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A system of di�erential and algebrai
 equations 
an be represented in the form

of an abstra
t evolution equation whi
h is often 
alled a di�erential-algebrai


equation (DAE), when it is 
onsidered in �nite-dimensional spa
es, and an

abstra
t DAE, when it is 
onsidered in in�nite-dimensional spa
es.

Any type of a PDE 
an be represented as an abstra
t DAE in appropriate

in�nite-dimensional spa
es, possibly, with a 
omplementary boundary 
ondition.

Types of DAEs

Nonlinear DAE: F(t,x,ẋ) = 0 su
h that it 
annot be redu
ed to the expli
it form

ẋ= f(t,x) (e.g., F(t,x,p) has the 
ontinuous partial derivatives in p, x and ∂
p

F(t,x,p) is
degenerate (noninvertible) for all (t,x,p) from the domain of de�nition of F)

Quasilinear DAE: A(t,x) d
dt

[D(t)x] = f(t,x) or A(t,x)ẋ+B(t)x= f(t,x), where A(t,x) is
degenerate

Semilinear DAE:

d

dt

[A(t)x]+B(t)x= f(t,x) or d

dt

[A(t)x] = f(t,x), where A(t,x) is
degenerate

Linear DAE:

d

dt

[A(t)x]+B(t)x= f(t), where A(t) is degenerate

Semi-impli
it DAE: f(t,x
1

,x
2

,ẋ
1

) = 0, g(t,x
1

,x
2

) = 0

Semi-expli
it DAE: ẋ

1

= f(t,x
1

,x
2

), g(t,x
1

,x
2

) = 0

Hessenberg DAE: ẋ

1

= f(t,x
1

,x
2

), g(t,x
1

) = 0

The 
lassi�
ation is taken from [Lamour R., M�arz R., Tis
hendorf C.

Di�erential-Algebrai
 Equations: A Proje
tor Based Analysis, 2013℄
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Appli
ations

DAEs are used to des
ribe mathemati
al models in 
yberneti
s,

radioele
troni
s, me
hani
s, roboti
s te
hnology, e
onomi
s, e
ology,


hemi
al kineti
s and gas industry, e.g., in modelling

dynami
s of neural networks

transient pro
esses in ele
tri
al 
ir
uits

dynami
s of gas networks

dynami
s of 
omplex me
hani
al and te
hni
al systems (e.g., robots)

multi-se
toral e
onomi
 models (e.g., the dynami
s of 
orporate enterprises

using investment)

kineti
s of 
hemi
al rea
tions

1

Rabier P.J., Rheinboldt W.C., Nonholonomi
 motion of me
hani
al systems from a DAE viewpoint,

2000.

2

Riaza R. Di�erential-algebrai
 systems. Analyti
al aspe
ts and 
ir
uit appli
ations, 2008.

3

Morishima M. Equilibrium, stability, and growth, 1964.

4

Benner P., Grundel S., Himpe C., Hu
k C., Streubel T., Tis
hendorf C. Gas Network Ben
hmark

Models, 2018.

...
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DAEs are also referred to as degenerate DEs, des
riptor systems, singular

systems, operator-di�erential equations, DEs or dynami
al systems on manifolds,

abstra
t evolution equations, PDAEs and DEs of Sobolev type.

Consider a semilinear DAE

d

dt

[Ax]+Bx= f(t,x), (1)

where f ∈C(T ×D,Y), T ⊆ [0,∞) is an interval, A and B are 
losed linear

operators from X into Y with domains D

A

and D

B

respe
tively,

D=D

A

∩D
B

6= {0} is a lineal (linear manifold), X and Y are Bana
h spa
es, D

A

and D

B

are dense in X.

The operators A, B 
an be degenerate (noninvertible).

We 
onsider the initial value problem (IVP) for the DAE (1) with the initial


ondition

x(t
0

) = x

0

. (2)

A fun
tion x ∈ C([t
0

,t
1

),X) is said to be a solution of (1) on [t
0

,t
1

) (t

1

≤ ∞) if

the fun
tion Ax is 
ontinuously di�erentiable on (t
0

,t
1

) and x(t) satis�es (1) on
[t
0

,t
1

). If the fun
tion x(t) additionally satis�es the initial 
ondition (2), then it is


alled a solution of the initial value problem (1), (2).
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Denote by ρ = ρ(A,B) := {λ ∈ C | ∃(λA+B)−1 ∈ L(Y,X)} the set of the

regular points λ of the pen
il λA+B (λ ∈ C is a parameter). The set ρ(A,B) is
open, and the resolvent as the operator fun
tion R : ρ → L(Y,X) is holomorphi
 on

ρ(A,B).

The pen
il λA+B is 
alled regular if ρ(A,B) 6= /0 and singular if ρ(A,B) = /0.

In general, here X,Y are 
omplex Bana
h spa
es (BSs). If X, Y are real BSs, then the

pen
il λA+B is 
alled regular if ρ = ρ(Ã,B̃) = {λ ∈ C | ∃(λ Ã+ B̃)−1 ∈ L(Ỹ,X̃)} 6= /0,

where the operators Ã, B̃ and the 
omplex BSs X̃, Ỹ are the 
omplex extensions of A, B

and the 
omplexi�
ations of X, Y, respe
tively.

Let X= Rn

and Y = Rm

, i.e., A,B ∈ L(Rn,Rm).

The pen
il λA+B is 
alled regular if n=m= rk(λA+B). Otherwise, if
n 6=m or n=m and rk(λA+B)< n, the pen
il is 
alled singular or nonregular

(irregular).

The operator pen
il λA+B, asso
iated with the linear part

d

dt

[Ax]+Bx of the

DAE (1), is 
alled 
hara
teristi
. If the 
hara
teristi
 pen
il is singular

(respe
tively, regular), then the DAE is 
alled singular (respe
tively, regular), or

nonregular, or irregular.

Noti
e that the system of equations 
orresponding the DAE with the singular


hara
teristi
 pen
il may be underdetermined or overdetermined.
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Index of the regular pen
il

Let the following 
onditions hold:

1

The pen
il P(λ ) = λA+B is regular for all λ from some neighborhood of the

in�nity, i.e., there exists a number R> 0 su
h that ea
h λ with |λ |> R is a

regular point of P(λ ).

2

The point λ = ∞ is a pole of the resolvent R(λ ) = P

−1(λ ) = (λA+B)−1 of

order r. This is equivalent to the fa
t that the resolvent R̂(µ) = (A+ µB)−1

of the pen
il A+ µB has a pole of order ν = r+1 at the point µ = 0.

