Optimal transport of measures via autonomous vector fields

Nicola De Nitti

(joint work with X. Fernández-Real)

EPFL

August 28, 2024

Nicola De Nitti (EPFL) [Transport of measures via autonomous vector fields](#page-51-0) August 28, 2024 1/52

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- [Multi-dimensional problem](#page-37-0)
- [Further examples](#page-40-0)

Given two probability measures, μ_0 and μ_1 , find an autonomous (i.e., timeindependent) vector field that transports μ_0 to μ_1 .

Problem I: exact controllability for ODEs (Lagrangian viewpoint)

Given two probability measures $\mu_0,\,\mu_1\in \mathcal{P}(\mathbb{R}^d)$, construct an *autonomous* vector field $\,{\mathsf v}:{\mathbb R}^d\to{\mathbb R}^d\,$ such that the corresponding flow, *i.e.*

(ODE)
$$
\begin{cases} \partial_t \phi(t,x) = v(\phi(t,x)), & t > 0, \\ \phi(0,x) = x, & x \in \mathbb{R}^d, \end{cases}
$$

is well-defined and satisfies

$$
\phi(1,\cdot)_{\#}\mu_0\equiv\mu_1,
$$

We recall that the measure denoted by $\phi(1, \cdot)_{\#}\mu_0$ is defined by

 $\left(\phi(1,\cdot)_\#\mu_0\right)(A) \coloneqq \mu_0\left(\phi(1,\cdot)^{-1}(A)\right), \quad \text{for every measurable set } A \subset \mathbb{R}^d\,,$

and is called *image measure* or *push-forward* of μ_0 through $\phi(1, \cdot)$.

Problem II: exact controllability for PDEs['] (Eulerian viewpoint)

Given two probability measures $\mu_0,\,\mu_1\in \mathcal{P}(\mathbb{R}^d)$, construct an *autonomous* vector field $\mathsf{v}:\mathbb{R}^d\to\mathbb{R}^d$ such that the solution $\mu:[0,+\infty)\times\mathbb{R}^d\to\mathbb{R}$ to the Cauchy problem

(CE)
$$
\begin{cases} \partial_t \mu(t,x) + \operatorname{div}_x(v(x) \mu(t,x)) = 0, & t > 0, x \in \mathbb{R}^d, \\ \mu(0,x) = \mu_0(x), & x \in \mathbb{R}^d, \end{cases}
$$

is well-defined and satisfies

$$
\mu(1,\cdot) \equiv \mu_1.
$$

If μ_0 and v are smooth, then, by the method of characteristics, the (unique) solution μ of [\(CE\)](#page-4-0) can be represented using the (unique) flow ϕ of [\(ODE\)](#page-3-0), and viceversa.

That is, Problem I and Problem II are equivalent as a consequence of the *Lagrangian* representation formula for the solution of [\(CE\)](#page-4-0):

$$
\mu(t,\cdot)\equiv\phi(t,\cdot)_\#\mu_0,\qquad t\geq 0.
$$

[Ambrosio–Bernard, Rend. Lincei Mat. Appl. 2008], [Bonicatto–Gusev, Rend. Lincei Mat. Appl. 2019], etc.: This is not necessarily true in more general situations.

Presentation Outline

[The problems](#page-1-0)

- 2 [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- [Multi-dimensional problem](#page-37-0)
- [Further examples](#page-40-0)

[Dacorogna–Moser, AIHP 1990]:

If μ_i (for $i\in\{0,1\}$) is absolutely continuous with smooth and positive density $\bar\mu_i$, then a time-dependent velocity field solving Problems I and II is given by

$$
v(t,x) \coloneqq \frac{\nabla f(x)}{(1-t)\,\bar{\mu}_0 + t\,\bar{\mu}_1},
$$

where $f\in \textit{C}^{\infty}(\mathbb{R}^{d})$ is the unique solution of $-\Delta f=\bar{\mu}_{1}-\bar{\mu}_{0}$ with zero mean.

