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A system of differential and algebraic equations can be represented in the form
of an abstract evolution equation which is often called a differential-algebraic
equation (DAE), when it is considered in finite-dimensional spaces, and an
abstract DAE, when it is considered in infinite-dimensional spaces.

Any type of a PDE can be represented as an abstract DAE in appropriate
infinite-dimensional spaces, possibly, with a complementary boundary condition.

Types of DAEs

Nonlinear DAE: F(t,x,x) =0 such that it cannot be reduced to the explicit form
x=1(t,x) (e.g., F(t,x,p) has the continuous partial derivatives in p, x and JpF(t,x,p) is
degenerate (noninvertible) for all (t,x,p) from the domain of definition of F)
Quasilinear DAE: A(t,X)%[D(t)X] =1f(t,x) or A(t,x)%x+ B(t)x = f(t,x), where A(t,x) is
degenerate
Semilinear DAE: %[A(t)x] +B(t)x =f(t,x) or %[A(t)x] =1(t,x), where A(t,x) is
degenerate
Linear DAE: %[A(t)x]—kB(t)x:f(t), where A(t) is degenerate
Semi-implicit DAE: f(t,x1,x2,%1) =0, g(t,x1,x2) =0
Semi-explicit DAE: x; = f(t,x1,x2), g(t,x1,x2) =0
Hessenberg DAE: x; = f(t,x1,x2), g(t,x1) =0

The classification is taken from [Lamour R., Mérz R., Tischendorf C.
Differential-Algebraic Equations: A Projector Based Analysis, 2013]



Applications

DAEs are used to describe mathematical models in cybernetics,
radioelectronics, mechanics, robotics technology, economics, ecology,
chemical kinetics and gas industry, e.g., in modelling

@ dynamics of neural networks

@ transient processes in electrical circuits

o dynamics of gas networks

o dynamics of complex mechanical and technical systems (e.g., robots)
°

multi-sectoral economic models (e.g., the dynamics of corporate enterprises
using investment)

kinetics of chemical reactions

© Rabier P.J., Rheinboldt W.C., Nonholonomic motion of mechanical systems from a DAE viewpoint,
2000.

© Riaza R. Differential-algebraic systems. Analytical aspects and circuit applications, 2008.
9 Morishima M. Equilibrium, stability, and growth, 1964.

© Benner P., Grundel S., Himpe C., Huck C., Streubel T., Tischendorf C. Gas Network Benchmark
Models, 2018.
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DAEs are also referred to as degenerate DEs, descriptor systems, singular
systems, operator-differential equations, DEs or dynamical systems on manifolds,
abstract evolution equations, PDAEs and DEs of Sobolev type.

Consider a semilinear DAE
d
a[AX] + Bx = f(t,X), (1)

where f € C(.7 xD,Y), 7 C[0,00) is an interval, A and B are closed linear
operators from X into Y with domains D and Dy respectively,

D =Dy NDg # {0} is a lineal (linear manifold), X and Y are Banach spaces, Dy
and Dg are dense in X.

The operators A, B can be degenerate (noninvertible).

We consider the initial value problem (IVP) for the DAE (1) with the initial
condition

X(t()) = Xy. (2)

A function x € C([to,t1),X) is said to be a solution of (1) on [to,t1) (t1 < oo) if
the function Ax is continuously differentiable on (to,t1) and x(t) satisfies (1) on
[to,t1). If the function x(t) additionally satisfies the initial condition (2), then it is
called a solution of the initial value problem (1), (2).
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Denote by p =p(A,B):={A € C|3I(AA+B) ! € L(Y,X)} the set of the
regular points A of the pencil AA+B (A € C is a parameter). The set p(A,B) is
open, and the resolvent as the operator function R: p — L(Y,X) is holomorphic on
p(A,B).

The pencil AA + B is called regular if p(A,B) # 0 and singular if p(A,B) =0

In general, here X,Y are complex Banach spaces (BSs). If X, Y are real BSs, then the
pencil AA+B is called regular if p = p(AB) = {AeC| JAA+B) T e L(Y,X)} £0,
where the operators A, B and the complex BSs X, Y are the complex extensions of A, B
and the complexifications of X, Y, respectively.

Let X=R" and Y =R™, i.e., A,B € L(R*,R™).

The pencil AA + B is called regular if n =m =rk(AA +B). Otherwise, if
n#m or n=m and rk(AA + B) < n, the pencil is called singular or nonregular
(irregular).

The operator pencil AA + B, associated with the linear part & [Ax]+ Bx of the
DAE (1), is called characteristic. If the characteristic pencil is smgular
(respectively, regular), then the DAE is called singular (respectively, regular), or
nonregular, or irregular.

Notice that the system of equations corresponding the DAE with the singular
characteristic pencil may be underdetermined or overdetermined.
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Index of the regular pencil
Let the following conditions hold:

@ The pencil P(A) =AA +B is regular for all A from some neighborhood of the
infinity, i.e., there exists a number R > 0 such that each A with [A| >R is a
regular point of P(1).

@ The point A =0 is a pole of the resolvent R(A) =P 1(1) = (AA+B) ! of
order r. This is equivalent to the fact that the resolvent R(u) = (A +uB) !
of the pencil A+ uB has a pole of order v =r+1 at the point 4 =0.

Then P(A) is called a regular pencil of index v (v € N).

If there exists the inverse operator A~ € L(Y,X) (or 4 =0 is a regular point of
the pencil A+ uB) and Dg D Dy, then P(1) is a regular pencil of index 0.

The above definition can be reformulated in the following way.

Let condition 1 hold and v € N be the least number such that for some constants
C,R > 0 the estimate

IR <CIA[*™!, A =R, 3)

or the equivalent estimate |[R(u)|| < Clu|™v, |u|<R7L, holds, then P(1) is a
regular pencil of index v.

Notice that for a regular pencil P(A) acting in finite-dimensional spaces, there is
always a number v € N for which the condition (3) is satisfied.
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Direct decompositions of spaces and the associated projectors

Let P(A) = AA + B be a regular pencil of index v.