Then P(λ ) is 
alled a regular pen
il of index ν (ν ∈ N).

If there exists the inverse operator A

−1 ∈ L(Y,X) (or µ = 0 is a regular point of

the pen
il A+ µB) and D

B

⊇D

A

, then P(λ ) is a regular pen
il of index 0.

The above de�nition 
an be reformulated in the following way.

Let 
ondition 1 hold and ν ∈ N be the least number su
h that for some 
onstants

C,R> 0 the estimate

‖R(λ )‖ ≤ C|λ |ν−1, |λ | ≥R, (3)

or the equivalent estimate ‖R̂(µ)‖ ≤C|µ|−ν , |µ| ≤R

−1, holds, then P(λ ) is a
regular pen
il of index ν.

Noti
e that for a regular pen
il P(λ ) a
ting in �nite-dimensional spa
es, there is

always a number ν ∈ N for whi
h the 
ondition (3) is satis�ed.
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Dire
t de
ompositions of spa
es and the asso
iated proje
tors

Let P(λ ) = λA+B be a regular pen
il of index ν.

Then there exists the pair of mutually 
omplementary proje
tors P

k

: D→D

k

(P

i

P

j

x= δ
ij

P

i

x, (P
1

+P

2

)x= x, x ∈D

A

) and the pair of mutually


omplementary proje
tors Q

k

: Y→ Y

k

(Q

i

Q

j

= δ
ij

Q

i

, Q

1

+Q

2

= I

Y

), k= 1,2,
whi
h generate the de
ompositions of D and Y into the dire
t sums

D=D

1

+̇D
2

, Y =Y

1

+̇Y
2

, D

k

:= P

k

D, Y

k

:=Q

k

Y, k= 1,2, (4)

su
h that AD

k

⊂Y

k

and BD

k

⊂Y

k

, k= 1,2.
The restri
ted operators A

k

:=A

∣∣
D

k

: D
k

→ Y

k

and B

k

:= B

∣∣
D

k

: D
k

→Y

k

,

k= 1,2, are su
h that there exist A

−1
1

∈ L(Y
1

,D
1

) and B

−1
2

∈ L(Y
2

,D
2

).

Thus, A, B are the dire
t sums of the operators A

1

, A

2

and B

1

, B

2

:

A=A

1

+̇A
2

, B=B

1

+̇B
2

: D
1

+̇D
2

→Y

1

+̇Y
2

(5)

If P(λ ) is a regular pen
il of index not higher than 1, then A

2

= 0.

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Os
illations, 2001℄

[Vlasenko L.A. Evolution Models with Impli
it and Degenerate Di�erential Equations.

2006 (in Russian)℄.
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The proje
tors 
an be 
onstru
tively determined by using 
ontour integration

P

1

=
1

2π i

∮

|λ |=R

(λA+B)−1Adλ , Q

1

=
1

2π i

∮

|λ |=R

A(λA+B)−1dλ ,

P

2

= I

X

−P

1

, Q

2

= I

Y

−Q

1

.

(6)

[Rutkas A.G., Vlasenko L.A. Nonlinear Os
illations, 2001℄ (as well as other works

by Rutkas, Vlasenko and 
o-authors)

or by using residues

P

1

= Res

µ=0

(
(A+ µB)−1A

µ

)
, Q

1

=Res

µ=0

(
A(A+ µB)−1

µ

)
,

P

2

= I

X

−P

1

, Q

2

= I

Y

−Q

1

.

(7)

[Filipkovska, M.S.: Two 
ombined methods for the global solution of impli
it

semilinear di�erential equations with the use of spe
tral proje
tors and Taylor

expansions. Int. J. of Computing S
ien
e and Mathemati
s 15(1), 1�29 (2022)℄

[Filipkovska M.S. Combined numeri
al methods for solving time-varying semilinear

di�erential-algebrai
 equations with the use of spe
tral proje
tors and

re
al
ulation, 2022 (In review)℄

https://doi.org/10.48550/arXiv.2212.00012
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Let X= Rn

and Y = Rm

.

Thus, we 
onsider the DAE (1):

d

dt

[Ax]+Bx= f(t,x), where A,B ∈ L(Rn,Rm),
f ∈ C(T ×D,Rm), T ⊆ [0,∞) is an interval, D⊆ Rn

is an open set.

The 
hara
teristi
 pen
il λA+B is singular (i.e., n 6=m or n=m and

rk(λA+B)< n).

The blo
k form of a singular pen
il of operators and the asso
iated dire
t

de
ompositions of spa
es and proje
tors

Statement.

For operators A,B : Rn → Rm

, whi
h form a singular pen
il λA+B, there exist

the de
ompositions of the spa
es

R
n =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
r

, R
m =Y

s

+̇Y
r

=Y

s

1

+̇Y
s

2

+̇Y
r

(8)

su
h that with respe
t to the de
ompositions Rn =X

s

+̇X
r

, Rm =Y

s

+̇Y
r

the

operators A, B have the blo
k stru
ture

A=

(
A

s

0

0 A

r

)
, B=

(
B

s

0

0 B

r

)
: X

s

+̇X
r

→ Y

s

+̇Y
r

(X
s

×X

r

→Y

s

×Y

r

), (9)
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where A

s

=A

∣∣
X

s

,B
s

= B

∣∣
X

s

: X
s

→ Y

s

and A

r

=A

∣∣
X

r

,B
r

= B

∣∣
X

r

: X
r

→ Y

r

, that

is, the pair of �singular� subspa
es {X
s

,Y
s

} and the pair of �regular� subspa
es

{X
r

,Y
r

} are invariant under the operators A, B,

and (if rank(λA+B)< n,m) with respe
t to the de
ompositions

X

s

=X

s

1

+̇X
s

2

, Y

s

=Y

s

1

+̇Y
s

2

(10)

the �singular� blo
ks A

s

, B

s

have the blo
k stru
ture

A

s

=

(
A

gen

0

0 0

)
, B

s

=

(
B

gen

B

und

B

ov

0

)
: X

s

1

+̇X
s

2

→ Y

s

1

+̇Y
s

2

, (11)

where the operator A

gen

: X
s

1

→ Y

s

1

has the inverse A

−1
gen

∈ L(Y
s

1

,X
s

1

) (if
X

s

1

6= {0}), B
gen

: X
s

1

→ Y

s

1

, B

und

: X
s

2

→ Y

s

1

and B

ov

: X
s

1

→Y

s

2

.

