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A system of di�erential and algebrai equations an be represented in the form

of an abstrat evolution equation whih is often alled a di�erential-algebrai

equation (DAE), when it is onsidered in �nite-dimensional spaes, and an

abstrat DAE, when it is onsidered in in�nite-dimensional spaes.

Any type of a PDE an be represented as an abstrat DAE in appropriate

in�nite-dimensional spaes, possibly, with a omplementary boundary ondition.

Types of DAEs

Nonlinear DAE: F(t,x,ẋ) = 0 suh that it annot be redued to the expliit form

ẋ= f(t,x) (e.g., F(t,x,p) has the ontinuous partial derivatives in p, x and ∂
p

F(t,x,p) is
degenerate (noninvertible) for all (t,x,p) from the domain of de�nition of F)

Quasilinear DAE: A(t,x) d
dt

[D(t)x] = f(t,x) or A(t,x)ẋ+B(t)x= f(t,x), where A(t,x) is
degenerate

Semilinear DAE:

d

dt

[A(t)x]+B(t)x= f(t,x) or d

dt

[A(t)x] = f(t,x), where A(t,x) is
degenerate

Linear DAE:

d

dt

[A(t)x]+B(t)x= f(t), where A(t) is degenerate

Semi-impliit DAE: f(t,x
1

,x
2

,ẋ
1

) = 0, g(t,x
1

,x
2

) = 0

Semi-expliit DAE: ẋ

1

= f(t,x
1

,x
2

), g(t,x
1

,x
2

) = 0

Hessenberg DAE: ẋ

1

= f(t,x
1

,x
2

), g(t,x
1

) = 0

The lassi�ation is taken from [Lamour R., M�arz R., Tishendorf C.

Di�erential-Algebrai Equations: A Projetor Based Analysis, 2013℄
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Appliations

DAEs are used to desribe mathematial models in ybernetis,

radioeletronis, mehanis, robotis tehnology, eonomis, eology,

hemial kinetis and gas industry, e.g., in modelling

dynamis of neural networks

transient proesses in eletrial iruits

dynamis of gas networks

dynamis of omplex mehanial and tehnial systems (e.g., robots)

multi-setoral eonomi models (e.g., the dynamis of orporate enterprises

using investment)

kinetis of hemial reations

1

Rabier P.J., Rheinboldt W.C., Nonholonomi motion of mehanial systems from a DAE viewpoint,

2000.

2

Riaza R. Di�erential-algebrai systems. Analytial aspets and iruit appliations, 2008.

3

Morishima M. Equilibrium, stability, and growth, 1964.

4

Benner P., Grundel S., Himpe C., Huk C., Streubel T., Tishendorf C. Gas Network Benhmark

Models, 2018.

...

M. Filipkovska (FAU) 3 /48



DAEs are also referred to as degenerate DEs, desriptor systems, singular

systems, operator-di�erential equations, DEs or dynamial systems on manifolds,

abstrat evolution equations, PDAEs and DEs of Sobolev type.

Consider a semilinear DAE

d

dt

[Ax]+Bx= f(t,x), (1)

where f ∈C(T ×D,Y), T ⊆ [0,∞) is an interval, A and B are losed linear

operators from X into Y with domains D

A

and D

B

respetively,

D=D

A

∩D
B

6= {0} is a lineal (linear manifold), X and Y are Banah spaes, D

A

and D

B

are dense in X.

The operators A, B an be degenerate (noninvertible).

We onsider the initial value problem (IVP) for the DAE (1) with the initial

ondition

x(t
0

) = x

0

. (2)

A funtion x ∈ C([t
0

,t
1

),X) is said to be a solution of (1) on [t
0

,t
1

) (t

1

≤ ∞) if

the funtion Ax is ontinuously di�erentiable on (t
0

,t
1

) and x(t) satis�es (1) on
[t
0

,t
1

). If the funtion x(t) additionally satis�es the initial ondition (2), then it is

alled a solution of the initial value problem (1), (2).
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Denote by ρ = ρ(A,B) := {λ ∈ C | ∃(λA+B)−1 ∈ L(Y,X)} the set of the

regular points λ of the penil λA+B (λ ∈ C is a parameter). The set ρ(A,B) is
open, and the resolvent as the operator funtion R : ρ → L(Y,X) is holomorphi on

ρ(A,B).

The penil λA+B is alled regular if ρ(A,B) 6= /0 and singular if ρ(A,B) = /0.

In general, here X,Y are omplex Banah spaes (BSs). If X, Y are real BSs, then the

penil λA+B is alled regular if ρ = ρ(Ã,B̃) = {λ ∈ C | ∃(λ Ã+ B̃)−1 ∈ L(Ỹ,X̃)} 6= /0,

where the operators Ã, B̃ and the omplex BSs X̃, Ỹ are the omplex extensions of A, B

and the omplexi�ations of X, Y, respetively.

Let X= Rn

and Y = Rm

, i.e., A,B ∈ L(Rn,Rm).

The penil λA+B is alled regular if n=m= rk(λA+B). Otherwise, if
n 6=m or n=m and rk(λA+B)< n, the penil is alled singular or nonregular

(irregular).

The operator penil λA+B, assoiated with the linear part

d

dt

[Ax]+Bx of the

DAE (1), is alled harateristi. If the harateristi penil is singular

(respetively, regular), then the DAE is alled singular (respetively, regular), or

nonregular, or irregular.

Notie that the system of equations orresponding the DAE with the singular

harateristi penil may be underdetermined or overdetermined.
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Index of the regular penil

Let the following onditions hold:

1

The penil P(λ ) = λA+B is regular for all λ from some neighborhood of the

in�nity, i.e., there exists a number R> 0 suh that eah λ with |λ |> R is a

regular point of P(λ ).

