function T: supp $\mu_0 \to \mathbb{R}$ such that $T_{\#}\mu_0 \equiv \mu_1$, given explicitly by

$$\mathrm{T}(x) = \sup \Big\{ z \in \mathbb{R} : \, \mu_1((-\infty,z]) \leq \mu_0((-\infty,x]) \Big\}, \quad \textit{for} \quad x \in \mathrm{supp}\, \mu_0.$$

Moreover, the function T is an optimal transport map (the unique optimal transport map if p > 1) and, provided that supp μ_1 is connected, it is continuous.

Finally, if μ_0 , $\mu_1 \ll \mathscr{L}^1$ and their densities $\overline{\mu}_0$ and $\overline{\mu}_1$ are continuous functions and satisfy $0 < \lambda < \overline{\mu}_0$, $\overline{\mu}_1 < \Lambda < +\infty$ (for some $\lambda, \Lambda > 0$) in their respective supports, then T is C^1 and its derivative is given by

$$\mathrm{T}'(x) = \frac{\mu_0(x)}{\mu_1(\mathrm{T}(x))}.$$

If d = 1, (ODE) reduces to

(ODE-1d)
$$\begin{cases} \partial_t \phi(t,x) = v(\phi(t,x)), & t > 0, \ x \in \mathbb{R}, \\ \phi(0,x) = x, & x \in \mathbb{R}. \end{cases}$$

If the flow is unique (and defined up to time t = 1), then the map $\mathbb{R} \ni x \mapsto \phi(1, x)$ is *non-decreasing*.

Therefore, if a velocity $v : \mathbb{R} \to \mathbb{R}$ exists such that the corresponding flow ϕ exists, is unique, and satisfies $\phi(1, \cdot)_{\#}\mu_0 \equiv \mu_1$, then $\phi(1, \cdot)$ must coincide with the unique monotone transport map between μ_0 and μ_1

Let ϕ be the unique solution to

4

$$egin{cases} \partial_t \phi = V(t, \phi(t, x)), & t>0, \ \phi(0, x) = x, & x\in \mathbb{R}, \end{cases}$$

where $V: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$. We claim that $x \mapsto \phi(1, x)$ is non-decreasing.

Let us suppose, by contradiction, that there exists $x_1 \le x_2$ such that $\phi(1, x_2) < \phi(1, x_1)$.

Since $t \mapsto \phi(t, \cdot)$ is a continuous function, we can apply the intermediate-value theorem: $x_2 = \phi(0, x_2) > \phi(0, x_1) = x_1$ and $\phi(1, x_2) < \phi(1, x_1)$ imply that $\phi(\bar{t}, x_2) = \phi(\bar{t}, x_1) =: \bar{\phi}$ for some $\bar{t} \in (0, 1)$.

This means that $\phi(t, x_1)$ and $\phi(t, x_2)$ solve the Cauchy problem

$$\begin{cases} \partial_t \psi(t) = V(t, \psi(t))), & t > \bar{t}, \\ \psi(\bar{t}) = \bar{\phi}, & x \in \mathbb{R}. \end{cases}$$

This yields a contradiction, because the solution of the Cauchy problem was assumed to be unique.

Key idea

If $v \in C \cap L^{\infty}$ and |v| > 0, then there exists one and only one solution of (ODE-1d) in the following sense: $\phi(\cdot, x) \in C^1((0, +\infty))$ for every $x \in \mathbb{R}$ and

(SV)
$$\int_{x}^{\phi(t,x)} \frac{1}{v(\xi)} d\xi = t, \qquad t > 0.$$

If $\phi(1, \cdot) \equiv T$, then we have that a primitive of 1/v (*i.e.*, F such that F' = 1/v) solves Abel's functional equation:

(A)
$$F(\mathbf{T}(x)) = F(x) + 1, \quad x \in \operatorname{supp} \mu_0.$$

Differentiating with respect to x yields Aczél–Jabotinsky–Julia's equation:

(AJJ)
$$v(T(x)) = T'(x) v(x), x \in \operatorname{supp} \mu_0.$$

Viceversa, a solution $v \in C \cap L^{\infty}$, with |v| > 0, of (AJJ) generates a unique flow ϕ that satisfies $\phi(1, \cdot) \equiv T$ (up to a scaling constant to achieve T at t = 1).

To solve Problems I and II, we will build a suitable solution v to Aczél–Jabotinsky–Julia's equation (AJJ), which belongs to the class of *linear homogeneous functional equations*.