Localized and time-dependent vector fields

[Duprez–Morancey–Rossi, SIAM J. Control Optim. 2019] [Duprez–Morancey–Rossi, JDE 2019]:

(Approximate) solution of Problems I and II using a time-dependent and localized perturbation of a given velocity field v :

 $v(x) + \chi_{\omega}(x) u(t, x)$.

Figure: Geometric condition: the uncontrolled vector field ν needs to send the support of μ_0 to ω forward in time and the support of μ_1 to ω backward in time.

[Ruiz-Balet–Zuazua, SIAM Rev. 2023] [Alvarez-López–Slimane–Zuazua, Neural Networks 2024]:

(Approximate) solution to Problems I and II with "neural" velocity functions,

$$
v(t,x) \coloneqq w(t) \sigma(\langle a(t), x \rangle + b(t)),
$$

with $\sigma(x) := \max\{x, 0\}$ (the so-called activation function of the neural network) and control parameters $a, w \in L^{\infty}((0,1); \mathbb{R}^{d})$ and $b \in L^{\infty}((0,1); \mathbb{R})$.

The controls a , w , and b were constructed *piecewise-constant in time* with an explicit (non-zero) lower bound on the number of jumps.

Cf. also [Li–Liu–Liverani–Zuazua, arXiv:2407.17092] for

$$
v(t,x) := w \sigma(\langle a,x \rangle + b t + c).
$$

Presentation Outline

[The problems](#page-1-0)

- ² [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
	- [Warm-up examples](#page-12-0)
	- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- [Multi-dimensional problem](#page-37-0)
- [Further examples](#page-40-0)

We can solve Problem I and Problem II under quite general assumptions.

We consider $\mu_0,\,\mu_1\,\in\,\mathcal{P}_{\mathsf{a.c.}}(\mathbb{R}^d)$, with $\,d\,\geq\,1$, and assume that the following conditions hold:

- supp μ_0 and supp μ_1 are convex;
- the densities $\bar{\mu}_0$ and $\bar{\mu}_1$ are continuous functions (in their respective supports);
- $\overline{\mu}_0 > 0$ in supp μ_0 and $\overline{\mu}_1 > 0$ in supp μ_1 .

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- ⁴ [Warm-up examples](#page-12-0)
	- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- [Multi-dimensional problem](#page-37-0)
- [Further examples](#page-40-0)

Dirac deltas in multi-d

If $\mu_0,\,\mu_1\in\mathcal{P}(\mathbb{R}^d)$ are superpositions of Dirac deltas, for $d\geq 2$, it suffices to build non-intersecting paths (except, maybe, at the end-points) linking x_i to y_i for all $i \in \{1, \ldots, N\}$.

Dirac deltas in 1-d

If

$$
\mu_0 := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}, \qquad \mu_1 := \frac{1}{N} \sum_{i=1}^N \delta_{y_i},
$$

with $\{x_i\}_{i \in \{1,...,N\}}, \{y_i\}_{i \in \{1,...,N\}} \subset \mathbb{R}$ and $x_i \neq x_j, y_i \neq y_j$, if $i \neq j$,

then there exists $v \in C^{\infty}(\mathbb{R})$ that solves Problem I.

Coinciding measures

 $v \equiv 0$

Translated measures

 $v \equiv$ const

$\mu_{0} \coloneqq \chi_{[1,2]} \mathscr{L}^1$ and $\mu_{1} \coloneqq \frac{1}{3}$ $\frac{1}{3}\chi_{[0,3]} \mathscr{L}^1$

 $\mu_0 \coloneqq \chi_{[1,2]} \mathscr{L}^1$ $\mu_1 \coloneqq \frac{1}{3} \chi_{[0,3]} \mathscr{L}^1$

$$
v(x) = (-3/2 + x) \log(3)
$$

This yields $\phi(t, x) = -\frac{3}{2}(-1 + 3^t) + 3^t x$, so that $\phi(1, x) = 3x - 3$.

How did we get this?

Monge's optimal transport problem (1781)

How to move dirt from one place (déblais) to another (remblais) while minimizing the "effort"?

Transport: Find a mapping T between two measures such that $T_{\#}\mu_0 = \mu_1$. **Optimal:** Optimize with respect to a displacement cost $c(x, y)$.