Then there exists the pair of mutually complementary projectors Py : D — Dy
(P;Pjx = §;;Pix, (P1+P2)x=x, x € Da) and the pair of mutually
complementary projectors Qi: Y = Yy (QiQ; = 8;Qi, Q1 +Q2=1y), k=12,
which generate the decompositions of D and Y into the direct sums

D=D;+D,, Y=Y;4Y,, Dy:=PD, Yi:=QY, k=12, (4)
such that AD, C Yi and BD, C Yy, k=1,2.
The restricted operators Ay := A‘Dk' Dy — Yy and By := B‘Dk: Dy — Yy,
k = 1,2, are such that there exist A;' € L(Y;,D1) and B,' € L(Y3,D»).
Thus, A, B are the direct sums of the operators Aj, Ay and By, Ba:

A:A1+A2, B:B1+B2: Dl-‘;—DQ —>Y1+Y2 (5)

If P(A) is a regular pencil of index not higher than 1, then Ay =0.

[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear differential
operator equations, Nonlinear Oscillations, 2001]

[Vlasenko L.A. Evolution Models with Implicit and Degenerate Differential Equations.
2006 (in Russian)].
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The projectors can be constructively determined by using contour integration

R f(xA+B)—1Adx, Q= = ]{A(AA+B)‘1dA,
2mi 2mi 6
s AR (6)
PZZIX_Pla 2:IY_Q1'

[Rutkas A.G., Vlasenko L.A. Nonlinear Oscillations, 2001] (as well as other works
by Rutkas, Vlasenko and co-authors)

or by using residues

1 1
PlzReS<(A+yB) A)7 QIZRQS(A(A—HJB) )
H=0 1 =0 1

Py =Ix — Py, Q2 =1y — Q.

[Filipkovska, M.S.: Two combined methods for the global solution of implicit
semilinear differential equations with the use of spectral projectors and Taylor
expansions. Int. J. of Computing Science and Mathematics 15(1), 1-29 (2022)]

[Filipkovska M.S. Combined numerical methods for solving time-varying semilinear
differential-algebraic equations with the use of spectral projectors and
recalculation, 2022 (In review)]
https://doi.org/10.48550/arXiv.2212.00012

(7)
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Let X =R" and Y =R™.

Thus, we consider the DAE (1): 4 [Ax]+Bx =f(t,x), where A,B € L(R*,R™),
fe C(J xD,R™), 7 C[0,0) is an interval, D C R™ is an open set.

The characteristic pencil AA + B is singular (i.e., n #m or n =m and

rk(AA+B) <n).

The block form of a singular pencil of operators and the associated direct
decompositions of spaces and projectors

Statement.
For operators A,B: R® — R™, which form a singular pencil AA + B, there exist
the decompositions of the spaces

R* = X, +X, =X, +Xo, +Xp, R™ =Y 1Y, =Y, +Y,, 1Y, (8)

such that with respect to the decompositions R® = X, +X,., R™ =Y +Y, the
operators A, B have the block structure

A=(136S zg),B:(]?)s lé)):xs+xr—>Ys+Yr (Xs X Xp = Y5 x Ys), (9)
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where A = A|XS,Bs = B|XS: Xs—Ysand A, = A|Xr,Br = B|Xr: X; = Y., that
is, the pair of “singular” subspaces {X;,Ys} and the pair of “regular’ subspaces
{X;,Y;} are invariant under the operators A, B,

and (if rank(1A +B) < n,m) with respect to the decompositions

Xg =X, +X,,, Vs =Y, +Y,, (10)
the “singular” blocks Ag, Bg have the block structure

A n 0 B n Bund i i
As = < %e 0) ) Bs = (Bgoev 0 ) : Xsl +XS2 - Y51+Y52’ (11)

where the operator Age,: X5, — Y5, has the inverse A} € L(Ys, Xs,) (if

gen
Xs; #{0}), Bgen: Xs; = Yy, Buna: Xs, = Yy, and Boy: X, = Y,
If rank(AA + B) = m < n, then the structure of the singular blocks takes the form
Ay =(Agen 0),By=(Bgen Buna): Xy, +Xs, = Y (12)
and Ys, =Y, Y5, ={0} in (8) and, accordingly, in (10).
If rank(AA + B) = n < m, then the structure of the singular blocks takes the form

Agen Boen )
As:( %e >7Bs: <Bg0ev>:Xs _>Y51+Ysz (13)

and Xg, =X, X5, = {0} in (8) and, accordingly, in (10).
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The direct decompositions (8) generate the pair S, P, the pair F, Q, the pair Sy,
So and the pair Fy, Fy of the mutually complementary projectors

S:R" 5 X,,P: R" > X,, F:R™ 5 Y,,Q: R™ 5 Y,, (14)
Si: R™ — X, Fi:R™ 5 Y, i=1,2, (15)

where F; =F, Fy =0 if rank(AA+B)=m <n, and S; =S, S2 =0 if
rank(AA +B) =n <m. These projectors have the properties FA = AS, FB = BS,
QA = AP, QB =BP, ASs =0, FoA = 0, F,BS, = 0.

The converse assertion that there exist the pairs of mutually complementary
projectors (14), (15) satisfying the properties indicated above, which generate the
direct decompositions (8), is also true.