2

The point λ = ∞ is a pole of the resolvent R(λ ) = P

−1(λ ) = (λA+B)−1 of

order r. This is equivalent to the fat that the resolvent R̂(µ) = (A+ µB)−1

of the penil A+ µB has a pole of order ν = r+1 at the point µ = 0.

Then P(λ ) is alled a regular penil of index ν (ν ∈ N).

If there exists the inverse operator A

−1 ∈ L(Y,X) (or µ = 0 is a regular point of

the penil A+ µB) and D

B

⊇D

A

, then P(λ ) is a regular penil of index 0.

The above de�nition an be reformulated in the following way.

Let ondition 1 hold and ν ∈ N be the least number suh that for some onstants

C,R> 0 the estimate

‖R(λ )‖ ≤ C|λ |ν−1, |λ | ≥R, (3)

or the equivalent estimate ‖R̂(µ)‖ ≤C|µ|−ν , |µ| ≤R

−1, holds, then P(λ ) is a
regular penil of index ν.

Notie that for a regular penil P(λ ) ating in �nite-dimensional spaes, there is

always a number ν ∈ N for whih the ondition (3) is satis�ed.
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Diret deompositions of spaes and the assoiated projetors

Let P(λ ) = λA+B be a regular penil of index ν.

Then there exists the pair of mutually omplementary projetors P

k

: D→D

k

(P

i

P

j

x= δ
ij

P

i

x, (P
1

+P

2

)x= x, x ∈D

A

) and the pair of mutually

omplementary projetors Q

k

: Y→ Y

k

(Q

i

Q

j

= δ
ij

Q

i

, Q

1

+Q

2

= I

Y

), k= 1,2,
whih generate the deompositions of D and Y into the diret sums

D=D

1

+̇D
2

, Y =Y

1

+̇Y
2

, D

k

:= P

k

D, Y

k

:=Q

k

Y, k= 1,2, (4)

suh that AD

k

⊂Y

k

and BD

k

⊂Y

k

, k= 1,2.
The restrited operators A

k

:=A

∣∣
D

k

: D
k

→ Y

k

and B

k

:= B

∣∣
D

k

: D
k

→Y

k

,

k= 1,2, are suh that there exist A

−1
1

∈ L(Y
1

,D
1

) and B

−1
2

∈ L(Y
2

,D
2

).

Thus, A, B are the diret sums of the operators A

1

, A

2

and B

1

, B

2

:

A=A

1

+̇A
2

, B=B

1

+̇B
2

: D
1

+̇D
2

→Y

1

+̇Y
2

(5)

If P(λ ) is a regular penil of index not higher than 1, then A

2

= 0.

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Osillations, 2001℄

[Vlasenko L.A. Evolution Models with Impliit and Degenerate Di�erential Equations.

2006 (in Russian)℄.
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The projetors an be onstrutively determined by using ontour integration

P

1

=
1

2π i

∮

|λ |=R

(λA+B)−1Adλ , Q

1

=
1

2π i

∮

|λ |=R

A(λA+B)−1dλ ,

P

2

= I

X

−P

1

, Q

2

= I

Y

−Q

1

.

(6)

[Rutkas A.G., Vlasenko L.A. Nonlinear Osillations, 2001℄ (as well as other works

by Rutkas, Vlasenko and o-authors)

or by using residues

P

1

= Res

µ=0

(
(A+ µB)−1A

µ

)
, Q

1

=Res

µ=0

(
A(A+ µB)−1

µ

)
,

P

2

= I

X

−P

1

, Q

2

= I

Y

−Q

1

.

(7)

[Filipkovska, M.S.: Two ombined methods for the global solution of impliit

semilinear di�erential equations with the use of spetral projetors and Taylor

expansions. Int. J. of Computing Siene and Mathematis 15(1), 1�29 (2022)℄

[Filipkovska M.S. Combined numerial methods for solving time-varying semilinear

di�erential-algebrai equations with the use of spetral projetors and

realulation, 2022 (In review)℄

https://doi.org/10.48550/arXiv.2212.00012
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Let X= Rn

and Y = Rm

.

Thus, we onsider the DAE (1):

d

dt

[Ax]+Bx= f(t,x), where A,B ∈ L(Rn,Rm),
f ∈ C(T ×D,Rm), T ⊆ [0,∞) is an interval, D⊆ Rn

is an open set.

The harateristi penil λA+B is singular (i.e., n 6=m or n=m and

rk(λA+B)< n).

The blok form of a singular penil of operators and the assoiated diret

deompositions of spaes and projetors

Statement.

For operators A,B : Rn → Rm

, whih form a singular penil λA+B, there exist

the deompositions of the spaes

R
n =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
r

, R
m =Y

s

+̇Y
r

=Y

s

1

+̇Y
s

2

+̇Y
r

(8)

suh that with respet to the deompositions Rn =X

s

+̇X
r

, Rm =Y

s

+̇Y
r

the

operators A, B have the blok struture

A=

(
A

s

0

0 A

r

)
, B=

(
B

s

0

0 B

r

)
: X

s

+̇X
r

→ Y

s

+̇Y
r

(X
s

×X

r

→Y

s

×Y

r

), (9)
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where A

s

=A

∣∣
X

s

,B
s

= B

∣∣
X

s

: X
s

→ Y

s

and A

r

=A

∣∣
X

r

,B
r

= B

∣∣
X

r

: X
r

→ Y

r

, that

is, the pair of �singular� subspaes {X
s

,Y
s

} and the pair of �regular� subspaes

{X
r

,Y
r

} are invariant under the operators A, B,

and (if rank(λA+B)< n,m) with respet to the deompositions

X

s

=X

s

1

+̇X
s

2

, Y

s

=Y

s

1

+̇Y
s

2

(10)

the �singular� bloks A

s

, B

s

have the blok struture

A

s

=

(
A

gen

0

0 0

)
, B

s

=

(
B

gen

B

und

B

ov

0

)
: X

s

1

+̇X
s

2

→ Y

s

1

+̇Y
s

2

, (11)

where the operator A

gen

: X
s

1

→ Y

s

1

has the inverse A

−1
gen

∈ L(Y
s

1

,X
s

1

) (if
X

s

1

6= {0}), B
gen

: X
s

1

→ Y

s

1

, B

und

: X
s

2

→ Y

s

1

and B

ov

: X
s

1

→Y

s

2

.