If rank(λA+B) =m< n, then the stru
ture of the singular blo
ks takes the form

A

s

=
(
A

gen

0

)
, B

s

=
(
B

gen

B

und

)
: X

s

1

+̇X
s

2

→Y

s

(12)

and Y

s

1

=Y

s

, Y

s

2

= {0} in (8) and, a

ordingly, in (10).

If rank(λA+B) = n<m, then the stru
ture of the singular blo
ks takes the form

A

s

=

(
A

gen

0

)
, B

s

=

(
B

gen

B

ov

)
: X

s

→Y

s

1

+̇Y
s

2

(13)

and X

s

1

=X

s

, X

s

2

= {0} in (8) and, a

ordingly, in (10).
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The dire
t de
ompositions (8) generate the pair S, P, the pair F, Q, the pair S

1

,

S

2

and the pair F

1

, F

2

of the mutually 
omplementary proje
tors

S : Rn →X

s

, P : Rn →X

r

, F : Rm → Y

s

,Q : Rm →Y

r

, (14)

S

i

: Rn →X

s

i

, F

i

: Rm →Y

s

i

, i= 1,2, (15)

where F

1

= F, F

2

= 0 if rank(λA+B) =m< n, and S

1

= S, S

2

= 0 if

rank(λA+B) = n<m. These proje
tors have the properties FA=AS, FB= BS,

QA=AP, QB= BP, AS

2

= 0, F

2

A= 0, F

2

BS

2

= 0.

The 
onverse assertion that there exist the pairs of mutually 
omplementary

proje
tors (14), (15) satisfying the properties indi
ated above, whi
h generate the

dire
t de
ompositions (8), is also true.

[1℄ Filipkovska M.S. Lagrange stability and instability of irregular semilinear

di�erential-algebrai
 equations and appli
ations. Ukrainian Math. J. 70(6), 947�979

(2018). https://doi.org/10.1007/s11253-018-1544-6

[2℄ Filipkovska (Filipkovskaya) M.S. A blo
k form of a singular pen
il of operators and a

method of obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser.

�Mathemati
s, Applied Mathemati
s and Me
hani
s�. 89, 33�58 (2019) (in Russian)

https://doi.org/10.26565/2221-5646-2019-89-04

[3℄ Filipkovska M. Criterion of the global solvability of regular and singular di�erential-algebrai
 equations.

J. of Mathemati
al S
ien
es (2024) [in Produ
tion℄. https://doi.org/10.1007/s10958-024-07152-7
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Introdu
e the extensions of the operators A

s

, A

r

, B

s

, B

r

from (9) to Rn

:

A
s

= FA, A
r

=QA, B
s

= FB, B
r

=QB. (16)

Then the operators A
s

,B
s

,A
r

,B
r

∈L(Rn,Rm) a
t so that A
s

,B
s

: Rn →Y

s

, A
r

,B
r

: Rn →Y

r

,

X

r

⊂Ker(A
s

), X
r

⊂Ker(B
s

), X

s

⊂Ker(A
r

), X
s

⊂Ker(B
r

), and

A
s

∣∣
X

s

=A

s

, A
r

∣∣
X

r

=A

r

, B
s

∣∣
X

s

= B

s

, B
r

∣∣
X

r

= B

r

. (17)

Further, introdu
e extensions of the operators (blo
ks) from (11) to Rn

as follows:

A
gen

= F

1

A, B
gen

= F

1

BS

1

, B
und

= F

1

BS

2

, B
ov

= F

2

BS

1

. (18)

Then A
gen

,B
gen

,B
und

,B
ov

∈ L(Rn,Rm) a
t so that A
gen

R
n =A

gen

X

s

1

=Y

s

1

(X

s

2

+̇X
r

=Ker(A
gen

)),

B
gen

: Rn →Y

s

1

, X

s

2

+̇X
r

⊂Ker(B
gen

), B
und

: Rn →Y

s

1

, X

s

1

+̇X
r

⊂Ker(B
und

), and B
ov

: Rn →Y

s

2

,

X

s

2

+̇X
r

⊂Ker(B
ov

), and

A
gen

∣∣
X

s

1

=A

gen

, B
gen

∣∣
X

s

1

= B

gen

, B
und

∣∣
X

s

2

= B

und

, B
ov

∣∣
X

s

1

= B

ov

. (19)

Extensions of the operators (blo
ks) from (12) and (13) to Rn

are introdu
ed in a

similar way.

The operator A
(−1)
gen

∈ L(Rm,Rn) de�ned by the relations

A
(−1)
gen

A
gen

= S

1

, A
gen

A
(−1)
gen

= F

1

, A
(−1)
gen

= S

1

A
(−1)
gen

,

where F

1

= F if rank(λA+B) =m< n and S

1

= S if rank(λA+B) = n<m, is

the semi-inverse operator of A
gen

.
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Assume that the regular blo
k λA
r

+B

r

is a regular pen
il of index not higher

than 1. Then there exists the pairs P̃

i

: X
r

→X

i

, i= 1,2, Q̃
j

: Y
r

→ Y

j

, j= 1,2, of
mutually 
omplementary proje
tors whi
h generate the dire
t de
ompositions

X

r

=X

1

+̇X
2

, Y

r

=Y

1

+̇Y
2

(20)

su
h that the pairs of subspa
es X

1

, Y

1

and X

2

, Y

2

are invariant under A

r

, B

r

,

and the restri
ted operators A

i

=A

r

∣∣
X

i

: X
i

→ Y

i

, B

i

= B

r

∣∣
X

i

: X
i

→Y

i

, i= 1,2,

are su
h that A

2

= 0 and there exist A

−1
1

∈ L(Y
1

,X
1

) (if X

1

6= {0}) and
B

−1
2

∈ L(Y
2

,X
2

) (if X

2

6= {0}). We introdu
e the extensions P

i

, Q

i

of the

proje
tors P̃

i

, Q̃

i

so that X

i

= P

i

R
n

, Y

i

=Q

i

R
m

, i= 1,2, and the extensions of

the operators A

i

, B

i

to Rn

A
i

=Q

i

A, B
i

=Q

i

B, i= 1,2. (21)

The extended operators A
1

,B
2

∈ L(Rn,Rm) have the semi-inverse operators

A
(−1)
1

,B
(−1)
2

∈ L(Rm,Rn).
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Redu
tion of the singular (nonregular) DAE to a system of ordinary

di�erential and algebrai
 equations

In what follows, it is assumed that the regular blo
k λA
r

+B

r

, where A

r

, B

r

from

(9), is a regular pen
il of index not higher than 1.