[1] Filipkovska M.S. Lagrange stability and instability of irregular semilinear
differential-algebraic equations and applications. Ukrainian Math. J. 70(6), 947-979
(2018). https://doi.org/10.1007/s11253-018-1544-6

[2] Filipkovska (Filipkovskaya) M.S. A block form of a singular pencil of operators and a
method of obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser.
“Mathematics, Applied Mathematics and Mechanics”. 89, 33-58 (2019) (in Russian)
https://doi.org/10.26565/2221-5646-2019-89-04

[3] Filipkovska M. Criterion of the global solvability of regular and singular differential-algebraic equations.
J. of Mathematical Sciences (2024) [in Production]. https://doi.org/10.1007/510958-024-07152-7
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Introduce the extensions of the operators Ag, A;, B, B, from (9) to R™:
As=FA, A, =QA, B,=FB, B,=QB. (16)
Then the operators A, B, A,, B, € L(R*,R™) act so that Ag,Bs: R* - Y, A,,B,: R* = Y,,
X, CKer(Ay), X, Cc Ker(Bg), X; CKer(A,), Xs CKer(B,), and
‘AS‘XS:Asv ‘Ar‘Xr:Ara ‘BS‘XS:st Br|Xr:Br' (17)

Further, introduce extensions of the operators (blocks) from (11) to R™ as follows:

-Agen = FlAa Bgen = Fllea Bund = FIBSZa Bov = FZBSL (18)
Then Agen; Bgen;Bund; Bov € L(R®,R™) act so that AgenR* = AgenXe; = Yo, (Xag+X: =Ker(Agen)),
Bent BY = Yoy, Xap 1 X, C Ker(Byen), Buna: B 5 Yy, Xy $X, CKer(Buga), and Boy: B - Yy,
Xso+X;: CKer(B,y ), and

Agen|xsl :Agen; Bgen|XSl = Bgen; Bund|XS2 :Bund; Bov|xsl = Boy. (19)

Extensions of the operators (blocks) from (12) and (13) to R™ are introduced in a
similar way.
The operator Aé;p € L(R™ R™) defined by the relations

Aen Agen =81, Agen Agen) =F1,  Agen) =81 Ak,
where F; =F if rank(AA+B)=m <nand S; =S if rank(AA+B)=n <m, is
the semi-inverse operator of Agey.
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Assume that the regular block A A, + B, is a regular pencil of index not higher
than 1. Then there exists the pairs Pi: X, = Xj, i=1,2, Qj: Y = Yj, j=1,2, of
mutually complementary projectors which generate the direct decompositions

X, =X 4Xs, Yo=Y 4Y, (20)
such that the pairs of subspaces X, Y; and X5, Y5 are invariant under A, By,

and the restricted operators A; = Arix :X; > Y;, B = Brix- Xi—Y;, i=1,2,

are such that A; =0 and there exist Al_1 e L(Y1,X1) (if Xy #{0}) and

B;l € L(Y2,X2) (if X2 # {0}). We introduce the extensions P;, Q; of the
projectors P;, Q; so that X; = P;R®, Y; = Q;R™, i = 1,2, and the extensions of
the operators A;, B; to R*

Ai=QiA, B =QB, i=12. (21)

The extended operators A;,Bo € L(R®,R™) have the semi-inverse operators
ATY 85 e L(Rm RY).
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Reduction of the singular (nonregular) DAE to a system of ordinary
differential and algebraic equations

In what follows, it is assumed that the regular block AA, + B,, where A,, B, from
(9), is a regular pencil of index not higher than 1.

The pair Py, Py and the pair S, So of mutually complementary projectors
generate the decomposition of the set D into the direct sum of subsets

D =D, +D,+D; 4Dy, D, =8D, D;=PD, i=12, (22)

(Dg; €Xy;, Di € X (i=1,2), where Xg;, Xj are defined in (8), (20)).
By using the above projectors, the singular semilinear DAE (1) is reduced to the
equivalent system

%(Aslx) =F, [f(t,x) — Bx], (23)
%(APlx) = Qu[f(t,x) — Bx], (24)
0 = Qu[f(t,x) — Bx], (25)
0= Fy[f(t,x) — Bx], (26)

where F; =F, Fy =0 if rank(AA+B)=m <n, and S; =S (S, =0) if
rank(AA+B)=n <m.



With respect to the decomposition R* = X+X, = X;, +X;, +X;+X2 any x € R®
can be uniquely represented as

X =Xg +Xr = X5 +Xsp T Xp; T Xp, (XS:X81+XE‘-27 xr:xp1+xpz)’ (27)

where x; = Sx € X, x, =PxeX,, x,, =Sixe Xy, xp, =PixeXj, i=1,2.
The system (23)—(26) is equivalent to

%o, = ALt (F1f (t,%) — BgenXs; — BundXs, ), (28)

p1 :AYl)(Qlf(tvx)_ngm)v (29)
BV Quf (t,x) — xp, =0, (30)
Fof(t,x) — Boyxs; =0, (31)

where A(g;}), A(l_l), 3(2—1) are the semi-inverse operators and x,, € Ds;, xp, € D;.
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The derivative V(zg)’(2g) of a scalar function V € C*(.7 x K1,R), where
Ks1 € Dg, x Dy is an open set, along the trajectories of equations (28), (29) has
the form

V(28),(29) (t,Xsl aXpl) = atV(t,Xsl ;Xp1)+

+ a(X517Xp1)V(t7Xsl vXp1) -Y(t,xsl Xs23Xpy aXp2) =
= atV(t,Xsl 7XD1) + axsl V(t7xsl ’XPI) ’ [‘A(gen) (Flf( ) Sgenxsl - Buﬂdez)} +
Oy V(65 1) - |4 (QuE(t) = Buxy ) (32)

(-1)
Agen’ (F1E(t BgenXs; — BundXs:
Y(t,xS17X527xplyxp2): ( & ( ! ((Q) (t )g() % < ) d 2)>,
1 9 — Plapy

where x = xg, +Xg, +Xp; + Xp, (Xsi =Six, Xp, = Pix, 1=1,2), (x5,,%p,) € Ks1,
Xsy € Dy, Xp, € Do.
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Notice that the regular semilinear DAE (1) (with the characteristic pencil of index
not higher than 1) can be reduced to the equivalent system

Xp; :‘A(l_l)(Qlf(t’x)_glxpl)v (33)
B Quf (6,%) —xp, =0, (34)
where xp, =Pix € D;, D; =P;D, i=1,2, D=D;4Ds, x =xp, +Xp,-
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Definitions.