Idea

Realize T as time-1 map of the flow associated with an autonomous velocity.

- **1-d case:** realize the monotone transport map;
- **2** multi-d case: use Sudakov's disintegration approach.

Related problems

- Embedding homeomorphism into a flow: [Fort, *Proc. AMS* 1955].
- **I** Inverse problem for ODEs of reconstructing the vector field from the time- t_i map of the flow for some $\{t_i\}_{i\in\{1,\ldots,N\}}$: [Alfaro Vigo–Alvarez–Chapiro–García– Moreira, J. Comput. Dyn. 2020], [Kuehn–Kuntz, arXiv:2308.01213].

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- [Multi-dimensional problem](#page-37-0)
- [Further examples](#page-40-0)

$$
M_c(\mu_0, \mu_1) := \min \left\{ \int_{\mathbb{R}} c(T(x), x) d\mu_0(x) : T : \mathbb{R} \to \mathbb{R} \text{ and } \mu_1 = T_{\#}\mu_0 \right\},\
$$

with cost $c(x, y) := |x - y|^p$ for some $p \ge 1$.
 T

Theorem 1 (One-dimensional Monge's problem)

Let $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R})$ and let us assume that μ_0 is non-atomic (i.e., a diffuse measure: $\mu_0({x}) = 0$ for any $x \in \mathbb{R}$).

Then there exists a unique (modulo countable sets) non-decreasing function T : supp $\mu_0 \to \mathbb{R}$ such that $T_{\#} \mu_0 \equiv \mu_1$, given explicitly by

$$
\mathrm{T}(x)=\sup\Big\{z\in\mathbb{R}:\,\mu_1((-\infty,z])\leq\mu_0((-\infty,x])\Big\},\quad\text{for}\quad x\in\mathrm{supp}\,\mu_0.
$$

Moreover, the function T is an optimal transport map (the unique optimal transport map if $p > 1$) and, provided that supp μ_1 is connected, it is continuous.

Finally, if $\mu_0,\,\mu_1\ll\mathscr{L}^1$ and their densities $\bar\mu_0$ and $\bar\mu_1$ are continuous functions and satisfy $0 < \lambda < \bar{\mu}_0$, $\bar{\mu}_1 < \Lambda < +\infty$ (for some $\lambda, \Lambda > 0$) in their respective supports, then $\rm T$ is $\rm C^1$ and its derivative is given by

$$
T'(x) = \frac{\mu_0(x)}{\mu_1(T(x))}.
$$

If $d = 1$, [\(ODE\)](#page-3-0) reduces to

(ODE-1d)
$$
\begin{cases} \partial_t \phi(t,x) = v(\phi(t,x)), & t > 0, \ x \in \mathbb{R}, \\ \phi(0,x) = x, & x \in \mathbb{R}. \end{cases}
$$

If the flow is unique (and defined up to time $t = 1$), then the map $\mathbb{R} \ni x \mapsto \phi(1, x)$ is non-decreasing.

Therefore, if a velocity $v : \mathbb{R} \to \mathbb{R}$ exists such that the corresponding flow ϕ exists, is unique, and satisfies $\phi(1, \cdot)_{\#}\mu_0 \equiv \mu_1$, then $\phi(1, \cdot)$ must coincide with the unique monotone transport map between μ_0 and μ_1

Let ϕ be the unique solution to

$$
\begin{cases} \partial_t \phi = V(t, \phi(t, x)), & t > 0, \\ \phi(0, x) = x, & x \in \mathbb{R}, \end{cases}
$$

where $V : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$. We claim that $x \mapsto \phi(1, x)$ is non-decreasing.

Let us suppose, by contradiction, that there exists $x_1 \le x_2$ such that $\phi(1, x_2)$ < $\phi(1, x_1)$.

Since $t \mapsto \phi(t, \cdot)$ is a continuous function, we can apply the intermediate-value theorem: $x_2 = \phi(0, x_2) > \phi(0, x_1) = x_1$ and $\phi(1, x_2) < \phi(1, x_1)$ imply that $\phi(\bar{t}, x_2) = \phi(\bar{t}, x_1) =: \bar{\phi}$ for some $\bar{t} \in (0, 1)$.

