

The backward problem for time-fractional evolution equations

SALAH-EDDINE CHORFI

Joint work with **L. MANIAR** *&* **M. YAMAMOTO**

Faculty of Sciences Semlalia of Marrakesh, Cadi Ayyad University

Benasque, August, 18-30, 2024

イロト 不優 トイ 差 トイ 差 トー 差し QQ 1/18 Dedicated to the memory of Professor **HAMMADI BOUSLOUS** (−−June 2, 2023)

Founder of **T**eam of **A**nalysis and **C**ontrol of **S**ystems and **I**nteractions (TACSI, Marrakesh)

Let $0 < \alpha \leq 1$ and $T > 0$. We consider

$$
\begin{cases} \partial_t^{\alpha} u(t) = A u(t), & t \in (0, T), \\ u(0) = u_0, & \end{cases}
$$
 (1)

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ ○ 聖 ○ ◆ ○ △ ○

where $A: D(A) \subset H \rightarrow H$ is a densely defined s.t.

Let $0 < \alpha \leq 1$ and $T > 0$. We consider

$$
\begin{cases} \partial_t^{\alpha} u(t) = A u(t), & t \in (0, T), \\ u(0) = u_0, & \end{cases}
$$
 (1)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 《 할 ▶

where $A: D(A) \subset H \rightarrow H$ is a densely defined s.t.

- (i) *A* is self-adjoint,
- (ii) *A* is bounded above: there exists $\kappa \geq 0$ such that $\langle Au, u \rangle \leq \kappa ||u||^2$ for all $u \in D(A)$,
- (iii) *A* has compact resolvent.

 $2Q$

The Caputo derivative $\partial_t^\alpha g$ is defined by

$$
\partial_t^{\alpha} g(t) = \begin{cases} \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \frac{d}{ds} g(s) ds, & 0 < \alpha < 1, \\ \frac{d}{dt} g(t), & \alpha = 1. \end{cases}
$$

イロト (個) ・イ君 トイ君 トッ君

4/18

 QQQ

The Caputo derivative $\partial_t^\alpha g$ is defined by

$$
\partial_t^{\alpha} g(t) = \begin{cases} \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \frac{d}{ds} g(s) ds, & 0 < \alpha < 1, \\ \frac{d}{dt} g(t), & \alpha = 1. \end{cases}
$$

Backward problem: Given $u(T)$, can we recover $u(t_0)$, $0 \le t_0 < T$?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君○ ◆ 9 Q ⊙ 4/18

Theorem (C-Maniar-Yamamoto)

Let $0 < \alpha \leq 1$ *. Let u be the solution to [\(1\)](#page-2-0). Then there exists a constant M* ≥ 1 *such that*

$$
||u(t)|| \leq M||u(0)||^{1-\frac{t}{T}}||u(T)||^{\frac{t}{T}}, \qquad 0 \leq t \leq T.
$$
 (2)

イロト (個) (を) (を) (を)

Moreover, if $\kappa = 0$ *, then we can choose M = 1.*

 2990

• Logarithmic convexity implies the **backward uniqueness** property: if $u(T) = 0$, then $u_0 = 0$.

6/18

Remarks

• Logarithmic convexity implies the **backward uniqueness** property: if $u(T) = 0$, then $u_0 = 0$.

• A well-posed problem need not satisfy logarithmic convexity: $u_t + u_x = 0$, $u(t,0) = 0$, $u(0,x) = u_0$, where $t \in (0, 1)$, $x \in (0,1)$.

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

• Logarithmic convexity implies the **backward uniqueness** property: if $u(T) = 0$, then $u_0 = 0$.

• A well-posed problem need not satisfy logarithmic convexity: $u_t + u_x = 0$, $u(t,0) = 0$, $u(0,x) = u_0$, where $t \in (0, T)$, $x \in (0,1)$.

• A function *f*(*t*) that is *C* 2 [0,∞) is log-convex if and only if the differential inequality

$$
f''(t)f(t) - (f'(t))^2 \ge 0
$$
 (3)

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

6/18

holds for all $t > 0$.