If rank(λA+B) =m< n, then the struture of the singular bloks takes the form

A

s

=
(
A

gen

0

)
, B

s

=
(
B

gen

B

und

)
: X

s

1

+̇X
s

2

→Y

s

(12)

and Y

s

1

=Y

s

, Y

s

2

= {0} in (8) and, aordingly, in (10).

If rank(λA+B) = n<m, then the struture of the singular bloks takes the form

A

s

=

(
A

gen

0

)
, B

s

=

(
B

gen

B

ov

)
: X

s

→Y

s

1

+̇Y
s

2

(13)

and X

s

1

=X

s

, X

s

2

= {0} in (8) and, aordingly, in (10).
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The diret deompositions (8) generate the pair S, P, the pair F, Q, the pair S

1

,

S

2

and the pair F

1

, F

2

of the mutually omplementary projetors

S : Rn →X

s

, P : Rn →X

r

, F : Rm → Y

s

,Q : Rm →Y

r

, (14)

S

i

: Rn →X

s

i

, F

i

: Rm →Y

s

i

, i= 1,2, (15)

where F

1

= F, F

2

= 0 if rank(λA+B) =m< n, and S

1

= S, S

2

= 0 if

rank(λA+B) = n<m. These projetors have the properties FA=AS, FB= BS,

QA=AP, QB= BP, AS

2

= 0, F

2

A= 0, F

2

BS

2

= 0.

The onverse assertion that there exist the pairs of mutually omplementary

projetors (14), (15) satisfying the properties indiated above, whih generate the

diret deompositions (8), is also true.

[1℄ Filipkovska M.S. Lagrange stability and instability of irregular semilinear

di�erential-algebrai equations and appliations. Ukrainian Math. J. 70(6), 947�979

(2018). https://doi.org/10.1007/s11253-018-1544-6

[2℄ Filipkovska (Filipkovskaya) M.S. A blok form of a singular penil of operators and a

method of obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser.

�Mathematis, Applied Mathematis and Mehanis�. 89, 33�58 (2019) (in Russian)

https://doi.org/10.26565/2221-5646-2019-89-04

[3℄ Filipkovska M. Criterion of the global solvability of regular and singular di�erential-algebrai equations.

J. of Mathematial Sienes (2024) [in Prodution℄. https://doi.org/10.1007/s10958-024-07152-7
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Introdue the extensions of the operators A

s

, A

r

, B

s

, B

r

from (9) to Rn

:

A
s

= FA, A
r

=QA, B
s

= FB, B
r

=QB. (16)

Then the operators A
s

,B
s

,A
r

,B
r

∈L(Rn,Rm) at so that A
s

,B
s

: Rn →Y

s

, A
r

,B
r

: Rn →Y

r

,

X

r

⊂Ker(A
s

), X
r

⊂Ker(B
s

), X

s

⊂Ker(A
r

), X
s

⊂Ker(B
r

), and

A
s

∣∣
X

s

=A

s

, A
r

∣∣
X

r

=A

r

, B
s

∣∣
X

s

= B

s

, B
r

∣∣
X

r

= B

r

. (17)

Further, introdue extensions of the operators (bloks) from (11) to Rn

as follows:

A
gen

= F

1

A, B
gen

= F

1

BS

1

, B
und

= F

1

BS

2

, B
ov

= F

2

BS

1

. (18)

Then A
gen

,B
gen

,B
und

,B
ov

∈ L(Rn,Rm) at so that A
gen

R
n =A

gen

X

s

1

=Y

s

1

(X

s

2

+̇X
r

=Ker(A
gen

)),

B
gen

: Rn →Y

s

1

, X

s

2

+̇X
r

⊂Ker(B
gen

), B
und

: Rn →Y

s

1

, X

s

1

+̇X
r

⊂Ker(B
und

), and B
ov

: Rn →Y

s

2

,

X

s

2

+̇X
r

⊂Ker(B
ov

), and

A
gen

∣∣
X

s

1

=A

gen

, B
gen

∣∣
X

s

1

= B

gen

, B
und

∣∣
X

s

2

= B

und

, B
ov

∣∣
X

s

1

= B

ov

. (19)

Extensions of the operators (bloks) from (12) and (13) to Rn

are introdued in a

similar way.