This means that $\phi(t, x_1)$ and $\phi(t, x_2)$ solve the Cauchy problem

$$
\begin{cases} \partial_t \psi(t) = V(t, \psi(t))), & t > \bar{t}, \\ \psi(\bar{t}) = \bar{\phi}, & x \in \mathbb{R}. \end{cases}
$$

This yields a contradiction, because the solution of the Cauchy problem was assumed to be unique.

Key id<u>ea</u>

If $v \in C \cap L^{\infty}$ and $|v| > 0$, then there exists one and only one solution of [\(ODE-1d\)](#page-23-0) in the following sense: $\phi(\cdot,x)\in C^1((0,+\infty))$ for every $x\in\mathbb{R}$ and

(SV)
$$
\int_{x}^{\phi(t,x)} \frac{1}{v(\xi)} d\xi = t, \qquad t > 0.
$$

If $\phi(1,\cdot)\equiv T$, then we have that a primitive of $1/\nu$ (i.e., F such that $F'=1/\nu$) solves Abel's functional equation:

(A)
$$
F(T(x)) = F(x) + 1, \quad x \in \operatorname{supp} \mu_0.
$$

Differentiating with respect to x yields $Acz\acute{e}l$ –Jabotinsky–Julia's equation:

$$
v(T(x)) = T'(x) v(x), \quad x \in \operatorname{supp} \mu_0.
$$

Viceversa, a solution $v \in C \cap L^{\infty}$, with $|v| > 0$, of [\(AJJ\)](#page-25-0) generates a unique flow ϕ that satisfies $\phi(1, \cdot) \equiv T$ (up to a scaling constant to achieve T at $t = 1$).

To solve Problems I and II, we will build a suitable solution ν to Aczél–Jabotinsky– Julia's equation [\(AJJ\)](#page-25-0), which belongs to the class of linear homogeneous functional equations.

[Kuczma, Monogr. Mat. 1968]; [Zdun, Sci. Pub. Uni. Silesia 1979]; [Kuczma–Choczewski–Ger, Encycl. Math. Appl. Cambridge 1990]; [Belitskii–Tkachenko, Birkhäuser 2003].

The velocity field is non-unique: we can construct it iteratively and it is obtained from an arbitrary prescription in an open set.

The construction is more or less delicate depending on the fixed points of T.

Theorem 2 (Exact controllability, $d = 1$)

Let $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R})$ be two probability measures with convex support, and continuous densities positive in their support.

Then there exists a velocity field v : Conv(supp $\mu_0 \cup$ supp $\mu_1) \to \mathbb{R}$ such that

$$
|v| > 0 \quad \text{in} \quad \text{Conv}(\text{supp }\mu_0 \cup \text{supp }\mu_1) \setminus S, \\ v \equiv 0 \quad \text{in} \quad S,
$$

and

$$
T(x) = \phi(1, x), \qquad x \in \operatorname{supp} \mu_0,
$$

where T is the monotone optimal transport map, S is the set of fixed points of the map T in supp μ_0 , and ϕ is the unique solution of [\(ODE-1d\)](#page-23-0) for $x \in \text{supp } \mu_0$.

Moreover, v is continuous except possibly at ∂S .

If, additionally, $|\bar{\mu}_0 - \bar{\mu}_1| > 0$ in ∂S , then v can be taken to be continuous also at ∂S . If, furthermore, $\bar{\mu}_0$ and $\bar{\mu}_1$ are Lipschitz continuous, v can be taken Lipschitz continuous up to ∂S .

Corollary 3 (Approximate controllability, $d = 1$)

Let $\mu_0, \mu_1 \in \mathcal{P}_{\alpha,c}(\mathbb{R})$ be two probability measures with convex support, and continuous densities positive in their support.