The pair P

1

, P

2

and the pair S

1

, S

2

of mutually 
omplementary proje
tors

generate the de
omposition of the set D into the dire
t sum of subsets

D=D

s

1

+̇D
s

2

+̇D
1

+̇D
2

, D

s

i

= S

i

D, D

i

= P

i

D, i= 1,2, (22)

(D

s

i

⊆X

s

i

, D

i

⊆X

i

(i= 1,2), where X
s

i

, X

i

are de�ned in (8), (20)).

By using the above proje
tors, the singular semilinear DAE (1) is redu
ed to the

equivalent system

d

dt

(AS
1

x) = F

1

[f(t,x)−Bx], (23)

d

dt

(AP
1

x) =Q

1

[f(t,x)−Bx], (24)

0=Q

2

[f(t,x)−Bx], (25)

0= F

2

[f(t,x)−Bx], (26)

where F

1

= F, F

2

= 0 if rank(λA+B) =m< n, and S

1

= S (S

2

= 0) if

rank(λA+B) = n<m.
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With respe
t to the de
omposition Rn =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
1

+̇X
2

any x ∈ Rn


an be uniquely represented as

x= x

s

+x

r

= x

s

1

+x

s

2

+x

p

1

+x

p

2

(x
s

= x

s

1

+x

s

2

, x

r

= x

p

1

+x

p

2

), (27)

where x

s

= Sx ∈ X

s

, x

r

= Px ∈ X

r

, x

s

i

= S

i

x ∈X

s

i

, x

p

i

= P

i

x ∈ X

i

, i= 1,2.
The system (23)�(26) is equivalent to

ẋ

s

1

=A
(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)
, (28)

ẋ

p

1

=A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
, (29)

B
(−1)
2

Q

2

f(t,x)−x

p

2

= 0, (30)

F

2

f(t,x)−B
ov

x

s

1

= 0, (31)

where A
(−1)
gen

, A
(−1)
1

, B
(−1)
2

are the semi-inverse operators and x

s

i

∈D

s

i

, x

p

i

∈D

i

.

M. Filipkovska (FAU) 15/48



The derivative V̇

(28),(29) of a s
alar fun
tion V ∈ C

1(T ×K

s1

,R), where
K

s1

⊆D

s

1

×D

1

is an open set, along the traje
tories of equations (28), (29) has

the form

V̇

(28),(29)(t,xs
1

,x
p

1

) = ∂
t

V(t,x
s

1

,x
p

1

)+
+ ∂(x

s

1

,x
p

1

)V(t,xs
1

,x
p

1

) ·ϒ(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) =

= ∂
t

V(t,x
s

1

,x
p

1

)+ ∂
x

s

1

V(t,x
s

1

,x
p

1

) ·
[
A

(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)]
+

+ ∂
x

p

1

V(t,x
s

1

,x
p

1

) ·
[
A

(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)]
, (32)

ϒ(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) =

(
A

(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
)
,

where x= x

s

1

+x

s

2

+x

p

1

+x

p

2

(x

s

i

= S

i

x, x

p

i

= P

i

x, i= 1,2), (x
s

1

,x
p

1

) ∈K

s1

,

x

s

2

∈D

s

2

, x

p

2

∈D

2

.
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Noti
e that the regular semilinear DAE (1) (with the 
hara
teristi
 pen
il of index

not higher than 1) 
an be redu
ed to the equivalent system

ẋ

p

1

=A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
, (33)

B
(−1)
2

Q

2

f(t,x)−x

p

2

= 0, (34)

where x

p

i

= P

i

x ∈D

i

, D

i

= P

i

D, i= 1,2, D=D

1

+̇D
2

, x= x

p

1

+x

p

2

.
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De�nitions.

A solution x(t) (of an equation or inequality) is 
alled global if it exists on the

interval [t
0

,∞) (where t
0

is a given initial value).

A solution x(t) has a �nite es
ape time or is blow-up in �nite time and is 
alled

Lagrange unstable if it exists on some �nite interval [t
0

,T) and is unbounded,

that is, there exists T< ∞ su
h that lim
t→T−0 ‖x(t)‖=+∞.

A solution x(t) is 
alled Lagrange stable if it is global and bounded, that is, x(t)
exists on the interval [t

0

,∞) and sup
t∈[t

0

,∞) ‖x(t)‖< ∞.

The DAE (1) is 
alled Lagrange unstable (respe
tively, Lagrange stable) for the

initial point (t
0

,x
0

) if the solution of IVP (1), (2) is Lagrange unstable

(respe
tively, Lagrange stable) for this initial point. The DAE (1) is 
alled

Lagrange unstable (respe
tively, Lagrange stable) if ea
h solution of IVP (1),

(2) is Lagrange unstable (respe
tively, Lagrange stable).
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Solutions of the equation (1) are 
alled ultimately bounded, if there exists a


onstant K> 0 (K is independent of the 
hoi
e of t

0

, x

0

) and for ea
h solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

su
h that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞). The similar de�nition holds for solutions of

equation (1) with the initial values t

0

∈ T , x

0

∈M⊆D.

The equation (1) is 
alled ultimately bounded or dissipative, if for any


onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (2) and all the solutions are ultimately bounded. If the number τ
does not depend on the 
hoi
e of t

0

, then the solutions of (1) are 
alled uniformly

ultimately bounded and the equation (1) is 
alled uniformly ultimately bounded or

uniformly dissipative.

The equation (1) is 
alled ultimately bounded or dissipative for the initial

points (t
0

,x
0

) ∈ T ×M, if these initial points are 
onsistent and for the initial

values t

0

∈ T , x

0

∈M there exist global solutions of the IVP (1), (2) and the

solutions are ultimately bounded.

The Lagrange stability and ultimate boundedness of expli
it ordinary di�erential equations were

studied in [La Salle J., Lefs
hetz S., Stability by Liapunov's Dire
t Method with Appli
ations, 1961℄ and

[Yoshizawa T. Stability theory by Liapunov's se
ond method, 1966℄, respe
tively.
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Consider the manifold asso
iated with the singular semilinear DAE (1):

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n | (F

2

+Q

2

)[f(t,x)−Bx] = 0}, (35)

where t∗ ∈ T . It 
an be represented as

L

t∗ ={(t,x)∈ [t∗,∞)×Rn | F
2

[f(t,x)−Bx] = 0,Q
2

[f(t,x)−Bx] = 0} or

L

t∗ = {(t,x) ∈ [t∗,∞)×Rn | (t,x) satis�es equations (30), (31)}. Thus, a point

(t,x) ∈ T ×D belongs to L

t∗ if and only if it satis�es equations (30), (31) or the

equivalent ones.