The operator A
(−1)
gen

∈ L(Rm,Rn) de�ned by the relations

A
(−1)
gen

A
gen

= S

1

, A
gen

A
(−1)
gen

= F

1

, A
(−1)
gen

= S

1

A
(−1)
gen

,

where F

1

= F if rank(λA+B) =m< n and S

1

= S if rank(λA+B) = n<m, is

the semi-inverse operator of A
gen

.
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Assume that the regular blok λA
r

+B

r

is a regular penil of index not higher

than 1. Then there exists the pairs P̃

i

: X
r

→X

i

, i= 1,2, Q̃
j

: Y
r

→ Y

j

, j= 1,2, of
mutually omplementary projetors whih generate the diret deompositions

X

r

=X

1

+̇X
2

, Y

r

=Y

1

+̇Y
2

(20)

suh that the pairs of subspaes X

1

, Y

1

and X

2

, Y

2

are invariant under A

r

, B

r

,

and the restrited operators A

i

=A

r

∣∣
X

i

: X
i

→ Y

i

, B

i

= B

r

∣∣
X

i

: X
i

→Y

i

, i= 1,2,

are suh that A

2

= 0 and there exist A

−1
1

∈ L(Y
1

,X
1

) (if X

1

6= {0}) and
B

−1
2

∈ L(Y
2

,X
2

) (if X

2

6= {0}). We introdue the extensions P

i

, Q

i

of the

projetors P̃

i

, Q̃

i

so that X

i

= P

i

R
n

, Y

i

=Q

i

R
m

, i= 1,2, and the extensions of

the operators A

i

, B

i

to Rn

A
i

=Q

i

A, B
i

=Q

i

B, i= 1,2. (21)

The extended operators A
1

,B
2

∈ L(Rn,Rm) have the semi-inverse operators

A
(−1)
1

,B
(−1)
2

∈ L(Rm,Rn).
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Redution of the singular (nonregular) DAE to a system of ordinary

di�erential and algebrai equations

In what follows, it is assumed that the regular blok λA
r

+B

r

, where A

r

, B

r

from

(9), is a regular penil of index not higher than 1.

The pair P

1

, P

2

and the pair S

1

, S

2

of mutually omplementary projetors

generate the deomposition of the set D into the diret sum of subsets

D=D

s

1

+̇D
s

2

+̇D
1

+̇D
2

, D

s

i

= S

i

D, D

i

= P

i

D, i= 1,2, (22)

(D

s

i

⊆X

s

i

, D

i

⊆X

i

(i= 1,2), where X
s

i

, X

i

are de�ned in (8), (20)).

By using the above projetors, the singular semilinear DAE (1) is redued to the

equivalent system

d

dt

(AS
1

x) = F

1

[f(t,x)−Bx], (23)

d

dt

(AP
1

x) =Q

1

[f(t,x)−Bx], (24)

0=Q

2

[f(t,x)−Bx], (25)

0= F

2

[f(t,x)−Bx], (26)

where F

1

= F, F

2

= 0 if rank(λA+B) =m< n, and S

1

= S (S

2

= 0) if

rank(λA+B) = n<m.
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With respet to the deomposition Rn =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
1

+̇X
2

any x ∈ Rn

an be uniquely represented as

x= x

s

+x

r

= x

s

1

+x

s

2

+x

p

1

+x

p

2

(x
s

= x

s

1

+x

s

2

, x

r

= x

p

1

+x

p

2

), (27)

where x

s

= Sx ∈ X

s

, x

r

= Px ∈ X

r

, x

s

i

= S

i

x ∈X

s

i

, x

p

i

= P

i

x ∈ X

i

, i= 1,2.
The system (23)�(26) is equivalent to

ẋ

s

1

=A
(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)
, (28)

ẋ

p

1

=A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
, (29)

B
(−1)
2

Q

2

f(t,x)−x

p

2

= 0, (30)

F

2

f(t,x)−B
ov

x

s

1

= 0, (31)

where A
(−1)
gen

, A
(−1)
1

, B
(−1)
2

are the semi-inverse operators and x

s

i

∈D

s

i

, x

p

i

∈D

i

.
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The derivative V̇

(28),(29) of a salar funtion V ∈ C

1(T ×K

s1

,R), where
K

s1

⊆D

s

1

×D

1

is an open set, along the trajetories of equations (28), (29) has

the form

V̇

(28),(29)(t,xs
1

,x
p

1

) = ∂
t

V(t,x
s

1

,x
p

1

)+
+ ∂(x

s

1

,x
p

1

)V(t,xs
1

,x
p

1

) ·ϒ(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) =

= ∂
t

V(t,x
s

1

,x
p

1

)+ ∂
x

s

1

V(t,x
s

1

,x
p

1

) ·
[
A

(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)]
+

+ ∂
x

p

1

V(t,x
s

1

,x
p

1

) ·
[
A

(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)]
, (32)

ϒ(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) =

(
A

(−1)
gen

(
F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
)
,

where x= x

s

1

+x

s

2

+x

p

1

+x

p

2

(x

s

i

= S

i

x, x

p

i

= P

i

x, i= 1,2), (x
s

1

,x
p

1

) ∈K

s1

,

x

s

2

∈D

s

2

, x

p

2

∈D

2

.
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Notie that the regular semilinear DAE (1) (with the harateristi penil of index

not higher than 1) an be redued to the equivalent system

ẋ

p

1

=A
(−1)
1

(
Q

1

f(t,x)−B
1

x

p

1

)
, (33)

B
(−1)
2

Q

2

f(t,x)−x

p

2

= 0, (34)

where x

p

i

= P

i

x ∈D

i

, D

i

= P

i

D, i= 1,2, D=D

1

+̇D
2

, x= x

p

1

+x

p

2

.
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De�nitions.

A solution x(t) (of an equation or inequality) is alled global if it exists on the

interval [t
0

,∞) (where t
0

is a given initial value).

A solution x(t) has a �nite esape time or is blow-up in �nite time and is alled

Lagrange unstable if it exists on some �nite interval [t
0

,T) and is unbounded,

that is, there exists T< ∞ suh that lim
t→T−0 ‖x(t)‖=+∞.

A solution x(t) is alled Lagrange stable if it is global and bounded, that is, x(t)
exists on the interval [t

0

,∞) and sup
t∈[t

0

,∞) ‖x(t)‖< ∞.