For every $\varepsilon > 0$, there exists $\mu_1^{\varepsilon} \in \mathcal{P}_{\mathsf{a.c.}}(\mathbb{R})$ such that $\mathsf{dist}(\mu_1, \, \mu_1^{\varepsilon}) < \varepsilon$ (in the sense of the L^1 or of the Wasserstein distance) and there exists a continuous velocity field v^{ε} : Conv(supp $\mu_0 \cup$ supp $\mu_1^{\varepsilon}) \to \mathbb{R}$ such that

$$
|v^{\varepsilon}| > 0 \quad \text{in} \quad \text{Conv}(\text{supp }\mu_0 \cup \text{supp }\mu_1) \setminus S, \\ v^{\varepsilon} \equiv 0 \quad \text{in} \quad S,
$$

and

$$
T(x) = \phi(1, x), \qquad x \in \operatorname{supp} \mu_0,
$$

where T is the monotone optimal transport map, S of fixed points of the map T in supp μ_0 , and ϕ is the unique solution of [\(ODE-1d\)](#page-23-0).

If, furthermore, $\bar{\mu}_0$ and $\bar{\mu}_1$ are Lipschitz continuous, μ_1^{ε} and v^{ε} can be taken Lipschitz continuous.

Remarks

• We claim that ϕ exists and is unique, even if v is not globally continuous and can vanish on S. In particular, we get uniqueness because v satisfies an Osgood-type condition on S :

For any $\bar{x} \in \partial S$ and $\varepsilon > 0$,

$$
\int_{A_{\pm,\varepsilon}}\frac{dx}{|v(x)|}=\infty \quad \text{whenever} \quad A_{\pm,\varepsilon}\neq \emptyset,
$$

where

$$
A_{+,\varepsilon} \coloneqq (\bar{x}, \bar{x} + \varepsilon) \cap \operatorname{supp} \mu_0, \qquad A_{-,\varepsilon} \coloneqq (\bar{x} - \varepsilon, \bar{x}) \cap \operatorname{supp} \mu_0.
$$

• There exist measures μ_0 and μ_1 , satisfying the hypotheses, such that $\bar{\mu}_0(\bar{x}) =$ $\bar{\mu}_1(\bar{x})$ and either v cannot be taken bounded, or there is no uniqueness of the flow [\(ODE-1d\)](#page-23-0) (more precisely, it is not true $|v| > 0$ outside of S). Moreover, if v is continuous outside of \bar{x} , then it does not belong to L^1_{loc} around \bar{x} .

• The v constructed also gives a solution to Problem II in the appropriate sense (inspired by [Aizenman, Duke Math. J. 1978]).

The velocity fields constructed do not have to be $\mathit{L}^{1}_{\mathit{loc}}$ in general at points $\partial\mathcal{S}$, and thus $\mu(t, \cdot) \equiv \phi(t, \cdot)_{\mu} \mu_0$ need not be a distributional solution across ∂S , but it satisfies [\(CE\)](#page-4-0) as follows:

There exists a discrete set $\partial S = \partial \{x = T(x)\}\,$ where $v \equiv 0$ such that $\mu(t, \cdot)$ satisfies [\(CE\)](#page-4-0) in the distributional sense in supp $(\mu(t, \cdot)) \setminus \partial S$, and it satisfies a no-flow condition through ∂S ; namely, trajectories starting outside of ∂S never reach ∂S in finite time.

If T does not have fixed points, the construction of a solution is easy. If T has a fixed point, say at $x = a$, the situation is more difficult.

Heuristics

As $x \to a^+$, we can approximate $\mathsf{\nu}(\mathrm{T}(x)) \approx \mathsf{\nu}(x)$ and $\mathrm{T}'(x) \approx \mathrm{T}'(a)$ and, heuristically, reduce [\(AJJ\)](#page-25-0) to

 $\widetilde{v}(x) \approx T'(a)v(x).$

For two functions v_1 , v_2 we obtain

 $\widetilde{v}_1(x) - \widetilde{v}_2(x) \approx T'(a)(v_1(x) - v_2(x)).$

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
	- [Multi-dimensional problem](#page-37-0)
	- [Further examples](#page-40-0)

For the moment, let us assume

$$
M_0 := \operatorname{supp} \mu_0 = (a_0, b_0), \qquad M_1 := \operatorname{supp} \mu_1 = (a_1, b_1).
$$

Case 1: $\overline{M_0} \cap \overline{M_1} = \emptyset$. We can fix $v \equiv 1$ in $\overline{M_0}$, so that v in $\overline{M_1}$ is given by

$$
v(x) := T'(T^{-1}(x))v(T^{-1}(x)) = T'(T^{-1}(x)) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right], \text{ for } x \in \overline{M_1}.
$$

In particular, v can be chosen continuous and with $v(x) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right]$ for $x \in$ Conv $(\overline{M_0 \cup M_1})$ to satisfy [\(AJJ\)](#page-25-0).