Also, 
onsider the manifold asso
iated with the regular semilinear DAE (1):

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n |Q

2

[f(t,x)−Bx] = 0}, (36)

where t∗ ∈ T . If the DAE (1) is regular, then we 
an set S

i

= F

i

= 0, i= 1,2, and
redu
e the manifold (35) to (36).
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For the singular semilinear DAEs we will 
onsider the following results:

The 
riterion of the global solvability. Previously, theorems on the

existen
e and uniqueness of global solutions and on the blow-up of

solutions will be presented.

One of the advantages: the restri
tions of the type of the global Lips
hitz 
ondition

(in
luding 
ontra
tive mapping) are not used.

The 
onditions of the Lagrange stability and uniform ultimate

boundedness (dissipativity).

Mathemati
al models of nonlinear ele
tri
al 
ir
uits and gas networks, whi
h are

des
ribed by semilinear DAEs, are 
onsidered.

[Filipkovska M. Criterion of the global solvability of regular and singular

di�erential-algebrai
 equations. J. of Mathemati
al S
ien
es (2024) [in

Produ
tion℄ https://doi.org/10.1007/s10958-024-07152-7℄

[Filipkovska M. Qualitative analysis of nonregular di�erential-algebrai
 equations

and the dynami
s of gas networks. Journal of Mathemati
al Physi
s, Analysis,

Geometry, Vol. 19, No. 4, 719�765 (2023).

https://doi.org/10.15407/mag19.04.719℄
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[Filipkovska2024℄ = [Filipkovska M. Criterion of the global solvability of regular and

singular di�erential-algebrai
 equations. J. of Mathemati
al S
ien
es (2024) [in

Produ
tion℄ https://doi.org/10.1007/s10958-024-07152-7℄

Below, the theorems and 
orollaries from [Filipkovska2024℄ are presented.

Theorem 1 (the global solvability).

Let f ∈ C(T ×D,Rm), where D⊆Rn is some open set and T = [t+,∞)⊆ [0,∞), and let

the operator pen
il λA+B be a singular pen
il su
h that its regular blo
k λA
r

+B

r

,

where A

r

, B

r

are de�ned in (9), is a regular pen
il of index not higher than 1. Assume

that there exists an open set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

, M

2

⊆D

2

su
h that

the following holds:

1

For any �xed t ∈ T , x

s

1

+x

p

1

∈M

s1

, x

s

2

∈M

s

2

there exists a unique x

p

2

∈M

2

su
h that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ (the manifold L

t+ has the form (35)

where t∗ = t+).

2

A fun
tion f(t,x) satis�es lo
ally a Lips
hitz 
ondition with respe
t to x on T ×D.

For any �xed t∗ ∈ T , x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

(x

∗
s

i

= S

i

x∗, x∗
p

i

= P

i

x∗, i= 1,2)
su
h that x

∗
s

1

+x

∗
p

1

∈M

s1

, x

∗
s

2

∈M

s

2

, x

∗
p

2

∈M

2

and (t∗,x∗) ∈ L

t+ , there exists a

neighborhood Nδ (t∗,x
∗
s

1

,x∗
s

2

,x∗
p

1

) =Uδ
1

(t∗)×Uδ
2

(x∗
s

1

)×Nδ
3

(x∗
s

2

)×Uδ
4

(x∗
p

1

)⊂
T ×D

s

1

×D

s

2

×D

1

, an open neighborhood Uε(x
∗
p

2

)⊂D

2

(the numbers δ ,ε > 0

depend on the 
hoi
e of t∗, x∗) and an invertible operator Φ
t∗,x∗ ∈ L(X

2

,Y
2

) su
h
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that for ea
h (t,x
s

1

,x
s

2

,x
p

1

) ∈Nδ (t∗,x
∗
s

1

,x∗
s

2

,x∗
p

1

) and ea
h x

i

p

2

∈Uε(x
∗
p

2

), i= 1,2,
the mapping

Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) :=Q

2

f(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

)−
−B

∣∣
X

2

x

p

2

: T ×D

s

1

×D

s

2

×D

1

×D

2

→Y

2

(37)

satis�es the inequality

‖Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x1
p

2

)−Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x2
p

2

)−Φ
t∗ ,x∗ [x

1

p

2

−x2
p

2

]‖≤q(δ ,ε)‖x1
p

2

−x2
p

2

‖,
(38)

where q(δ ,ε) is su
h that lim
δ ,ε→0

q(δ ,ε)< ‖Φ−1
t∗ ,x∗

‖−1.

3

If M

s1

6=X

s

1

+̇X
1

, then the following holds.

The 
omponent x

s

1

(t)+x

p

1

(t) = (S
1

+P

1

)x(t) of ea
h solution x(t) with the

initial point (t
0

,x
0

) ∈ L

t+ , for whi
h (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, 
an never leave M

s1

(i.e., it remains in M

s1

for all t from the maximal

interval of existen
e of the solution).
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4

If M

s1

is unbounded, then the following holds.

There exists a number R> 0 (R 
an be su�
iently large), a fun
tion

V ∈ C

1

(
T ×M

R

,R
)
positive on T ×M

R

, where

M

R

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

, ‖x
s

1

+x

p

1

‖>R}, and a fun
tion

χ ∈C(T × (0,∞),R) su
h that:

(4.a) lim
‖(x

s

1

,x
p

1

)‖→+∞
V(t,x

s

1

,x
p

1

) = +∞ uniformly in t on ea
h �nite interval

[a,b)⊂ T ;

(4.b) for ea
h t ∈ T , (x
s

1

,x
p

1

) ∈M

R

, x

s

2

∈M

s

2

, x

p

2

∈M

2

su
h that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the derivative (32) of the fun
tion V along the

traje
tories of equations (28), (29) satis�es the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≤ χ
(
t,V(t,x

s

1

,x
p

1

)
)
; (39)

(4.
) the di�erential inequality v̇≤ χ(t,v) (t ∈ T ) does not have positive solutions

with �nite es
ape time.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ su
h that (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique global solution x(t) for whi
h the 
hoi
e of the

fun
tion φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the


omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B) < n (when rank(λA+B) = n, the


omponent S

2

x is absent).
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Theorem 2 (the global solvability).

Theorem 1 remains valid if 
ondition 2 is repla
ed by

2

A fun
tion f(t,x) has the 
ontinuous partial derivative with respe
t to x on T ×D.