[Kuczma, *Monogr. Mat.* 1968]; [Zdun, *Sci. Pub. Uni. Silesia* 1979]; [Kuczma–Choczewski–Ger, *Encycl. Math. Appl. Cambridge* 1990]; [Belitskii–Tkachenko, *Birkhäuser* 2003].

The velocity field is non-unique: we can construct it iteratively and it is obtained from an arbitrary prescription in an open set.

The construction is more or less delicate depending on the fixed points of ${\rm T}\,.$

Theorem 2 (Exact controllability, d = 1)

Let $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R})$ be two probability measures with convex support, and continuous densities positive in their support.

Then there exists a velocity field $v : Conv(supp \mu_0 \cup supp \mu_1) \rightarrow \mathbb{R}$ such that

$$\begin{split} |v| &> 0 \quad \text{in} \quad \operatorname{Conv}(\operatorname{supp} \mu_0 \cup \operatorname{supp} \mu_1) \setminus \mathcal{S}, \\ v &\equiv 0 \quad \text{in} \quad \mathcal{S}, \end{split}$$

and

$$\mathrm{T}(x) = \phi(1, x), \qquad x \in \mathrm{supp}\,\mu_0,$$

where T is the monotone optimal transport map, S is the set of fixed points of the map T in supp μ_0 , and ϕ is the unique solution of (ODE-1d) for $x \in \text{supp } \mu_0$.

Moreover, v is continuous except possibly at ∂S .

If, additionally, $|\bar{\mu}_0 - \bar{\mu}_1| > 0$ in ∂S , then v can be taken to be continuous also at ∂S . If, furthermore, $\bar{\mu}_0$ and $\bar{\mu}_1$ are Lipschitz continuous, v can be taken Lipschitz continuous up to ∂S .

Corollary 3 (Approximate controllability, d = 1)

Let $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R})$ be two probability measures with convex support, and continuous densities positive in their support.

For every $\varepsilon > 0$, there exists $\mu_1^{\varepsilon} \in \mathcal{P}_{a.c.}(\mathbb{R})$ such that dist $(\mu_1, \mu_1^{\varepsilon}) < \varepsilon$ (in the sense of the L^1 or of the Wasserstein distance) and there exists a continuous velocity field v^{ε} : Conv(supp $\mu_0 \cup$ supp $\mu_1^{\varepsilon}) \to \mathbb{R}$ such that

$$\begin{split} |v^{\varepsilon}| &> 0 \quad \text{in} \quad \operatorname{Conv}(\operatorname{supp} \mu_0 \cup \operatorname{supp} \mu_1) \setminus \mathcal{S}, \\ v^{\varepsilon} &\equiv 0 \quad \text{in} \quad \mathcal{S}, \end{split}$$

and

$$T(x) = \phi(1, x), \qquad x \in \operatorname{supp} \mu_0,$$

where T is the monotone optimal transport map, S of fixed points of the map T in supp μ_0 , and ϕ is the unique solution of (ODE-1d).

If, furthermore, $\bar{\mu}_0$ and $\bar{\mu}_1$ are Lipschitz continuous, μ_1^{ε} and v^{ε} can be taken Lipschitz continuous.

Remarks

 We claim that φ exists and is unique, even if v is not globally continuous and can vanish on S. In particular, we get uniqueness because v satisfies an Osgood-type condition on S:

For any $\bar{x} \in \partial S$ and $\varepsilon > 0$,

$$\int_{A_{\pm,\varepsilon}} \frac{dx}{|v(x)|} = \infty \quad \text{whenever} \quad A_{\pm,\varepsilon} \neq \emptyset,$$

where

$$A_{+,arepsilon}\coloneqq (ar{x},ar{x}+arepsilon)\cap \mathrm{supp}\,\mu_0,\qquad A_{-,arepsilon}\coloneqq (ar{x}-arepsilon,ar{x})\cap \mathrm{supp}\,\mu_0.$$

• There exist measures μ_0 and μ_1 , satisfying the hypotheses, such that $\bar{\mu}_0(\bar{x}) = \bar{\mu}_1(\bar{x})$ and either v cannot be taken bounded, or there is no uniqueness of the flow (ODE-1d) (more precisely, it is not true |v| > 0 outside of S). Moreover, if v is continuous outside of \bar{x} , then it does not belong to L^1_{loc} around \bar{x} .

• The v constructed also gives a solution to Problem II in the appropriate sense (inspired by [Aizenman, *Duke Math. J.* 1978]).