Case 2: $\overline{M_0} \cap \overline{M_1} \neq \emptyset$. Without loss of generality, $a_0 < a_1$ (and therefore, $T(x) > x$ for $x \in \overline{M_0}$).

We define $\alpha_0\,:=\,a_0\,,\,\,\alpha_1\,:=\,a_1\,=\,\mathrm{T}(\alpha_0)$, and $\alpha_i\,:=\,\mathrm{T}(\alpha_{i-1})$ for $i\,=\,1,2,\ldots$. Then, there exists $N \in \mathbb{N}$ such that $\alpha_N \in (b_0, b_1]$. Indeed, $i \mapsto \alpha_i$ is increasing (owing to the monotonicity of T) and, if $\alpha_i \leq b_0$, $\alpha_{i+1} \leq b_1$. If the sequence $\{\alpha_i\}$ had an accumulation point $\bar{\alpha} \leq b_0$, then $\Gamma(\bar{\alpha}) = \bar{\alpha}$ and $\bar{\alpha}$ is a fixed point for T, which do not exist by assumption. Hence, the sequence must be finite.

Let us now fix $v(x) \in \left[\frac{\lambda}{\Lambda}, \frac{\Lambda}{\lambda}\right]$ to be any smooth function in $[a_0, a_1]$ with

$$
(R-1) \t v(a_1) = T'(a_0)v(a_0) = \frac{\mu_0(a_0)}{\mu_1(a_1)}v(a_0).
$$

We then define, recursively, and denoting $\alpha_{N+1} := b_1$.

$$
(R-2) \qquad v(T(x)) = T'(x)v(x) \quad \text{for} \quad x \in [\alpha_i, \alpha_{i+1}], \quad i = 1, 2, \ldots, N.
$$

This defines v in the interval $[a_0, b_1]$ in a continuous way.

Let \bar{x} be the unique fixed point for T, and let us assume, without loss of generality, that $\bar{x} = b_0 = b_1$

The sequence α_i is no longer finite, and $\alpha_i \rightarrow b_0 = b_1$ as $i \rightarrow +\infty$.

This allows us to recursively define a (continuous) vector field v in (a_0, b_0) by means of [\(R-2\)](#page-34-0), after fixing it in $(a_0, T(a_0))$ first. A priori, it could degenerate when approaching \bar{x} , though.

If $\bar{\mu}_0(\bar{x})\,\neq\,\bar{\mu}_1(\bar{x})$, then we necessarily have $\mathrm{T}'(x)\,<\,1$, which helps (studying $(R-2)$) to gain continuity up to \bar{x} .

Generalizing the arguments above, we can deal with the two remaining cases:

- transport map with exactly two fixed points;
- **•** transport maps with arbitrarily many fixed points.

Finally, we remove the compact support assumption.

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
- ⁷ [Multi-dimensional problem](#page-37-0)
	- [Further examples](#page-40-0)

Decompose multi-d optimal transport along 1-d segments (optimal transport rays).

Theorem 4 (Exact controllability, $d > 1$)

Let $\mu_0, \mu_1 \in \mathcal{P}_{a.c.}(\mathbb{R}^d)$, with $d\geq 1$, be two probability measures with convex support, and continuous densities positive in their support.

Then, there exists a vector field $v : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$
T(x) = \phi(1, x), \qquad x \in \mathbb{R}^d,
$$

where $\rm T$ is Sudakov's transport map $(\rm T(x) \coloneqq \rm T_{\alpha}(x)$ if $x \in l_{\alpha}^1$, where $\rm T_{\alpha}: l_{\alpha}^1 \to l_{\alpha}^1$ is the monotone transport map on the ray I_{α}^1) and ϕ is the unique solution of [\(ODE\)](#page-3-0) for $x \in \text{supp } \mu_0$.