Proof for $\alpha = 1$ (Agmon-Nirenberg (1963)) Since $D(A^2)$ is dense in H , it suffices to consider $u_0\in D(A^2)\setminus\{0\}.$ We have

$$
\frac{\mathrm{d}}{\mathrm{d}t}\|u(t)\|^2=2\langle u'(t),u(t)\rangle=2\langle Au(t),u(t)\rangle,
$$

and since *A* is self-adjoint,

$$
\frac{\mathrm{d}^2}{\mathrm{d}t^2}\|u(t)\|^2=4\|Au(t)\|^2.
$$

It follows that

$$
\left(\frac{d^2}{dt^2}\|\mu(t)\|^2\right)\|\mu(t)\|^2-\left(\frac{d}{dt}\|\mu(t)\|^2\right)^2=4(\|A\mu(t)\|^2\|\mu(t)\|^2-\langle A\mu(t),\mu(t)\rangle^2).
$$

By Cauchy-Schwarz inequality, we obtain

$$
\left(\frac{d^2}{dt^2}||u(t)||^2\right)||u(t)||^2 - \left(\frac{d}{dt}||u(t)||^2\right)^2 \ge 0, \qquad 0 \le t \le T. \tag{4}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 《 할 ▶ $2Q$ 7/18

• No similar formula is available for

$$
\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}\|u(t)\|^2.
$$

• No similar formula is available for

$$
\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}\|u(t)\|^2.
$$

イロト (個) ((量) (量) (量) (量)

• Use of the spectral representation

$$
||u(t)||^2 = \sum_{n=1}^{\infty} \langle u_0, \varphi_n \rangle^2 (E_{\alpha}(-\lambda_n t^{\alpha}))^2,
$$

 2990

• No similar formula is available for

$$
\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}\|u(t)\|^2.
$$

• Use of the spectral representation

$$
||u(t)||^2 = \sum_{n=1}^{\infty} \langle u_0, \varphi_n \rangle^2 (E_{\alpha}(-\lambda_n t^{\alpha}))^2, \qquad E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}.
$$

イロトメ 倒 トメ 君 トメ 君 トリ (者)

 298

• No similar formula is available for

$$
\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}\|u(t)\|^2.
$$

• Use of the spectral representation

$$
||u(t)||^2 = \sum_{n=1}^{\infty} \langle u_0, \varphi_n \rangle^2 (E_{\alpha}(-\lambda_n t^{\alpha}))^2, \qquad E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}.
$$

 \bullet The functions $t \mapsto (E_\alpha(-\lambda_n t^\alpha))^2$ are completely monotone on $[0,T]$ for λ_n > 0 (Schneider, 1996), i.e.,

$$
(-1)^k f^{(k)}(t) \ge 0
$$
 for all $t > 0$, $k = 0, 1, 2, ...$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 《 할 » $2Q$ 8/18

• No similar formula is available for

$$
\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}\|u(t)\|^2.
$$

• Use of the spectral representation

$$
||u(t)||^2 = \sum_{n=1}^{\infty} \langle u_0, \varphi_n \rangle^2 (E_{\alpha}(-\lambda_n t^{\alpha}))^2, \qquad E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}.
$$

 \bullet The functions $t \mapsto (E_\alpha(-\lambda_n t^\alpha))^2$ are completely monotone on $[0,T]$ for λ_n > 0 (Schneider, 1996), i.e.,

 $(-1)^k f^{(k)}(t) ≥ 0$ for all $t > 0, k = 0, 1, 2, ...$

• Any completely monotone function is log-convex.

S.E. C, L. Maniar & M. Yamamoto, The backward problem for time-fractional evolution equations, *Appl. Anal.*, **103** (2023), 2194-2212.

We consider

$$
\begin{cases}\n\frac{\partial_t^{\alpha} u(t,x) = u_{xx}(t,x), & (t,x) \in (0,0.02) \times (0,1), \\
u(t,0) = u(t,1) = 0, & t \in (0,0.02), \\
u(0,x) = \sin(\pi x), & x \in (0,1).\n\end{cases}
$$

The solution is given by

$$
u_{\alpha}(t,x) = E_{\alpha}(-\pi^2 t^{\alpha}) \sin(\pi x), \quad t \in (0,0.02), \ x \in (0,1).
$$

イロト (個) ((量) (量) (量) (量) $2Q$ 10/18

Numerical test

Figure: $log ||u_α(t, ⋅)||_{L^2(0,1)}$ for $α = 0.1, 0.3, 0.5$.

イロト イ部 トイモト イモト 目 $2Q$ 11/18 We consider the following backward problem:

$$
\begin{cases}\n\frac{\partial_t^{\alpha} u(t, x) = Lu(t, x), & \text{in } (0, T) \times \Omega, \\
u|_{\partial \Omega} = 0, & \text{on } (0, T) \times \partial \Omega, \\
u(0, x) = u_0(x) & \text{in } \Omega,\n\end{cases}
$$
\n(5)

イロト(個)(唐)(唐)、唐)

12/18

 299

where

$$
Lu(x) := \mathrm{div}(\mathcal{A}(x)\nabla u(x)) + \mathcal{B}(x)\cdot \nabla u(x) + p(x)u(x),
$$

with symmetric and uniformly elliptic principal part.

The main assumption on the drift term:

(H) There exists a function $b \in W^{2,\infty}(\Omega)$ such that $\mathcal{B} = \mathcal{A}\nabla b$.