The DAE (1) is alled Lagrange unstable (respetively, Lagrange stable) for the

initial point (t
0

,x
0

) if the solution of IVP (1), (2) is Lagrange unstable

(respetively, Lagrange stable) for this initial point. The DAE (1) is alled

Lagrange unstable (respetively, Lagrange stable) if eah solution of IVP (1),

(2) is Lagrange unstable (respetively, Lagrange stable).
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Solutions of the equation (1) are alled ultimately bounded, if there exists a

onstant K> 0 (K is independent of the hoie of t

0

, x

0

) and for eah solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

suh that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞). The similar de�nition holds for solutions of

equation (1) with the initial values t

0

∈ T , x

0

∈M⊆D.

The equation (1) is alled ultimately bounded or dissipative, if for any

onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (2) and all the solutions are ultimately bounded. If the number τ
does not depend on the hoie of t

0

, then the solutions of (1) are alled uniformly

ultimately bounded and the equation (1) is alled uniformly ultimately bounded or

uniformly dissipative.

The equation (1) is alled ultimately bounded or dissipative for the initial

points (t
0

,x
0

) ∈ T ×M, if these initial points are onsistent and for the initial

values t

0

∈ T , x

0

∈M there exist global solutions of the IVP (1), (2) and the

solutions are ultimately bounded.

The Lagrange stability and ultimate boundedness of expliit ordinary di�erential equations were

studied in [La Salle J., Lefshetz S., Stability by Liapunov's Diret Method with Appliations, 1961℄ and

[Yoshizawa T. Stability theory by Liapunov's seond method, 1966℄, respetively.
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Consider the manifold assoiated with the singular semilinear DAE (1):

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n | (F

2

+Q

2

)[f(t,x)−Bx] = 0}, (35)

where t∗ ∈ T . It an be represented as

L

t∗ ={(t,x)∈ [t∗,∞)×Rn | F
2

[f(t,x)−Bx] = 0,Q
2

[f(t,x)−Bx] = 0} or

L

t∗ = {(t,x) ∈ [t∗,∞)×Rn | (t,x) satis�es equations (30), (31)}. Thus, a point

(t,x) ∈ T ×D belongs to L

t∗ if and only if it satis�es equations (30), (31) or the

equivalent ones.

Also, onsider the manifold assoiated with the regular semilinear DAE (1):

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n |Q

2

[f(t,x)−Bx] = 0}, (36)

where t∗ ∈ T . If the DAE (1) is regular, then we an set S

i

= F

i

= 0, i= 1,2, and
redue the manifold (35) to (36).
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For the singular semilinear DAEs we will onsider the following results:

The riterion of the global solvability. Previously, theorems on the

existene and uniqueness of global solutions and on the blow-up of

solutions will be presented.

One of the advantages: the restritions of the type of the global Lipshitz ondition

(inluding ontrative mapping) are not used.

The onditions of the Lagrange stability and uniform ultimate

boundedness (dissipativity).

Mathematial models of nonlinear eletrial iruits and gas networks, whih are

desribed by semilinear DAEs, are onsidered.

[Filipkovska M. Criterion of the global solvability of regular and singular

di�erential-algebrai equations. J. of Mathematial Sienes (2024) [in

Prodution℄ https://doi.org/10.1007/s10958-024-07152-7℄

[Filipkovska M. Qualitative analysis of nonregular di�erential-algebrai equations

and the dynamis of gas networks. Journal of Mathematial Physis, Analysis,

Geometry, Vol. 19, No. 4, 719�765 (2023).

https://doi.org/10.15407/mag19.04.719℄
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[Filipkovska2024℄ = [Filipkovska M. Criterion of the global solvability of regular and

singular di�erential-algebrai equations. J. of Mathematial Sienes (2024) [in

Prodution℄ https://doi.org/10.1007/s10958-024-07152-7℄

Below, the theorems and orollaries from [Filipkovska2024℄ are presented.

Theorem 1 (the global solvability).

Let f ∈ C(T ×D,Rm), where D⊆Rn is some open set and T = [t+,∞)⊆ [0,∞), and let

the operator penil λA+B be a singular penil suh that its regular blok λA
r

+B

r

,

where A

r

, B

r

are de�ned in (9), is a regular penil of index not higher than 1. Assume

that there exists an open set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

, M

2

⊆D

2

suh that

the following holds:

1

For any �xed t ∈ T , x

s

1

+x

p

1

∈M

s1

, x

s

2

∈M

s

2

there exists a unique x

p

2

∈M

2

suh that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ (the manifold L

t+ has the form (35)

where t∗ = t+).

2

A funtion f(t,x) satis�es loally a Lipshitz ondition with respet to x on T ×D.

For any �xed t∗ ∈ T , x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

(x

∗
s

i

= S

i

x∗, x∗
p

i

= P

i

x∗, i= 1,2)
suh that x

∗
s

1

+x

∗
p

1

∈M

s1

, x

∗
s

2

∈M

s

2

, x

∗
p

2

∈M

2

and (t∗,x∗) ∈ L

t+ , there exists a

neighborhood Nδ (t∗,x
∗
s

1

,x∗
s

2

,x∗
p

1

) =Uδ
1

(t∗)×Uδ
2

(x∗
s

1

)×Nδ
3

(x∗
s

2

)×Uδ
4

(x∗
p

1

)⊂
T ×D

s

1

×D

s

2

×D

1

, an open neighborhood Uε(x
∗
p

2

)⊂D

2

(the numbers δ ,ε > 0

depend on the hoie of t∗, x∗) and an invertible operator Φ
t∗,x∗ ∈ L(X

2

,Y
2

) suh
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that for eah (t,x
s

1

,x
s

2

,x
p

1

) ∈Nδ (t∗,x
∗
s

1

,x∗
s

2

,x∗
p

1

) and eah x

i

p

2

∈Uε(x
∗
p

2

), i= 1,2,
the mapping

Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x
p

2

) :=Q

2

f(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

)−
−B

∣∣
X

2

x

p

2

: T ×D

s

1

×D

s

2

×D

1

×D

2

→Y

2

(37)