Presentation Outline

[The problems](#page-1-0)

- [Known results \(time-dependent velocity\)](#page-6-0)
- ³ [What can we do?](#page-10-0)
- [Warm-up examples](#page-12-0)
- ⁵ [One-dimensional problem](#page-20-0)
- ⁶ [Sketch of the proof](#page-32-0)
	- [Multi-dimensional problem](#page-37-0)
- 8 [Further examples](#page-40-0)

Let $\mu_0 := \chi_{[0,1]} \mathscr{L}^1$ and $\mu_1 := \frac{1}{2} \chi_{[2,4]} \mathscr{L}^1$. The monotone transport map between μ_0 and μ_1 is

$$
T(x)=2x+2.
$$

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$
F(x) = c + \frac{\log|2 + x|}{\log(2)}, \qquad c \in \mathbb{R}, \ x \in \mathbb{R},
$$

$$
v(x) = (\log(4) + x \log(2)), \qquad x \in \mathbb{R}.
$$

This yields $\phi(t,x) = -2 + 2^{t}(2+x)$, so that $\phi(1,x) = 2x + 1$.

The map T has a fixed point at $x = -2$, but it does not belong to the intervals where μ_0 and μ_1 are supported (and F is not defined there).

Transport map with one "good" fixed point

Let $\mu_0 := \chi_{[1,2]} \mathscr{L}^1$ and $\mu_1 := \frac{1}{3} \chi_{[0,3]} \mathscr{L}^1$. The monotone transport map between μ_0 and μ_1 is $T(x) = 3x - 3.$

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$
F(x) = c + \frac{\log(-3/2 + x)}{\log(3)}, \quad c \in \mathbb{R}, \ x \in \mathbb{R},
$$

$$
v(x) = (-3/2 + x) \log(3), \quad x \in \mathbb{R}.
$$

This yields $\phi(t,x) = -3/2(-1+3^t) + 3^t x$, so that $\phi(1,x) = 3x - 3$.

We observe that the map T has a fixed point, $\bar{x} = 3/2$ and $v(3/2) = 0$, while F is not defined there.

Gaussian measures

Let $\mu_0\coloneqq\mathcal{N}\left(m_0,\sigma_0^2\right)$ and $\mu_1\coloneqq\mathcal{N}\left(m_1,\sigma_1^2\right)$ be two Gaussian measures in $\mathbb{R}\colon$ the densities are

$$
\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}.
$$

The monotone transport map between μ_0 to μ_1 is given by

$$
T(x) = \frac{\sigma_1}{\sigma_0}x - \frac{\sigma_1}{\sigma_0}m_0 + m_1
$$

(here, we take σ_0 , $\sigma_1 > 0$). T coincides with the identity map if $m_0 = m_1$ and $\sigma_0 = \sigma_1$; has no fixed points if $\sigma_0 = \sigma_1$ and $m_0 \neq m_1$; and has one fixed point at $\bar{x}=\sigma_0\frac{m_0-m_1}{\sigma_0-\sigma_1}$ if $\sigma_0\neq\sigma_1$. At \bar{x} , the densities of the two measures measures do not coincide.

A solution to Abel's and Julia's equations can be given explicitly as follows:

$$
F(x) = c + \frac{\log\left(\left|x - \frac{\sigma_1 m_0 - \sigma_0 m_1}{\sigma_1 - \sigma_0}\right|\right)}{\log\left(\frac{\sigma_1}{\sigma_0}\right)}, \qquad x \in \mathbb{R}, \text{ for any } c \in \mathbb{R},
$$

$$
v(x) = x \log\left(\frac{\sigma_1}{\sigma_0}\right) - \log\left(\frac{\sigma_1}{\sigma_0}\right) \frac{\sigma_1 m_0 - \sigma_0 m_1}{\sigma_1 - \sigma_0}, \qquad x \in \mathbb{R}.
$$

Figure: The vector field transporting a Gaussian $\bar{\mu}_0(x) \, = \, e^{-x^2}$ into a translated and rescaled Gaussian $\bar{\mu}_1(x) = 2e^{-4(x-1)^2}$ is given by the linear function $\,$ here depicted. In particular, since the supports are unbounded, even if we are in a setting where the velocity field is smooth, it does not need to be globally bounded.