For any �xed t∗ ∈ T , x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

su
h that x

∗
s

1

+x

∗
p

1

∈M

s1

,

x

∗
s

2

∈M

s

2

, x

∗
p

2

∈M

2

and (t∗,x∗) ∈ L

t+ , the operator

Φ
t∗,x∗ := [∂

x

(Q
2

f)(t∗,x∗)−B]P
2

: X
2

→Y

2

(40)

has the inverse Φ−1
t∗,x∗ ∈ L(Y

2

,X
2

).

Corollary 1. Theorem 1 remains valid if 
ondition 3 is repla
ed by 
ondition 3 given in

Corollary 3.4 from [Filipkovska2024℄.

Corollary 2. Theorem 1 remains valid if 
ondition 4 is repla
ed by

4

If M

s1

is unbounded, then the following holds.

There exists a number R> 0, a fun
tion V ∈ C

1

(
T ×M

R

,R
)
positive on T ×M

R

,

where M

R

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

, ‖x
s

1

+x

p

1

‖>R}, and
fun
tions k ∈ C(T ,R), U ∈ C(0,∞) su
h that: lim

‖(x
s

1

,x
p

1

)‖→+∞
V(t,x

s

1

,x
p

1

) = +∞

uniformly in t on ea
h �nite interval [a,b)⊂ T ; for ea
h t ∈ T , (x
s

1

,x
p

1

) ∈M

R

,

x

s

2

∈M

s

2

, x

p

2

∈M

2

su
h that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≤ k(t)U
(
V(t,x

p

1

)
)
holds;

∞∫
v

0

dv

U(v)
= ∞ (v

0

> 0 is a


onstant).
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Corollary 3. If in the 
onditions of Theorem 1 the sets M

s1

, M

s

2

and M

2

are

bounded, then equation (1) is Lagrange stable for the initial points (t
0

,x
0

) ∈ L

t+

for whi
h (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

.

Remark 1. Note that if the 
onditions of Corollary 2 hold, then equation (1) is

uniformly ultimately bounded (uniformly dissipative) for the initial points

(t
0

,x
0

) ∈ L

t+ for whi
h (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

.

Remark 2. The sets M

s1

, M

s

2

, M

2


an be 
onsidered as attra
ting sets in the

sense that if a solution starts in the set M

s1

+̇M
s

2

+̇M
2

(i.e., (S
1

+P

1

)x
0

∈M

s1

,

S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

), then it 
an never thereafter leave it.
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Theorem 3 (the blow-up of solutions (Lagrange instability) of singular semilinear

DAEs). Let f ∈C(T ×D,Rm), where D⊆ Rn is some open set and T = [t+,∞)⊆ [0,∞),
and let the operator pen
il λA+B be a singular pen
il su
h that its regular blo
k

λA
r

+B

r

, where A

r

, B

r

are de�ned in (9), is a regular pen
il of index not higher than 1.

Assume that there exists an open (unbounded) set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

,

M

2

⊆D

2

su
h that 
ondition 1 of Theorem 1, 
ondition 2 of Theorem 1 (or 
ondition 2

of Theorem 2) and 
ondition 3 of Theorem 1 (or 
ondition 3 of Corollary 1) hold and:

4

There exists a fun
tion V ∈C

1

(
T ×M̂

s1

,R
)
positive on T ×M̂

s1

, where

M̂

s1

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

}, and a fun
tion

χ ∈C(T × (0,∞),R) su
h that:

(4.a) for ea
h t ∈ T , (x
s

1

,x
p

1

) ∈ M̂

s1

, x

s

2

∈M

s

2

, x

p

2

∈M

2

su
h that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the derivative (32) of the fun
tion V along the

traje
tories of equations (28), (29) satis�es the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≥ χ
(
t,V(t,x

s

1

,x
p

1

)
)
; (41)

(4.b) the di�erential inequality v̇ ≥ χ(t,v) (t ∈ T ) does not have global positive

solutions.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ , for whi
h (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique solution x(t) for whi
h the 
hoi
e of the fun
tion

φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the 
omponent

S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n (when rank(λA+B) = n, the 
omponent S

2

x

is absent), and this solution has a �nite es
ape time (i.e., is blow-up in �nite time).
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Corollary 4. Theorem 3 remains valid if 
ondition 4 is repla
ed by

4

There exists a fun
tion V ∈C

1

(
T ×M̂

s1

,R
)
positive on T ×M̂

s1

, where

M̂

s1

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

}, and fun
tions k ∈ C(T ,R),

U ∈ C(0,∞) su
h that: for ea
h t ∈ T , (x
s

1

,x
p

1

) ∈ M̂

s1

, x

s

2

∈M

s

2

, x

p

2

∈M

2

su
h

that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≥ k(t)U
(
V(t,x

s

1

,x
p

1

)
)
holds;

∞∫

k

0

k(t)dt= ∞ and

∞∫
v

0

dv

U(v)
< ∞

( k

0

,v
0

> 0 are 
onstants).
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Theorem 4 (The 
riterion of global solvability of singular semilinear DAEs).

Let f ∈ C(T ×D,Rm), where D⊆Rn is some open set and T = [t+,∞)⊆ [0,∞), and let

the operator pen
il λA+B be a singular pen
il su
h that its regular blo
k λA
r

+B

r

,

where A

r

, B

r

are de�ned in (9), is a regular pen
il of index not higher than 1. Let there

exist an open set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

, M

2

⊆D

2

su
h that 
onditions 1,

2 and 3 of Theorem 1 hold.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ su
h that (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique solution x(t) for whi
h the 
hoi
e of the fun
tion

φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the 
omponent

S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n (when rank(λA+B) = n, the 
omponent S

2

x

is absent), and this solution is global if 
ondition 4 of Theorem 1 holds and has a �nite

es
ape time if 
ondition 4 of Theorem 3 holds.