The velocity fields constructed do not have to be L^1_{loc} in general at points ∂S , and thus $\mu(t, \cdot) \equiv \phi(t, \cdot)_{\#} \mu_0$ need not be a distributional solution across ∂S , but it satisfies (CE) as follows:

There exists a discrete set $\partial S = \partial \{x = T(x)\}$ where $v \equiv 0$ such that $\mu(t, \cdot)$ satisfies (CE) in the distributional sense in $supp(\mu(t, \cdot)) \setminus \partial S$, and it satisfies a no-flow condition through ∂S ; namely, trajectories starting outside of ∂S never reach ∂S in finite time.

If T does not have fixed points, the construction of a solution is easy. If T has a fixed point, say at x = a, the situation is more difficult.

Heuristics

As $x \to a^+$, we can approximate $v(T(x)) \approx v(x)$ and $T'(x) \approx T'(a)$ and, heuristically, reduce (AJJ) to

 $\widetilde{v}(x) \approx \mathrm{T}'(a)v(x).$

For two functions v_1, v_2 we obtain

 $\widetilde{v}_1(x) - \widetilde{v}_2(x) \approx \mathrm{T}'(a)(v_1(x) - v_2(x)).$

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
 - 7 Multi-dimensional problem
 - 8 Further examples

For the moment, let us assume

$$M_0 \coloneqq \operatorname{supp} \mu_0 = (a_0, b_0), \qquad M_1 \coloneqq \operatorname{supp} \mu_1 = (a_1, b_1).$$

Case 1: $\overline{M_0} \cap \overline{M_1} = \emptyset$. We can fix $v \equiv 1$ in $\overline{M_0}$, so that v in $\overline{M_1}$ is given by

$$v(x) \coloneqq \mathrm{T}'(\mathrm{T}^{-1}(x))v(\mathrm{T}^{-1}(x)) = \mathrm{T}'(\mathrm{T}^{-1}(x)) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right], \quad ext{for} \quad x \in \overline{M_1}.$$

In particular, v can be chosen continuous and with $v(x) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right]$ for $x \in \text{Conv}(\overline{M_0 \cup M_1})$ to satisfy (AJJ).

Case 2: $\overline{M_0} \cap \overline{M_1} \neq \emptyset$. Without loss of generality, $a_0 < a_1$ (and therefore, T(x) > x for $x \in \overline{M_0}$).

We define $\alpha_0 := a_0$, $\alpha_1 := a_1 = T(\alpha_0)$, and $\alpha_i := T(\alpha_{i-1})$ for i = 1, 2, ...Then, there exists $N \in \mathbb{N}$ such that $\alpha_N \in (b_0, b_1]$. Indeed, $i \mapsto \alpha_i$ is increasing (owing to the monotonicity of T) and, if $\alpha_i \leq b_0$, $\alpha_{i+1} \leq b_1$. If the sequence $\{\alpha_i\}_i$ had an accumulation point $\bar{\alpha} \leq b_0$, then $T(\bar{\alpha}) = \bar{\alpha}$ and $\bar{\alpha}$ is a fixed point for T, which do not exist by assumption. Hence, the sequence must be finite.

Let us now fix $v(x) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right]$ to be any smooth function in $[a_0, a_1]$ with

(R-1)
$$v(a_1) = T'(a_0)v(a_0) = \frac{\mu_0(a_0)}{\mu_1(a_1)}v(a_0).$$

We then define, recursively, and denoting $\alpha_{\textit{N}+1}\coloneqq\textit{b}_1$,

(R-2)
$$v(T(x)) = T'(x)v(x)$$
 for $x \in [\alpha_i, \alpha_{i+1}], i = 1, 2, ..., N$.

This defines v in the interval $[a_0, b_1]$ in a continuous way.

Let \bar{x} be the unique fixed point for ${\rm T}$, and let us assume, without loss of generality, that $\bar{x}=b_0=b_1$

The sequence α_i is no longer finite, and $\alpha_i \rightarrow b_0 = b_1$ as $i \rightarrow +\infty$.

This allows us to recursively define a (continuous) vector field v in (a_0, b_0) by means of (R-2), after fixing it in $(a_0, T(a_0))$ first. A priori, it could degenerate when approaching \bar{x} , though.

If $\bar{\mu}_0(\bar{x}) \neq \bar{\mu}_1(\bar{x})$, then we necessarily have T'(x) < 1, which helps (studying (R-2)) to gain continuity up to \bar{x} .