Affine transport maps

If, in general, $\mu_0(d\chi)\coloneqq f(\chi)\mathscr{L}^1(d\chi)$ and $\mu_1(d\chi)\coloneqq \alpha f(\alpha(\chi-\beta))\mathscr{L}^1(d\chi)$ for some $\alpha > 0$, $\beta \in \mathbb{R}$, where the density f is positive and continuous in its (convex) support, then the monotone map transporting μ_0 into μ_1 is

$$
\mathrm{T}(x) = \frac{x}{\alpha} + \beta
$$

which has a single fixed point at

$$
x_{\alpha\beta} \coloneqq \frac{\alpha\beta}{\alpha - 1}.
$$

If $\alpha = 1$, this was just a translation and we can fix $v \equiv c$ constant in the whole space. Otherwise, we can take

$$
v(x) = \begin{cases} x - x_{\alpha\beta} & \text{if } \alpha \in (0,1), \\ x_{\alpha\beta} - x & \text{if } \alpha > 1, \end{cases}
$$

and then adjust a multiplicative constant on v so that

$$
\left|\int_0^\beta \frac{dx}{x-x_{\alpha\beta}}\right|=1.
$$

Let $\mu_0:=\frac{1}{2}\chi_{[0,2]}{\mathscr L}^1$ and $\mu_1:=\left(\frac{1}{2}-\frac{1}{9}\times\right)\chi_{[0,3]}{\mathscr L}^1$. The monotone transport map that brings μ_1 to μ_0 is

$$
T^{-1}(x) = x - \frac{1}{9}x^2
$$

It has a single fixed point at $\bar{x} = 0$, where the densities of both measures coincide.

Figure: The velocity field v (in blue) can be constructed arbitrarily in the interval [2, 3], and this fixes the values uniquely in [0, 2] as well. In this case, we have chosen a linear construction that matches the end-points in $[2,3]$. This extends to a continuous map, but since we are not trying to match higher derivatives, such a $\rm\,v$ is not $\rm\,C^1$.

Let $\mu_0\coloneqq(1-x)\chi_{[-1/2,1/2]}\mathscr{L}^1$ and $\mu_1\coloneqq(1+x)\chi_{[-1/2,1/2]}\mathscr{L}^1.$ The monotone transport map between μ_0 and μ_1 is

$$
T = \frac{1}{2}(-2 + \sqrt{2(3 + 4x - 2x^2)}),
$$

which has two fixed points, $S = \{-1/2, 1/2\}$. Moreover, $\bar{\mu}_0 \neq \bar{\mu}_1$ on S.

Using Theorem [2,](#page-27-0) we can construct a Lipschitz continuous velocity field in $[-1/2, 1/2]$ solving Problems I and II.

Let $\mu_0 := \chi_{[0,1]} \mathscr{L}^1$ and $\mathrm{T}(x) = x + \frac{1}{5}x^3 \sin(\pi/x) \in C^1([0,+\infty))$, which has fixed points

$$
\mathcal{S} = \{0\} \cup \left\{\frac{1}{n}: n \in \mathbb{Z} \setminus \{0\}\right\}.
$$

In ${\cal S}$, 0 is an accumulation point. We define $\mu_1\coloneqq {\rm T}_{\#}\mu_0$ (so we have $\mu_1=\bar\mu_1\mathscr{L}^1$, with $\bar\mu_1=({\rm T}^{-1})'\,\chi_{[0,1]}\in\mathcal C([0,1])\cap\mathcal C^\infty((0,1))$). Moreover, $\bar\mu_0\neq\bar\mu_1$ in $\mathcal S\setminus\{0\}$. Using Theorem [2,](#page-27-0) we can construct a Lipschitz continuous velocity field solving Problem I in (0, 1].

Thank you for your attention!

Nicola De Nitti and Xavier Fernández-Real. Optimal transport of measures via autonomous vector fields. 2024. arXiv:2405.06503 [math.OC].