A solution x(t) (of an equation or inequality) is called global if it exists on the
interval [tg,»0) (where tg is a given initial value).

A solution x(t) has a finite escape time or is blow-up in finite time and is called
Lagrange unstable if it exists on some finite interval [tp,T) and is unbounded,
that is, there exists T < o such that lim¢_1_g ||x(t)]| = +co.

A solution x(t) is called Lagrange stable if it is global and bounded, that is, x(t)
exists on the interval [to,e0) and supyc(, o) [|x(t)]| < oo

The DAE (1) is called Lagrange unstable (respectively, Lagrange stable) for the
initial point (t9,xo) if the solution of IVP (1), (2) is Lagrange unstable
(respectively, Lagrange stable) for this initial point. The DAE (1) is called
Lagrange unstable (respectively, Lagrange stable) if each solution of IVP (1),
(2) is Lagrange unstable (respectively, Lagrange stable).
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Solutions of the equation (1) are called ultimately bounded, if there exists a
constant K > 0 (K is independent of the choice of tg, x¢) and for each solution
x(t) with an initial point (to,xo) there exists a number 7 = 7(tg,x0) > to such that
|Ix(t)]] < K for all t € [to + T,e2). The similar definition holds for solutions of
equation (1) with the initial values ty € 7, xg e M C D.

The equation (1) is called ultimately bounded or dissipative, if for any
consistent initial point (tp,xo) there exists a global solution of the initial value
problem (1), (2) and all the solutions are ultimately bounded. If the number ©
does not depend on the choice of tg, then the solutions of (1) are called uniformly
ultimately bounded and the equation (1) is called uniformly ultimately bounded or
uniformly dissipative.

The equation (1) is called ultimately bounded or dissipative for the initial
points (to,xg) € 7 x M, if these initial points are consistent and for the initial
values tg € .7, xo € M there exist global solutions of the IVP (1), (2) and the
solutions are ultimately bounded.

The Lagrange stability and ultimate boundedness of explicit ordinary differential equations were

studied in [La Salle J., Lefschetz S., Stability by Liapunov's Direct Method with Applications, 1961] and
[Yoshizawa T. Stability theory by Liapunov's second method, 1966], respectively.
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Consider the manifold associated with the singular semilinear DAE (1):
Li, = {(t,x) € [ts,00) x R" | (F2 4+ Q2)[f(t,x) — Bx] = 0}, (35)

where t, € 7. It can be represented as
Ly, ={(t,x) € [ts,00) x R™ | Fy[f(t,x) — Bx] = 0, Q2[f(t,x) —Bx] =0} or
Ly, = {(t,x) € [t«,0) x R™ | (t,x) satisfies equations (30), (31)}. Thus, a point
(t,x) € .7 x D belongs to Ly, if and only if it satisfies equations (30), (31) or the
equivalent ones.

Also, consider the manifold associated with the regular semilinear DAE (1):

Ly, = {(tx) € [tx,00) X R" | Q2 [f(t,x) — Bx] = 0}, (36)

where t, € 7. If the DAE (1) is regular, then we can set S; =F; =0,i=1,2, and
reduce the manifold (35) to (36).
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For the singular semilinear DAEs we will consider the following results:

o The criterion of the global solvability. Previously, theorems on the
existence and uniqueness of global solutions and on the blow-up of
solutions will be presented.

One of the advantages: the restrictions of the type of the global Lipschitz condition
(including contractive mapping) are not used.

o The conditions of the Lagrange stability and uniform ultimate
boundedness (dissipativity).

Mathematical models of nonlinear electrical circuits and gas networks, which are
described by semilinear DAEs, are considered.

[Filipkovska M. Criterion of the global solvability of regular and singular
differential-algebraic equations. J. of Mathematical Sciences (2024) [in
Production] https://doi.org/10.1007/s10958-024-07152-7]

[Filipkovska M. Qualitative analysis of nonregular differential-algebraic equations
and the dynamics of gas networks. Journal of Mathematical Physics, Analysis,
Geometry, Vol. 19, No. 4, 719-765 (2023).

https://doi.org/10.15407 /magl9.04.719]
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[Filipkovska2024] = [Filipkovska M. Criterion of the global solvability of regular and
singular differential-algebraic equations. J. of Mathematical Sciences (2024) [in
Production] https://doi.org/10.1007/510958-024-07152-7]

Below, the theorems and corollaries from [Filipkovska2024] are presented.

Theorem 1 (the global solvability).

Let f € C(.Z x D,R™), where D CR"™ is some open set and .7 = [t4,00) C [0,00), and let
the operator pencil AA + B be a singular pencil such that its regular block AA; + By,
where A, By are defined in (9), is a regular pencil of index not higher than 1. Assume
that there exists an open set Mg; C Dg, +D; and sets Mg, C Dg,, My C Dy such that
the following holds:

@ For any fixed t € .7, x5, +xp,; € Mg1, Xs, € Mg, there exists a unique xp, € M2
such that (t,xs; +xs, +Xp; +Xp,) € Ly, (the manifold Lg, has the form (35)
where t, =t4).