Generalizing the arguments above, we can deal with the two remaining cases:

- transport map with exactly two fixed points;
- transport maps with arbitrarily many fixed points.

Finally, we remove the compact support assumption.

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
- Multi-dimensional problem
 - B Further examples

Decompose multi-d optimal transport along 1-d segments (optimal transport rays).

Theorem 4 (Exact controllability, $d \ge 1$)

Let $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R}^d)$, with $d \ge 1$, be two probability measures with convex support, and continuous densities positive in their support.

Then, there exists a vector field $v:\mathbb{R}^d\to\mathbb{R}^d$ such that

$$T(x) = \phi(1, x), \qquad x \in \mathbb{R}^d,$$

where T is Sudakov's transport map $(T(x) := T_{\alpha}(x) \text{ if } x \in I_{\alpha}^{1}, \text{ where } T_{\alpha} : I_{\alpha}^{1} \to I_{\alpha}^{1}$ is the monotone transport map on the ray I_{α}^{1}) and ϕ is the unique solution of (ODE) for $x \in \text{supp } \mu_{0}$.

Presentation Outline

The problems

- 2 Known results (time-dependent velocity)
- 3 What can we do?
- Warm-up examples
- 5 One-dimensional problem
- 6 Sketch of the proof
 - 7 Multi-dimensional problem
- 8 Further examples

Let $\mu_0\coloneqq\chi_{[0,1]}\mathscr{L}^1$ and $\mu_1\coloneqq\frac12\chi_{[2,4]}\mathscr{L}^1.$ The monotone transport map between μ_0 and μ_1 is

$$\mathrm{T}(x)=2x+2.$$

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$\begin{split} F(x) &= c + \frac{\log|2+x|}{\log(2)}, \qquad \qquad c \in \mathbb{R}, \ x \in \mathbb{R}, \\ v(x) &= (\log(4) + x \log(2)), \qquad \qquad x \in \mathbb{R}. \end{split}$$

This yields $\phi(t,x) = -2 + 2^t(2+x)$, so that $\phi(1,x) = 2x + 1$.

The map T has a fixed point at x = -2, but it does not belong to the intervals where μ_0 and μ_1 are supported (and F is not defined there).

Transport map with one "good" fixed point

Let $\mu_0 \coloneqq \chi_{[1,2]} \mathscr{L}^1$ and $\mu_1 \coloneqq \frac{1}{3} \chi_{[0,3]} \mathscr{L}^1$. The monotone transport map between μ_0 and μ_1 is

$$\Gamma(x)=3x-3.$$

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$F(x) = c + \frac{\log(-3/2 + x)}{\log(3)}, \quad c \in \mathbb{R}, \ x \in \mathbb{R},$$
$$v(x) = (-3/2 + x)\log(3), \quad x \in \mathbb{R}.$$

This yields $\phi(t,x) = -3/2(-1+3^t) + 3^t x$, so that $\phi(1,x) = 3x - 3$.

We observe that the map T has a fixed point, $\bar{x} = 3/2$ and v(3/2) = 0, while F is not defined there.

Gaussian measures

Let $\mu_0 \coloneqq \mathcal{N}\left(m_0, \sigma_0^2\right)$ and $\mu_1 \coloneqq \mathcal{N}\left(m_1, \sigma_1^2\right)$ be two Gaussian measures in \mathbb{R} : the densities are

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}.$$

The monotone transport map between μ_0 to μ_1 is given by

$$\mathbf{T}(x) = \frac{\sigma_1}{\sigma_0} x - \frac{\sigma_1}{\sigma_0} m_0 + m_1$$

(here, we take $\sigma_0, \sigma_1 > 0$). T coincides with the identity map if $m_0 = m_1$ and $\sigma_0 = \sigma_1$; has no fixed points if $\sigma_0 = \sigma_1$ and $m_0 \neq m_1$; and has one fixed point at $\bar{x} = \sigma_0 \frac{m_0 - m_1}{\sigma_0 - \sigma_1}$ if $\sigma_0 \neq \sigma_1$. At \bar{x} , the densities of the two measures measures do not coincide.