satis�es the inequality

‖Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x1
p

2

)−Ψ̃(t,x
s

1

,x
s

2

,x
p

1

,x2
p

2

)−Φ
t∗ ,x∗ [x

1

p

2

−x2
p

2

]‖≤q(δ ,ε)‖x1
p

2

−x2
p

2

‖,
(38)

where q(δ ,ε) is suh that lim
δ ,ε→0

q(δ ,ε)< ‖Φ−1
t∗ ,x∗

‖−1.

3

If M

s1

6=X

s

1

+̇X
1

, then the following holds.

The omponent x

s

1

(t)+x

p

1

(t) = (S
1

+P

1

)x(t) of eah solution x(t) with the

initial point (t
0

,x
0

) ∈ L

t+ , for whih (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, an never leave M

s1

(i.e., it remains in M

s1

for all t from the maximal

interval of existene of the solution).
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4

If M

s1

is unbounded, then the following holds.

There exists a number R> 0 (R an be su�iently large), a funtion

V ∈ C

1

(
T ×M

R

,R
)
positive on T ×M

R

, where

M

R

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

, ‖x
s

1

+x

p

1

‖>R}, and a funtion

χ ∈C(T × (0,∞),R) suh that:

(4.a) lim
‖(x

s

1

,x
p

1

)‖→+∞
V(t,x

s

1

,x
p

1

) = +∞ uniformly in t on eah �nite interval

[a,b)⊂ T ;

(4.b) for eah t ∈ T , (x
s

1

,x
p

1

) ∈M

R

, x

s

2

∈M

s

2

, x

p

2

∈M

2

suh that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the derivative (32) of the funtion V along the

trajetories of equations (28), (29) satis�es the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≤ χ
(
t,V(t,x

s

1

,x
p

1

)
)
; (39)

(4.) the di�erential inequality v̇≤ χ(t,v) (t ∈ T ) does not have positive solutions

with �nite esape time.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ suh that (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique global solution x(t) for whih the hoie of the

funtion φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the

omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B) < n (when rank(λA+B) = n, the

omponent S

2

x is absent).
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Theorem 2 (the global solvability).

Theorem 1 remains valid if ondition 2 is replaed by

2

A funtion f(t,x) has the ontinuous partial derivative with respet to x on T ×D.

For any �xed t∗ ∈ T , x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

suh that x

∗
s

1

+x

∗
p

1

∈M

s1

,

x

∗
s

2

∈M

s

2

, x

∗
p

2

∈M

2

and (t∗,x∗) ∈ L

t+ , the operator

Φ
t∗,x∗ := [∂

x

(Q
2

f)(t∗,x∗)−B]P
2

: X
2

→Y

2

(40)

has the inverse Φ−1
t∗,x∗ ∈ L(Y

2

,X
2

).

Corollary 1. Theorem 1 remains valid if ondition 3 is replaed by ondition 3 given in

Corollary 3.4 from [Filipkovska2024℄.

Corollary 2. Theorem 1 remains valid if ondition 4 is replaed by

4

If M

s1

is unbounded, then the following holds.

There exists a number R> 0, a funtion V ∈ C

1

(
T ×M

R

,R
)
positive on T ×M

R

,

where M

R

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

, ‖x
s

1

+x

p

1

‖>R}, and
funtions k ∈ C(T ,R), U ∈ C(0,∞) suh that: lim

‖(x
s

1

,x
p

1

)‖→+∞
V(t,x

s

1

,x
p

1

) = +∞

uniformly in t on eah �nite interval [a,b)⊂ T ; for eah t ∈ T , (x
s

1

,x
p

1

) ∈M

R

,

x

s

2

∈M

s

2

, x

p

2

∈M

2

suh that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≤ k(t)U
(
V(t,x

p

1

)
)
holds;

∞∫
v

0

dv

U(v)
= ∞ (v

0

> 0 is a

onstant).
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Corollary 3. If in the onditions of Theorem 1 the sets M

s1

, M

s

2

and M

2

are

bounded, then equation (1) is Lagrange stable for the initial points (t
0

,x
0

) ∈ L

t+

for whih (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

.

Remark 1. Note that if the onditions of Corollary 2 hold, then equation (1) is

uniformly ultimately bounded (uniformly dissipative) for the initial points

(t
0

,x
0

) ∈ L

t+ for whih (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

.

Remark 2. The sets M

s1

, M

s

2

, M

2

an be onsidered as attrating sets in the

sense that if a solution starts in the set M

s1

+̇M
s

2

+̇M
2

(i.e., (S
1

+P

1

)x
0

∈M

s1

,

S

2

x

0

∈M

s

2

and P

2

x

0

∈M

2

), then it an never thereafter leave it.
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Theorem 3 (the blow-up of solutions (Lagrange instability) of singular semilinear

DAEs). Let f ∈C(T ×D,Rm), where D⊆ Rn is some open set and T = [t+,∞)⊆ [0,∞),
and let the operator penil λA+B be a singular penil suh that its regular blok

λA
r

+B

r

, where A

r

, B

r

are de�ned in (9), is a regular penil of index not higher than 1.