@ A function f(t,x) satisfies locally a Lipschitz condition with respect to x on .7 x D.
For any fixed t. € 7, x = x5, +x{, +x},, +x5, (x5, = Sixs, x5, =Pixy, i=1,2)
such that xg, +x5, € Mg1, x5, € Ms,, x5, € M3 and (t4,x4) € Ly, , there exists a
neighborhood N (t.,x3, x5, x5, ) = Us, (t+) x U, (x5, ) X Ng, (x5,) x Us, (x5,) C
T xDs, x Dg, x D1, an open neighborhood Ug(x},,) C D2 (the numbers 6,€ >0
depend on the choice of t4, x.) and an invertible operator ®;_,, € L(X>3,Y3) such
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that for each (t,xs,,Xs,,Xp, ) € Ng(tx,X5, X5, ,Xp, ) and each x , €Ue(x),), i=1,2,
the mapping

W (t,Xs, Xsp,Xpy Xpy) 1= Qaf (t,%s; +Xsy +Xp, +Xp,)—
—B|y,%p,: 7 xDs; x Dy, xD1 xDy =Yz (37)

satisfies the inequality

H\P(tvxsl 7XS27XP17X%)2) lp(t Xs1,Xs2:XpyXp ) Dy, X*[ P2 XIZ)Q]H Sq(a,S)HXIl)Z _();IZE)SH’
where q(8,€) is such that lim q(8.e) < ||®; % ||~
5,e—0 o

Q If Mg # X, +X1, then the following holds.
The component xg, (t) +xp, (t) = (S1 +P1)x(t) of each solution x(t) with the
initial point (tg,Xo) € Lt+1 for which (Sl +P1)X0 € Mg1, Soxg € M, and
Paxg € Ma, can never leave Mg (i.e., it remains in Mg; for all t from the maximal
interval of existence of the solution).
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Q If Mg is unbounded, then the following holds.
There exists a number R >0 (R can be sufficiently large), a function
V € C! (7 x Mg,R) positive on .7 x Mg, where
MR = {(%s;,Xp,) € Xs; X X1 | Xs; +Xp; € M1, [|Xs; +%p, || > R}, and a function
X € C(T x (0,0),R) such that:

4.a lim V(t,Xs,,Xp, ) = +o0 uniformly in t on each finite interval
1y ey )=+ v
51°P1

[a,b) C .T;

(4.b) for each t € 7, (x5,,xp,) € MR, Xs, € Ms,, Xp, € My such that

(t,%s, +Xs, +Xp; +Xp,) € Ly, , the derivative (32) of the function V along the
trajectories of equations (28), (29) satisfies the inequality

V(28),(29) (t7X51 Xp1 ) <X (t,V(t7Xsl Xp1 ))’ (39)

(4.c) the differential inequality v < x(t,v) (t € J7) does not have positive solutions
with finite escape time.

Then for each initial point (tg,xo) € L, such that (S; +P1)xg € Mgy, Saxo € Mg, and
Paxg € Ma, IVP (1), (2) has a unique global solution x(t) for which the choice of the
function ¢s, € C([tg,),Ms,) with the initial value ¢s, (tg) = Saxg uniquely defines the
component Sox(t) = @s, (t) when rank(AA +B) < n (when rank(AA + B) =n, the
component Spx is absent).
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Theorem 2 (the global solvability).
Theorem 1 remains valid if condition 2 is replaced by

@ A function f(t,x) has the continuous partial derivative with respect to x on 7 x D.
For any fixed t € 7, x. = x5, +xg, +x5,, +xp, such that x§, +x;, € Mgy,
x5, € Mg,, x5, € M and (tx,%x«) € Ly, , the operator

q)t*.,x* = [QX(Q2f) (t*,X*) — B] Py: X0 —>Ys (40)

has the inverse (I)t;lx* € L(Y2,X2).

Corollary 1. Theorem 1 remains valid if condition 3 is replaced by condition 3 given in
Corollary 3.4 from [Filipkovska2024].

Corollary 2. Theorem 1 remains valid if condition 4 is replaced by

Q If Mg is unbounded, then the following holds.

There exists a number R > 0, a function V € C!' (.7 x Mg R) positive on .7 x Mg,

where Mg = {(xs,,xp, ) € X5, x X1 | x5, +%p, € Ms1, ||xs, +xp, || >R}, and

functions k € C(7,R), U € C(0,0) such that: lim V(t,xs,,Xp, ) = 400
‘|<X517Xp1)“_>+°°

uniformly in t on each finite interval [a,b) C .7; for each t € .7, (x5, ,%Xp,) € MR,

X3, € Ms,, Xp, € M2 such that (t,xs, +xs, +Xp, +Xp,) € Lg, , the inequality

. < d .
V(28)=(29) (6:%s;,%p;) < k(t)U(V(t>XD1)) holds; VJ[; W‘;) = (vo>0isa

constant).
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Corollary 3.  If in the conditions of Theorem 1 the sets M, Mg, and M, are
bounded, then equation (1) is Lagrange stable for the initial points (ty,x0) € L¢,
for which (Sl +P1)X0 € Mq1, Saxp € N[s2 and Paxg € Mos.

Remark 1. Note that if the conditions of Corollary 2 hold, then equation (1) is
uniformly ultimately bounded (uniformly dissipative) for the initial points
(tg,Xo) S Lt+ for which (Sl +P1)X0 € My, SQX() S 1\/[52 and Pyxg € M.

Remark 2. The sets Mg, Ms,, My can be considered as attracting sets in the

sense that if a solution starts in the set Mg +M;,+M> (i.e., (S1+P1)xo € M,
Saxg € Mg, and Paxg € M), then it can never thereafter leave it.
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Theorem 3 (the blow-up of solutions (Lagrange instability) of singular semilinear
DAEs). Let f € C(.7 xD,R™), where D C R" is some open set and J = [t4,) C [0,00),
and let the operator pencil AA + B be a singular pencil such that its regular block
AA;+ By, where A, B, are defined in (9), is a regular pencil of index not higher than 1.
Assume that there exists an open (unbounded) set Mg; C Dy, +D; and sets Mg, C D,
My C Dy such that condition 1 of Theorem 1, condition 2 of Theorem 1 (or condition 2
of Theorem 2) and condition 3 of Theorem 1 (or condition 3 of Corollary 1) hold and:

Q There exists a function V € C! (7 x Msl,R) positive on .7 x Mgy, where

~

M1 = {(xs, ,Xp; ) € Xs; x X1 | x5, +Xp, € Mg1}, and a function

X € C(T x (0,00),R) such that:

(4.a) for each t €., (xs,,%Xp,) € 1\7131, Xsy, € Ms,, Xp, € M2 such that

(t,%s, +Xs, +Xp; +Xp,) € Ly, , the derivative (32) of the function V along the
trajectories of equations (28), (29) satisfies the inequality

V(28),(29) (t7X51 Xp1 ) >X (t,V(t7Xsl Xp1 ))’ (41)

(4.b) the differential inequality v > x(t,v) (t € 77) does not have global positive
solutions.
Then for each initial point (tg,xg) € L¢, , for which (S1 +P1)xg € Mg1, Sa2xg € Mg, and
Paxg € Ma, IVP (1), (2) has a unique solution x(t) for which the choice of the function
95, € C([to,),Ms, ) with the initial value ¢, (tp) = Sax¢ uniquely defines the component
Sox(t) = @5, (t) when rank(AA +B) <n (when rank(2A +B) =n, the component Sax
is absent), and this solution has a finite escape time (i.e., is blow-up in finite time).