Corollary 5. Theorem 4 remains valid if any of the following repla
ements (or all of

them) take pla
e:


ondition 2 of Theorem 1 is repla
ed by 
ondition 2 of Theorem 2;


ondition 3 of Theorem 1 is repla
ed by 
ondition 3 of Corollary 1;


ondition 4 of Theorem 1 is repla
ed by 
ondition 4 of Corollary 2,


ondition 4 of Theorem 3 is repla
ed by 
ondition 4 of Corollary 4.
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Several examples demonstrating the veri�
ation of the 
onditions of the obtained

theorems and their e�e
tiveness are presented in

[Filipkovska M. Criterion of the global solvability of regular and singular

di�erential-algebrai
 equations. J. of Mathemati
al S
ien
es (2024) [in

Produ
tion℄ https://doi.org/10.1007/s10958-024-07152-7℄

In addition, in this paper, a relationship with the results of the paper [Filipkovska

M. Qualitative analysis of nonregular di�erential-algebrai
 equations and the

dynami
s of gas networks. Journal of Mathemati
al Physi
s, Analysis, Geometry,

Vol. 19, No. 4, 719�765 (2023). https://doi.org/10.15407/mag19.04.719℄

is des
ribed.
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The model of a radio engineering devi
e

A voltage sour
e e(t),
nonlinear resistan
es ϕ, ϕ

0

, ψ,

a nonlinear 
ondu
tan
e h,

a linear resistan
e r,

a linear 
ondu
tan
e g,

an indu
tan
e L and

a 
apa
itan
e C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the 
ir
uit Fig. 1 is des
ribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (42)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (43)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (44)

The ve
tor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (45)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the ele
tri
 
ir
uit

A=




L 0 0

0 C 0

0 0 0




B=




0 1 r

0 g −1
0 1 r




f(t,x) =




e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)



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This model has been studied in [Filipkovska M.S. Lagrange stability of

semilinear di�erential-algebrai
 equations and appli
ation to nonlinear ele
tri
al


ir
uits. J. of Math. Phys., Anal., Geom., Vol. 14, No. 2, 169�196 (2018).

https://doi.org/10.15407/mag14.02.169℄. Below we present some results

from this paper.

Lagrange stability of the model of a radio engineering devi
e.

The parti
ular 
ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (46)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (47)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For ea
h initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (45), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the fun
tions of the form (46), if j≤ k, j≤ s

and α
3

is su�
iently small, and for the fun
tions of the form (47), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞∫
t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (45) is Lagrange stable (in both 
ases), i.e., every solution of the
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DAE is bounded. In parti
ular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe
− (t−α)2

σ2 , e(t) = β sin(ωt+θ ), (48)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
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Lagrange stability. The numeri
al solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The 
urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The 
urrent I(t)
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Lagrange stability. The numeri
al solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−t sin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−5

t

U
C
(t

)

Fig. 5. The 
urrent I

L

(t) Fig. 6. The voltage U

C

(t)
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0
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6

8

10
x 10

−5

t

I(
t)

Fig. 7. The 
urrent I(t)

M. Filipkovska (FAU) 35/48



The global solution. The numeri
al solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2

0 50 100 150 200 250 300 350 400 450 500

−60

−50

−40

−30

−20

−10

0

t

I L
(t

)

0 50 100 150 200 250 300 350 400 450 500

−3

−2.5

−2

−1.5

−1

−0.5

0

t

U
C
(t

)

Fig. 8. The 
urrent I

L

(t) Fig. 9. The voltage U

C

(t)
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−30

−25

−20
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−10

−5

0
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Fig. 10. The 
urrent I(t)
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Lagrange instability of the radio engineering devi
e model

Consider the system (42)�(44) with the nonlinear resistan
es and 
ondu
tan
e

ϕ
0

(y) =−y2, ϕ(y) = y

3, ψ(y) = y

3, h(y) = y

2. (49)

It is assumed that there exists M

e

= sup
t∈[t

0

,∞)

|e(t)|<+∞. Choose

Ω =

{
(x

1

,x
2

)T ∈ R2 | x
1

>m

1

,m
1

= max
{
1+

√
M

e

, 3

√
g+ r

−1,3CL−1,
√

max
{
3

−1(L(rC)−1− r),0
}}

, x
2

<−rx
1

−x

3

1

−m

2

,

m

2

= max
{
g−2CL

−1
r,0
}}

.

(50)

Then for any initial moment t

0

and any initial 
urrents and voltage I

L

(t
0

),
U

C

(t
0

), I(t
0

) satisfying U
C

(t
0

)+ rI(t
0

) = ψ(I
L

(t
0

)− I(t
0

))−
−ϕ(I(t

0

)) and su
h that (I
L

(t
0

),U
C

(t
0

))T ∈ Ω there exists a unique distribution

of the 
urrents and voltages in the 
ir
uit Fig. 1 only for t

0

≤ t< T ( [t
0

,T) is
some �nite interval ) and the 
urrents and voltages are unbounded.

It means that there exists a unique solution of the Cau
hy problem for the DAE

(45) with the fun
tions (49), e(t) su
h that sup
t∈[t

0

,∞)

|e(t)|<+∞, and the initial


ondition x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T, and this solution has a �nite es
ape

time.
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Lagrange instability. The numeri
al solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sin t,

t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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Fig. 11. The 
urrent I

L

(t) Fig. 12. The voltage U

C

(t) Fig. 13. The 
urrent

I(t)
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Model of a gas �ow for a single pipe

We 
onsider the mathemati
al model of a gas pipeline whi
h 
onsists of the

isothermal Euler equations of the form

∂
t

ρ =−∂
x

ϕ , (51)

∂
t

ϕ =−∂
x

p−gρs
lope

−0.5λD−1ϕ |ϕ |ρ−1
(52)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (53)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞), where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the velo
ity) and p= p(t,x) are
respe
tively the density, �ow rate and pressure

g is the gravitational 
onstant, and R is the spe
i�
 gas 
onstant

λ is the pipe fri
tion 
oe�
ient, and D is the pipe diameter

s

lope

(x) = dh(x)/dx denotes the slope of the pipe, where h= h(x) is the
height pro�le of the pipe over ground

z= z(p) is the 
ompressibility fa
tor

The modeling of gas networks is des
ribed, e.g., in [P. Benner, S. Grundel, C. Himpe, C.

Hu
k, T. Streubel, C. Tis
hendorf. Gas Network Ben
hmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gs
lope

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we 
an write the system (51)�(53) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (54)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,t
1

). The initial


ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (55)

where p(0,x) is 
hosen so as to satisfy the equation (53) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary 
onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,t
1

), (56)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p

l

(t) are given.
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A model of a gas network (in the isothermal 
ase)

Des
ribe a gas network as oriented 
onne
ted graph G= (V ,E ), where V

denotes a set of nodes (verti
es), E denotes a set of edges, and ea
h edge joins

two distin
t nodes (i.e., there are no self-loops). We �x the orientation of edge

e ∈ E , denoting its endpoints by v

l

and v

r

and assuming that the edge is oriented

from the left node v

l

to the right node v

r

.

We 
olle
t all nodes with a �xed pressure in V
pset

and refer to them as

pressure nodes. All other nodes we 
olle
t in V
qset

. A

ordingly, V = V
pset

∪V
qset

.