Assume that there exists an open (unbounded) set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

,

M

2

⊆D

2

suh that ondition 1 of Theorem 1, ondition 2 of Theorem 1 (or ondition 2

of Theorem 2) and ondition 3 of Theorem 1 (or ondition 3 of Corollary 1) hold and:

4

There exists a funtion V ∈C

1

(
T ×M̂

s1

,R
)
positive on T ×M̂

s1

, where

M̂

s1

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

}, and a funtion

χ ∈C(T × (0,∞),R) suh that:

(4.a) for eah t ∈ T , (x
s

1

,x
p

1

) ∈ M̂

s1

, x

s

2

∈M

s

2

, x

p

2

∈M

2

suh that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , the derivative (32) of the funtion V along the

trajetories of equations (28), (29) satis�es the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≥ χ
(
t,V(t,x

s

1

,x
p

1

)
)
; (41)

(4.b) the di�erential inequality v̇ ≥ χ(t,v) (t ∈ T ) does not have global positive

solutions.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ , for whih (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique solution x(t) for whih the hoie of the funtion

φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the omponent

S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n (when rank(λA+B) = n, the omponent S

2

x

is absent), and this solution has a �nite esape time (i.e., is blow-up in �nite time).
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Corollary 4. Theorem 3 remains valid if ondition 4 is replaed by

4

There exists a funtion V ∈C

1

(
T ×M̂

s1

,R
)
positive on T ×M̂

s1

, where

M̂

s1

= {(x
s

1

,x
p

1

) ∈X

s

1

×X

1

| x
s

1

+x

p

1

∈M

s1

}, and funtions k ∈ C(T ,R),

U ∈ C(0,∞) suh that: for eah t ∈ T , (x
s

1

,x
p

1

) ∈ M̂

s1

, x

s

2

∈M

s

2

, x

p

2

∈M

2

suh

that (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ the inequality

V̇

(28),(29)(t,xs
1

,x
p

1

)≥ k(t)U
(
V(t,x

s

1

,x
p

1

)
)
holds;

∞∫

k

0

k(t)dt= ∞ and

∞∫
v

0

dv

U(v)
< ∞

( k

0

,v
0

> 0 are onstants).
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Theorem 4 (The riterion of global solvability of singular semilinear DAEs).

Let f ∈ C(T ×D,Rm), where D⊆Rn is some open set and T = [t+,∞)⊆ [0,∞), and let

the operator penil λA+B be a singular penil suh that its regular blok λA
r

+B

r

,

where A

r

, B

r

are de�ned in (9), is a regular penil of index not higher than 1. Let there

exist an open set M

s1

⊆D

s

1

+̇D
1

and sets M

s

2

⊆D

s

2

, M

2

⊆D

2

suh that onditions 1,

2 and 3 of Theorem 1 hold.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ suh that (S
1

+P

1

)x
0

∈M

s1

, S

2

x

0

∈M

s

2

and

P

2

x

0

∈M

2

, IVP (1), (2) has a unique solution x(t) for whih the hoie of the funtion

φ
s

2

∈C([t
0

,∞),M
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the omponent

S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n (when rank(λA+B) = n, the omponent S

2

x

is absent), and this solution is global if ondition 4 of Theorem 1 holds and has a �nite

esape time if ondition 4 of Theorem 3 holds.

Corollary 5. Theorem 4 remains valid if any of the following replaements (or all of

them) take plae:

ondition 2 of Theorem 1 is replaed by ondition 2 of Theorem 2;

ondition 3 of Theorem 1 is replaed by ondition 3 of Corollary 1;

ondition 4 of Theorem 1 is replaed by ondition 4 of Corollary 2,

ondition 4 of Theorem 3 is replaed by ondition 4 of Corollary 4.
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Several examples demonstrating the veri�ation of the onditions of the obtained

theorems and their e�etiveness are presented in

[Filipkovska M. Criterion of the global solvability of regular and singular

di�erential-algebrai equations. J. of Mathematial Sienes (2024) [in

Prodution℄ https://doi.org/10.1007/s10958-024-07152-7℄

In addition, in this paper, a relationship with the results of the paper [Filipkovska

M. Qualitative analysis of nonregular di�erential-algebrai equations and the

dynamis of gas networks. Journal of Mathematial Physis, Analysis, Geometry,

Vol. 19, No. 4, 719�765 (2023). https://doi.org/10.15407/mag19.04.719℄

is desribed.
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The model of a radio engineering devie

A voltage soure e(t),
nonlinear resistanes ϕ, ϕ

0

, ψ,

a nonlinear ondutane h,

a linear resistane r,

a linear ondutane g,

an indutane L and

a apaitane C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the iruit Fig. 1 is desribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (42)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (43)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (44)

The vetor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (45)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the eletri iruit

A=




L 0 0

0 C 0

0 0 0




B=




0 1 r

0 g −1
0 1 r




f(t,x) =




e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)
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This model has been studied in [Filipkovska M.S. Lagrange stability of

semilinear di�erential-algebrai equations and appliation to nonlinear eletrial

iruits. J. of Math. Phys., Anal., Geom., Vol. 14, No. 2, 169�196 (2018).

https://doi.org/10.15407/mag14.02.169℄. Below we present some results

from this paper.

Lagrange stability of the model of a radio engineering devie.