イロト(個)(唐)(唐)、唐) $2Q$ 13/18 The main result reads as follows:

Theorem

Assume that Assumption (H) is fulfilled. Then there exists a constant $\kappa = \kappa(A, b, p, \alpha, T) \ge 1$ *such that*

$$
||u(t,\cdot)||_{L^2(\Omega)} \leq \kappa e^{||b||_{\infty}} ||u(0,\cdot)||_{L^2(\Omega)}^{1-\frac{t}{7}} ||u(T,\cdot)||_{L^2(\Omega)}^{\frac{t}{7}}, \qquad 0 \leq t \leq T.
$$
\n(6)

メロトメ 倒 トメ ミトメ ミト

目

 2990

14/18

Ideas of the proof

By the change of variable $v(t,x) = \mathrm{e}^{\frac{b}{2}} u(t,x)$, we obtain a **symmetric equation**:

$$
\begin{cases}\n\frac{\partial_t^{\alpha} v(t, x) = L_0 v(t, x), & \text{in } (0, T) \times \Omega, \\
v|_{\partial \Omega} = 0, & \text{on } (0, T) \times \partial \Omega, \\
v(0, x) = v_0(x) & \text{in } \Omega,\n\end{cases}
$$
\n(7)

where $v_0 = \mathrm{e}^{\frac{b}{2}} u_0$ and the operator L_0 is given by

$$
L_0v(x) = \mathrm{div}(\mathcal{A}(x)\nabla v(x)) + q(x)v(x),
$$

with

$$
q(x) = p(x) - \frac{1}{2} \mathrm{div}(\mathcal{A}(x)\nabla b(x)) - \frac{1}{4}\mathcal{A}(x)\nabla b(x) \cdot \nabla b(x), \qquad x \in \Omega.
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ ○ 聖 ○ ◆ ○ △ ○ 15/18

Numerical test

$$
\begin{cases}\n\frac{\partial_t^{\alpha} u(t,x) = u_{xx}(t,x) + u_x(t,x), & (t,x) \in (0,0.02) \times (0,1), \\
u(t,0) = u(t,1) = 0, & t \in (0,0.02), \\
u(0,x) = \sin(\pi x), & x \in (0,1).\n\end{cases}
$$
\n(8)

16/18

Numerical test

$$
\begin{cases}\n\frac{\partial_t^{\alpha} u(t,x) = u_{xx}(t,x) + u_x(t,x), & (t,x) \in (0,0.02) \times (0,1), \\
u(t,0) = u(t,1) = 0, & t \in (0,0.02), \\
u(0,x) = \sin(\pi x), & x \in (0,1).\n\end{cases}
$$
\n(8)

Figure: $log ||u_α(t, ·)||_{L²(0,1)}$ for $α = 0.1, 0.3, 0.5$ in Example 2.

イロト イ部 トイミト イミト 目 $2Q$

S.E. C, L. Maniar, and M. Yamamoto, Logarithmic convexity of non-symmetric time-fractional diffusion equations, *Math. Meth. Appl. Sci.*, (2024), 1–11, Doi: 10.1002/mma.10421.

> イロト (個) ((量) (量) (量) (量) 2990 17/18

• Similar results for **coupled** systems? e.g.,

$$
\begin{cases}\n\partial_t^{\alpha_1} u_1 = \Delta u_1 + a_{11} u_1 + a_{12} u_2, \\
\partial_t^{\alpha_2} u_2 = \Delta u_2 + a_{12} u_1 + a_{22} u_2.\n\end{cases}
$$

18/18

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ ○ 聖 ○ ◆ ○ △ ○

• Similar results for **coupled** systems? e.g.,

$$
\begin{cases}\n\partial_t^{\alpha_1} u_1 = \Delta u_1 + a_{11} u_1 + a_{12} u_2, \\
\partial_t^{\alpha_2} u_2 = \Delta u_2 + a_{12} u_1 + a_{22} u_2.\n\end{cases}
$$

• Logarithmic convexity without Assumption **(H)**.

• Similar results for **coupled** systems? e.g.,

$$
\begin{cases}\n\partial_t^{\alpha_1} u_1 = \Delta u_1 + a_{11} u_1 + a_{12} u_2, \\
\partial_t^{\alpha_2} u_2 = \Delta u_2 + a_{12} u_1 + a_{22} u_2.\n\end{cases}
$$

18/18

K ロ → K 御 → K 君 → K 君 → 一君 → の Q Q

- Logarithmic convexity without Assumption **(H)**.
- Backward uniqueness for analytic semigroups.

Thank you for your attention

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ ○ 聖 ○ ◆ ○ △ ○

18/18