Corollary 4. Theorem 3 remains valid if condition 4 is replaced by

@ There exists a function V € C! (ﬂ X Msl,R) positive on 7 x 1\7151, where
Mg, = {(xs, xp,) € X, x X1 | X5, +Xp, € Ms1}, and functions k € C(.7,R),
U € C(0,0) such that: for each t € F, (xs,,xp,) € 1\7131, Xsy, € Ms,, Xp, € M2 such
that (t,xs, +Xs, +Xp; +Xp,) € L¢, the inequality

. e © d
V (28) (29) (t:Xs, Xy ) > k(6) U(V(txs, xp, ) holds; kf k(t)dt = o and Vfo va) <o

(ko,vo > 0 are constants).
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Theorem 4 (The criterion of global solvability of singular semilinear DAEs).

Let f € C(.Z x D,R™), where D CR"™ is some open set and .7 = [t4,00) C [0,00), and let
the operator pencil AA + B be a singular pencil such that its regular block AA; + By,
where A, By are defined in (9), is a regular pencil of index not higher than 1. Let there
exist an open set Mg; C Dg, +D; and sets Mg, C Ds,, My C D2 such that conditions 1,
2 and 3 of Theorem 1 hold.

Then for each initial point (tg,xg) € Ly, such that (S; +P1)xg € Mgy, Sa2xo € Mg, and
Poxg € Ma, IVP (1), (2) has a unique solution x(t) for which the choice of the function
95, € C([to,),Ms, ) with the initial value ¢, (tp) = S2x¢ uniquely defines the component
S2x(t) = @5, (t) when rank(AA +B) <n (when rank(AA +B) =n, the component Sax
is absent), and this solution is global if condition 4 of Theorem 1 holds and has a finite
escape time if condition 4 of Theorem 3 holds.

Corollary 5. Theorem 4 remains valid if any of the following replacements (or all of
them) take place:

condition 2 of Theorem 1 is replaced by condition 2 of Theorem 2;

condition 3 of Theorem 1 is replaced by condition 3 of Corollary 1;

condition 4 of Theorem 1 is replaced by condition 4 of Corollary 2,

condition 4 of Theorem 3 is replaced by condition 4 of Corollary 4.
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Several examples demonstrating the verification of the conditions of the obtained
theorems and their effectiveness are presented in

[Filipkovska M. Criterion of the global solvability of regular and singular
differential-algebraic equations. J. of Mathematical Sciences (2024) [in
Production] https://doi.org/10.1007/s10958-024-07152-7]

In addition, in this paper, a relationship with the results of the paper [Filipkovska
M. Qualitative analysis of nonregular differential-algebraic equations and the
dynamics of gas networks. Journal of Mathematical Physics, Analysis, Geometry,
Vol. 19, No. 4, 719-765 (2023). https://doi.org/10.15407/magl9.04.719)
is described.
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The model of a radio engineering device

A voltage source e(t),
nonlinear resistances ¢, ¢, Y,
a nonlinear conductance h,
a linear resistance r,
a linear conductance g,
an inductance L and
a capacitance C are given.
Let e(t) € C([0,00),R),
@(y), @o(y), ¥(y),h(y) € C' (R,R),
r,g, L, C>0.

The model of the circuit Fig. 1 is described
by the system with the variables

Fig. 1. The diagram of the electric circuit

x1 =1Ip, x2=Uc, x3=L L 0 0
d
Lo+ 1 = e(t) — o x1) — plxa). (42) A-( 0 C 0 )
0 0 O
d
Caxz +gx9 —X3 = —h(xz), (43) 0 1 r
X9 +IX3 = l[l(xl—X3)—(P(X3). (44) B= 0 g -1
0 1 r
The vector form of the system is the DAE
e ysrem ! e(t) — gn(x1) — (x3)
a[AX] +Bx =1{(t,x), (45) f(t,x) = —h(x2)
where x = (x1,x2,x3)T € R? Y(x1 —x3) = ¢(x3)
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This model has been studied in [Filipkovska M.S. Lagrange stability of
semilinear differential-algebraic equations and application to nonlinear electrical
circuits. J. of Math. Phys., Anal., Geom., Vol. 14, No. 2, 169-196 (2018).
https://doi.org/10.15407/magl4.02.169]. Below we present some results
from this paper.

Lagrange stability of the model of a radio engineering device.

The particular cases.

Po(y) = alyzk;, P(y) = oy” ™ wly) = azy™ ! h(y) = ouy™ (46)
@o(y) = ouy™ ", @(y) = o siny, y(y) = agsiny, h(y) = aysiny, (47)
k,1,j,seN, o >0,i=14, y€R.