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$F(x) = c + \frac{\log\left(\left|x - \frac{\sigma_1 m_0 - \sigma_0 m_1}{\sigma_1 - \sigma_0}\right|\right)}{\log\left(\frac{\sigma_1}{\sigma_0}\right)}, \qquad x \in \mathbb{R}, \text{ for any } c \in \mathbb{R},$$
$$v(x) = x \log\left(\frac{\sigma_1}{\sigma_0}\right) - \log\left(\frac{\sigma_1}{\sigma_0}\right) \frac{\sigma_1 m_0 - \sigma_0 m_1}{\sigma_1 - \sigma_0}, \qquad x \in \mathbb{R}.$$

Figure: The vector field transporting a Gaussian $\bar{\mu}_0(x) = e^{-x^2}$ into a translated and rescaled Gaussian $\bar{\mu}_1(x) = 2e^{-4(x-1)^2}$ is given by the linear function v here depicted. In particular, since the supports are unbounded, even if we are in a setting where the velocity field is smooth, it does not need to be globally bounded.

Affine transport maps

If, in general, $\mu_0(dx) := f(x) \mathscr{L}^1(dx)$ and $\mu_1(dx) := \alpha f(\alpha(x - \beta)) \mathscr{L}^1(dx)$ for some $\alpha > 0, \beta \in \mathbb{R}$, where the density f is positive and continuous in its (convex) support, then the monotone map transporting μ_0 into μ_1 is

$$T(x) = \frac{x}{\alpha} + \beta$$

which has a single fixed point at

$$\mathbf{x}_{\alpha\beta} \coloneqq \frac{\alpha\beta}{\alpha-1}.$$

If $\alpha = 1$, this was just a translation and we can fix $v \equiv c$ constant in the whole space. Otherwise, we can take

$$u(x) = \left\{ egin{array}{ll} x - x_{lphaeta} & ext{if} & lpha \in (0,1), \ x_{lphaeta} - x & ext{if} & lpha > 1, \end{array}
ight.$$

and then adjust a multiplicative constant on v so that

$$\left|\int_0^\beta \frac{dx}{x-x_{\alpha\beta}}\right|=1.$$

Let $\mu_0 := \frac{1}{2}\chi_{[0,2]}\mathscr{L}^1$ and $\mu_1 := \left(\frac{1}{2} - \frac{1}{9}x\right)\chi_{[0,3]}\mathscr{L}^1$. The monotone transport map that brings μ_1 to μ_0 is

$$T^{-1}(x) = x - \frac{1}{9}x^2$$

It has a single fixed point at $\bar{x} = 0$, where the densities of both measures coincide.

Figure: The velocity field v (in blue) can be constructed arbitrarily in the interval [2, 3], and this fixes the values uniquely in [0, 2] as well. In this case, we have chosen a linear construction that matches the end-points in [2, 3]. This extends to a continuous map, but since we are not trying to match higher derivatives, such a v is not C^1 .

Let $\mu_0 \coloneqq (1-x)\chi_{[-1/2,1/2]}\mathscr{L}^1$ and $\mu_1 \coloneqq (1+x)\chi_{[-1/2,1/2]}\mathscr{L}^1$. The monotone transport map between μ_0 and μ_1 is

$$T = \frac{1}{2}(-2 + \sqrt{2(3 + 4x - 2x^2)}),$$

which has two fixed points, $\mathcal{S} = \{-1/2, 1/2\}$. Moreover, $\bar{\mu}_0 \neq \bar{\mu}_1$ on \mathcal{S} .

Using Theorem 2, we can construct a Lipschitz continuous velocity field in [-1/2, 1/2] solving Problems I and II.

Let $\mu_0 \coloneqq \chi_{[0,1]} \mathscr{L}^1$ and $T(x) = x + \frac{1}{5}x^3 \sin(\pi/x) \in C^1([0, +\infty))$, which has fixed points

$$\mathcal{S} = \{0\} \cup \left\{ \frac{1}{n} : n \in \mathbb{Z} \setminus \{0\} \right\}.$$

In S, 0 is an accumulation point. We define $\mu_1 := T_{\#}\mu_0$ (so we have $\mu_1 = \bar{\mu}_1 \mathscr{L}^1$, with $\bar{\mu}_1 = (T^{-1})' \chi_{[0,1]} \in C([0,1]) \cap C^{\infty}((0,1))$). Moreover, $\bar{\mu}_0 \neq \bar{\mu}_1$ in $S \setminus \{0\}$. Using Theorem 2, we can construct a Lipschitz continuous velocity field solving Problem I in (0,1].

Thank you for your attention!

Nicola De Nitti and Xavier Fernández-Real. *Optimal transport of measures via autonomous vector fields.* 2024. arXiv:2405.06503 [math.OC].