We denote the sets of edges 
orresponding to the pipes, valves and regulating

elements (regulators and 
ompressors) by E
pip

, E
val

and E
reg

, respe
tively. Thus,

E = E
pip

∪E
val

∪E
reg

.

Introdu
e the ve
tor p of the pressures of nodes u ∈ V
pset

, and the ve
tors

q

pip,r, qpip,l, qval and q

reg

of �ows at the right ends of pipes, at the left ends of

pipes, through valves and through regulating elements, respe
tively.

At the pressure nodes u ∈ V
pset

, the pressure fun
tion

p

set(t) = (. . . ,pset
u

(t), . . .)T
u∈V

pset

is given. At the nodes u ∈ V
qset

= V \V
pset

(whi
h in
lude jun
tion, demand and sour
e nodes), the fun
tion

q

set(t) = (. . . ,qset
u

(t), . . .)T
u∈V

qset

, whi
h spe
i�es the relationships between the
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�ows q

pip,r, qpip,l, qval and q

reg

in a Kir
hho�-type �ow balan
e equation (see

(61) below), is given.

The mathemati
al model of a gas network 
onsisting of pipes, valves,

regulators and 
ompressors after applying spatial dis
retization (more pre
isely, a

topologi
ally adaptive dis
retization of the isothermal Euler equations for pipes

and pipelines) has the form:

A

T

pip,r

d

dt

φ(p)+D

q

(q
pip,r−q

pip,l) = 0, (57)

d

dt

q

pip,l+D

p

(AT

pip,r+A

T

pip,l)p+ f

pip

(p,q
pip,l,t) = 0, (58)

D

val

d

dt

q

val

+ f

val

(p,q
val

,t) = 0, (59)

D

reg

d

dt

q

reg

− f

reg

(p,q
reg

,t) = 0, (60)

A

pip,lqpip,l+A

pip,rqpip,r+A

val

q

val

+A

reg

q

reg

= q

set(t), (61)

f

pb

(p) = 0, (62)

f

qb

(q
pip,l,qpip,r,qval,qreg) = 0, (63)
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where A

pip,l :=
(
a

pip,l
ij

)
i=1,...,|V

qset

|,
j=1,...,|E

pip

|
, A

pip,r :=
(
a

pip,r
ij

)
i=1,...,|V

qset

|,
j=1,...,|E

pip

|
,

A

val

:=
(
a

val

ij

)
i=1,...,|V

qset

|,
j=1,...,|E

val

|
and A

reg

:=
(
a

reg

ij

)
i=1,...,|V

qset

|,
j=1,...,|E

reg

|
are 
onstant in
iden
e

matri
es with the entries presented in [KSSTW22℄, D

q

:= diag{..., κ
e

L

e

,...}
e∈E

pip

,

D

p

:= diag{..., Se
L

e

,...}
e∈E

pip

, D

val

:= diag{...,µ
e

,...}
e∈E

val

and

D

reg

:= diag{...,µ
e

,...}
e∈E

reg

are 
onstant diagonal matri
es, where µ
e

≥ 0,

κ
e

= R

s

T

0

/S
e

(as above, T

0

= 
onst is the temperature and R

s

is the spe
i�


gas 
onstant), S

e

and L

e

are the 
ross-se
tional area and the length of pipe e,

respe
tively. Here p, q

pip,r, qpip,l, qval and q

reg

are unknown and the remaining

fun
tions and parameters are given. f

pip

(p,q
pip,l,t), fval(p,qval,t) and freg(p,qreg,t)

are fun
tions spe
i�ed in [KSSTW22, p.5�7℄; f

pb

(p) and f

qb

(q
pip,l,qpip,r,qval,qreg)

are given 
ontinuous fun
tions.

[KSSTW22℄ = [T. Kreimeier, H. Sauter, S.T. Streubel, C. Tis
hendorf, and A.

Walther, Solving Least-Squares Collo
ated Di�erential Algebrai
 Equations by

Su

essive Abs-Linear Minimization � A Case Study on Gas Network Simulation,

Humboldt-Universit�at zu Berlin, 2022, preprint℄.
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We introdu
e an additional variable ρ =




.

.

.

ρ
u

.

.

.



u∈V

qset

, and instead of (57) we

use the system

A

T

pip,r

d

dt

ρ +D

q

(q
pip,r−q

pip,l) = 0,

ρ = φ(p),

whi
h is equivalent to (57), taking into a

ount the 
oe�
ient κ
e

. Also, we rewrite

the fun
tion f

pip

(p,q
pip,l,t), without 
hanging its notation, as f

pip

(ρ ,q
pip,l,t).

These system 
an be written in the form of the singular (nonregular) DAE

d

dt

[Ax]+Bx(t) = f(t,x), (64)
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where

x=




ρ
q

pip,l

q

val

q

reg

q

pip,r

p



, f(t,x) =




0

−f
pip

(ρ ,q
pip,l,t),

−f
val

(p,q
val

,t)
f

reg

(p,q
reg

,t),
q

set(t)
φ(p)
f

pb

(p)
f

qb

(q
pip,l,qpip,r,qval,qreg)




A=




A

T

pip,r 0 0 0 0 0

0 I 0 0 0 0

0 0 D

val

0 0 0

0 0 0 0 D

reg

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,
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B=




0 −D
q

0 0 D

q

0

0 0 0 0 0 D

p

(AT

pip,r+A

T

pip,l)

0 0 0 0 0 0

0 0 0 0 0 0

0 A

pip,l A

val

A

reg

A

pip,r 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (65)

The initial 
ondition for the DAE (64) has the form

x(0) = x

0

, (66)

where x

0

= (ρ0,q0
pip,l,q

0

val

,q0
reg

,q0
pip,r,p

0)T is 
hosen so that the values t

0

, x

0

satisfy the 
onsisten
y 
ondition.

[Filipkovska M. Qualitative analysis of nonregular di�erential-algebrai


equations and the dynami
s of gas networks. Journal of Mathemati
al Physi
s,

Analysis, Geometry, Vol. 19, No. 4, 719�765 (2023).

https://doi.org/10.15407/mag19.04.719℄
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Dis
ussions

For the abstra
t semilinear DAE (1) with the regular 
hara
teristi
 pen
il, the


riterion of the global solvability is obtained in a preprint. Here we suppose that

the pen
il P(λ ) is a regular pen
il of index ν, where ν ∈N is some number. Thus,

we 
onsider higher-index regular abstra
t DAEs .
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Thank you for your attention!
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