For each initial point (to,x°) satisfying x5 +rxJ = y(x? — x3) — 9(x3), there
exists a unique global solution of the IVP (45), x(tg) = x°
(x(to) = (I, (to), Uc(to),I(to))T) for the functions of the form (46), if j <k, j <s
and ag is sufficiently small, and for the functions of the form (47), if oz + o3 <r.

o0

If, additionally, sup |e(t)| <-4 or [ |e(t)|dt <+oo, then for the initial points
t€[0,00) to

(to,x°) the DAE (45) is Lagrange stable (in both cases), i.e., every solution of the
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DAE is bounded. In particular, these requirements are fulfilled for voltages of the
form

(t—a)2

e(t) =B(t+a) " e(t)=Pe * e(t)=Be o> ,e(t)=Psin(wt+0), (48)

where ot >0, f,0,0 € R, n€N, 0 €[0,2x].
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Lagrange stability. The numerical solution
L=500-10% C=05-10"%r=2, g=0.2, to =0, xo = (10,— 10,5)T
@o(y) =v*, @(y) =siny, y(y) =siny, h(y) =siny, e(t) = (26+10)~>

700 800 900 1000

100 200 300 400 500 600

0 100 200 300 400 500 600 700 800 900 1000 o
t

Fig. 2. The current Iy, (t) Fig. 3. The voltage Uc(t)

I(t)

00 50 600 700 800

Fig. 4. The current I(t)
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Lagrange stability. The numerical solution

L=500-10°,C=05-10"°,1=2, g=0.2, to =0, xo = (0,0,0)T,
@o(y) =vy> o(y) =y h(y)=y* w(y) =y> e(t) = 100e "sin(5t)

006

(1)

Uc(t)

Fig. 5. The current Ij,(t) Fig. 6. The voltage Uc(t)

8

Fig. 7. The current I(t)
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The global solution. The numerical solution

L=1000-10"% C=0.5- 106r_2g 03 to =0, x° = (0,0,0)T
oo(y) =v° o(y) =y w(y) =" h(y) =y°, e(t) =

Fig. 8. The current Iy, (t) Fig. 9. The voltage Uc(t)

I(t)

0 50 100 150 200 250 300 350 400 450 500
t

Fig. 10. The current I(t)

M. Filipkovska (FAU) 36 /48



Lagrange instability of the radio engineering device model

Consider the system (42)—(44) with the nonlinear resistances and conductance

oo (y) =—y* o(y) =y" w(y)=y" hy) =y*. (49)
It is assumed that there exists Mo = sup |e(t)| < 4. Choose
tE[t07°°)
Q= {(Xl,XZ)T €R?|x; >m;,m = max{l—i—\/Me, ¥/g+171, 3CL1,
\/max{Sfl(L(rC)*l—r),O}},X2 < —rX1 — X} —ma, (50)

m, = max{g — ZCL‘lr,O}}.

Then for any initial moment to and any initial currents and voltage Iy, (tg),
Uc(to), I(to) satisfying Uc(to) +1I(to) = w(IL(to) —I(to))—
—@(I(to)) and such that (I, (to), Uc(to))T € Q there exists a unique distribution
of the currents and voltages in the circuit Fig. 1 only for to <t < T ([to,T) is
some finite interval ) and the currents and voltages are unbounded.

It means that there exists a unique solution of the Cauchy problem for the DAE
(45) with the functions (49), e(t) such that sup |e(t)| < 4-eo, and the initial

t€fto,)

condition x(to) = (IL(to), Uc(to),L(to)) T, and this solution has a finite escape
time.



Lagrange instability. The numerical solution

L=10-10% C=0.5-10%r=2,g=0.2,
Oo(x1)=—x3, 9(x3)=x3, h(xa)=x3, w(x1 —x3)=(x1 —x3)>, e(t)=2sint,
to = 0, xo = (2.45, — 20.625125,2.5)T

x10' x10'
45
5000
4
4500
-2
35
4000
3500 -4 3
3000 . 25
= = -6 =
£ 2500 < P
~ 2000 > B
-8 15
1500
1000 10 N
05
500 1
14
o 0.0058 0.01 0.015 0.02 0.025 o 0.005 0.01 0.015 0.02 0.025 o 0.005 0.01 0.015 0.02 0.025

Fig. 11. The current Ir,(t) Fig. 12. The voltage Uc(t) Fig. 13. The current
I(t)
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Model of a gas flow for a single pipe

We consider the mathematical model of a gas pipeline which consists of the
isothermal Euler equations of the form

ap = —0k9, (51)
99 = —0xp — gPSiope — 0.5AD " @|e|p (52)

and the equation of state for a real gas in the form
p = RTopz(p), (53)

e x€[0,L], t €[0,t1) C [0,0), where [to,t1) is the time interval, L < oo is the
pipe length and Ty is the temperature

o p=p(tx), ¢ =0(t,x) (¢ :=pv, v is the velocity) and p = p(t,x) are
respectively the density, flow rate and pressure

@ g is the gravitational constant, and R is the specific gas constant
@ A is the pipe friction coefficient, and D is the pipe diameter

@ Siope(x) = dh(x)/dx denotes the slope of the pipe, where h =h(x) is the
height profile of the pipe over ground

e 7z =17(p) is the compressibility factor

The modeling of gas networks is described, e.g., in [P. Benner, S. Grundel, C. Himpe, C.
Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models, 2018]



OO =
O = O

0 0o -£ 0 0
Denote A= 0|, B=| —gsiope 0 _%  f(u)= _%WTw and
0 0 0 -1 RTopz(p)

u=(p,p,p)T. Then we can write the system (51)—(53) as

A Su(t) + Bu(t) = £(u(t)), (54)
where u = u(t)(x) = (p(t,x),0(t,x),p(t,x))T, x € [0,L], t € [0,t1). The initial

condition has the form:

u(O) = Uo, Up = UO(X) = (p (O,x),(p(O,x),p(O,x))T, X € [OvL]v (55)
where p(0,x) is chosen so as to satisfy the equation (53) for t =0, x € [0,L]. We
will assume that u(t,x) satisfies suitable boundary conditions, for example,

¢(t,0) =@(t), p(t.0)=p(t), te [Ovtl)v (56)
i.e., u(t)(0) =u(t) = (p(t,0),¢(t),pi1(t))T, where @i(t) and p;(t) are given.
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A model of a gas network (in the isothermal case)

Describe a gas network as oriented connected graph G = (¥,&), where ¥
denotes a set of nodes (vertices), & denotes a set of edges, and each edge joins
two distinct nodes (i.e., there are no self-loops). We fix the orientation of edge
e € &, denoting its endpoints by v; and v, and assuming that the edge is oriented
from the left node v, to the right node v,.

We collect all nodes with a fixed pressure in #}se¢ and refer to them as
pressure nodes. All other nodes we collect in ¥ger. Accordingly, ¥ = Ypset U Ygset -

We denote the sets of edges corresponding to the pipes, valves and regulating
elements (regulators and compressors) by &y, Gval and &reg, respectively. Thus,
&= éopip U é()val U éoreg-

Introduce the vector p of the pressures of nodes u € #et, and the vectors
Qpip,r+ pip,l: Qval @and qreg Of flows at the right ends of pipes, at the left ends of
pipes, through valves and through regulating elements, respectively.

At the pressure nodes u € ¥pees, the pressure function
poet(t) = (... pset(t),.. ')EE'Vpset is given. At the nodes u € Y(set = ¥\ Ppset
(which include junction, demand and source nodes), the function
@t (t) = (... (t), .. ')EE“Vqset’ which specifies the relationships between the
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flows dpip,rs dpip,l, Gval and greg in @ Kirchhoff-type flow balance equation (see
(61) below), is given.

The mathematical model of a gas network consisting of pipes, valves,
regulators and compressors after applying spatial discretization (more precisely, a
topologically adaptive discretization of the isothermal Euler equations for pipes
and pipelines) has the form:

d

Aglp r dt ¢(p) + D (qp1p7 — Upip,l ) 07 (57)
d
dt 77 Upip,1 + D (Aplp r + Aplp l)p + fplp (p Qpip,1 ) 07 (58)
d

Dyvai— at Qval +fva1(p Qval, ) =0, (59)
Dreg EQreg reg (p, Qreg t) =0, (60)
Ap1p 19pip,1 + Ap1p rdpip,r T AalQyal + AregQreg = qset (t) (61)
fon(p) =0, (62)
fqb (qp1p7laqp1p7rqualvqreg) 07 (63)
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. (4Pip)] . ._ (,PIDTY.
where Apip) = (aij ’)izl-,----,\'f/qset\.,r Apipyr 1= (aij ’ )1:1,---,\'1/qset\.,'

j=17~~~7‘gpip‘ jzlww‘gpip‘
.— (qval). . (aTe8). .
Aval = () iz1,.. 7serl, AN Aveg 1= (255% )iz1, .. [74e |, Ar€ CONstant incidence
jzlv"'v‘gva.l‘ jzlvmv‘greg‘

matrices with the entries presented in [KSSTW22], D, := diag{...,L%,...}e€
D, := diag{...,f—z,...}eegpip, Dyl := diag{...,te,... }ecs,,, and

Dyeg := diag{...,lle,.. fecs, are constant diagonal matrices, where pe >0,
Ke = RsTo/Se (as above, T = const is the temperature and Ry is the specific
gas constant), S, and L, are the cross-sectional area and the length of pipe ¢,
respectively. Here p, dpipr, Qpip,l, Qval and qreg are unknown and the remaining
functions and parameters are given. f,ip(P,Apip,1,t), fvai (P:Qval,t) and freg (P,dreg,t)
are functions specified in [KSSTW22, p.5-7]; fyn(p) and fgb (dpip,1,dpip,rsQvalsQreg )
are given continuous functions.

[KSSTW22] = [T. Kreimeier, H. Sauter, S.T. Streubel, C. Tischendorf, and A.
Walther, Solving Least-Squares Collocated Differential Algebraic Equations by
Successive Abs-Linear Minimization — A Case Study on Gas Network Simulation,
Humboldt-Universitat zu Berlin, 2022, preprint].

(’E‘»pip ’
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We introduce an additional variable p = | py , and instead of (57) we

UE'Vqset
use the system

d
A;Tﬁp,r ap + Dq(apip,r — dpipt) =0,
p=0(),
which is equivalent to (57), taking into account the coefficient k.. Also, we rewrite
the function fy,i; (p,dpip,1,t), without changing its notation, as fpip (P,dpip.1,t)-
These system can be written in the form of the singular (nonregular) DAE
d

T [Ax] + Bx(t) = f(t,x), (64)
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where

0
p —fpip (P pip,1:t),
Opip,l —Iyal (paQVal 7t)
x = Qval f(t X) _ freg (p7Qregat)a
Qreg ’ ’ qset (t)
Qpip,r ¢(p)
p fon (P)

fqb (Qpip,l »dpip,r;dval aqreg)

T
AL .0 0 0 0 0
0o I 0 0 0 0
0 0 Dw 0O 0 0
A_| 0 0 0 0 De O
0o 0 0 0 0 0}
0O 0 0 0 0 0
0o 0 0 0 0 0
0O 0 0 0 0 0
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0 -Dg 0 0 D 0
0 0 0 0 0 D, (A;ﬂw + A;Fipﬁl)
0 0 0 0 0 0
0 0 0 0 0 0
B= 65
0 Apip7l Aval Areg Apip,r 0 ( )
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
The initial condition for the DAE (64) has the form
x(0) = xo, (66)

where xo = (p°,d0;, 1:0va1Areg-Anip D) T is chosen so that the values to, xo
satisfy the consistency condition.

[Filipkovska M. Qualitative analysis of nonregular differential-algebraic
equations and the dynamics of gas networks. Journal of Mathematical Physics,
Analysis, Geometry, Vol. 19, No. 4, 719-765 (2023).
https://doi.org/10.15407/magl9.04.719)
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Discussions

For the abstract semilinear DAE (1) with the regular characteristic pencil, the
criterion of the global solvability is obtained in a preprint. Here we suppose that
the pencil P(1) is a regular pencil of index v, where v € N is some number. Thus,
we consider higher-index regular abstract DAEs .
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Thank you for your attention!
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