The partiular ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (46)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (47)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For eah initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (45), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the funtions of the form (46), if j≤ k, j≤ s

and α
3

is su�iently small, and for the funtions of the form (47), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞∫
t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (45) is Lagrange stable (in both ases), i.e., every solution of the
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DAE is bounded. In partiular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe
− (t−α)2

σ2 , e(t) = β sin(ωt+θ ), (48)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
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Lagrange stability. The numerial solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The urrent I(t)
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Lagrange stability. The numerial solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−t sin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−5

t

U
C
(t

)

Fig. 5. The urrent I

L

(t) Fig. 6. The voltage U

C

(t)

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10
x 10

−5

t

I(
t)

Fig. 7. The urrent I(t)
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The global solution. The numerial solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2

0 50 100 150 200 250 300 350 400 450 500

−60

−50

−40

−30

−20

−10

0

t

I L
(t

)

0 50 100 150 200 250 300 350 400 450 500

−3

−2.5

−2

−1.5

−1

−0.5

0

t

U
C
(t

)

Fig. 8. The urrent I

L

(t) Fig. 9. The voltage U

C

(t)

0 50 100 150 200 250 300 350 400 450 500

−30

−25

−20

−15

−10

−5

0

t

I(
t)

Fig. 10. The urrent I(t)
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Lagrange instability of the radio engineering devie model

Consider the system (42)�(44) with the nonlinear resistanes and ondutane

ϕ
0

(y) =−y2, ϕ(y) = y

3, ψ(y) = y

3, h(y) = y

2. (49)

It is assumed that there exists M

e

= sup
t∈[t

0

,∞)

|e(t)|<+∞. Choose

Ω =

{
(x

1

,x
2

)T ∈ R2 | x
1

>m

1

,m
1

= max
{
1+

√
M

e

, 3

√
g+ r

−1,3CL−1,
√

max
{
3

−1(L(rC)−1− r),0
}}

, x
2

<−rx
1

−x

3

1

−m

2

,

m

2

= max
{
g−2CL

−1
r,0
}}

.

(50)

Then for any initial moment t

0

and any initial urrents and voltage I

L

(t
0

),
U

C

(t
0

), I(t
0

) satisfying U
C

(t
0

)+ rI(t
0

) = ψ(I
L

(t
0

)− I(t
0

))−
−ϕ(I(t

0

)) and suh that (I
L

(t
0

),U
C

(t
0

))T ∈ Ω there exists a unique distribution

of the urrents and voltages in the iruit Fig. 1 only for t

0

≤ t< T ( [t
0

,T) is
some �nite interval ) and the urrents and voltages are unbounded.

It means that there exists a unique solution of the Cauhy problem for the DAE

(45) with the funtions (49), e(t) suh that sup
t∈[t

0

,∞)

|e(t)|<+∞, and the initial

ondition x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T, and this solution has a �nite esape

time.
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Lagrange instability. The numerial solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sin t,

t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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Fig. 11. The urrent I

L

(t) Fig. 12. The voltage U

C

(t) Fig. 13. The urrent

I(t)
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Model of a gas �ow for a single pipe

We onsider the mathematial model of a gas pipeline whih onsists of the

isothermal Euler equations of the form

∂
t

ρ =−∂
x

ϕ , (51)

∂
t

ϕ =−∂
x

p−gρs
lope

−0.5λD−1ϕ |ϕ |ρ−1
(52)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (53)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞), where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the veloity) and p= p(t,x) are
respetively the density, �ow rate and pressure

g is the gravitational onstant, and R is the spei� gas onstant

λ is the pipe frition oe�ient, and D is the pipe diameter

s

lope

(x) = dh(x)/dx denotes the slope of the pipe, where h= h(x) is the
height pro�le of the pipe over ground

z= z(p) is the ompressibility fator

The modeling of gas networks is desribed, e.g., in [P. Benner, S. Grundel, C. Himpe, C.

Huk, T. Streubel, C. Tishendorf. Gas Network Benhmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gs
lope

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we an write the system (51)�(53) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (54)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,t
1

). The initial

ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (55)

where p(0,x) is hosen so as to satisfy the equation (53) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,t
1

), (56)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p

l

(t) are given.
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A model of a gas network (in the isothermal ase)

Desribe a gas network as oriented onneted graph G= (V ,E ), where V

denotes a set of nodes (verties), E denotes a set of edges, and eah edge joins

two distint nodes (i.e., there are no self-loops). We �x the orientation of edge

e ∈ E , denoting its endpoints by v

l

and v

r

and assuming that the edge is oriented

from the left node v

l

to the right node v

r

.

We ollet all nodes with a �xed pressure in V
pset

and refer to them as

pressure nodes. All other nodes we ollet in V
qset

. Aordingly, V = V
pset

∪V
qset

.

We denote the sets of edges orresponding to the pipes, valves and regulating

elements (regulators and ompressors) by E
pip

, E
val

and E
reg

, respetively. Thus,

E = E
pip

∪E
val

∪E
reg

.

Introdue the vetor p of the pressures of nodes u ∈ V
pset

, and the vetors

q

pip,r, qpip,l, qval and q

reg

of �ows at the right ends of pipes, at the left ends of

pipes, through valves and through regulating elements, respetively.

At the pressure nodes u ∈ V
pset

, the pressure funtion

p

set(t) = (. . . ,pset
u

(t), . . .)T
u∈V

pset

is given. At the nodes u ∈ V
qset

= V \V
pset

(whih inlude juntion, demand and soure nodes), the funtion

q

set(t) = (. . . ,qset
u

(t), . . .)T
u∈V

qset

, whih spei�es the relationships between the
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�ows q

pip,r, qpip,l, qval and q

reg

in a Kirhho�-type �ow balane equation (see

(61) below), is given.

The mathematial model of a gas network onsisting of pipes, valves,

regulators and ompressors after applying spatial disretization (more preisely, a

topologially adaptive disretization of the isothermal Euler equations for pipes

and pipelines) has the form:

A

T

pip,r

d

dt

φ(p)+D

q

(q
pip,r−q

pip,l) = 0, (57)

d

dt

q

pip,l+D

p

(AT

pip,r+A

T

pip,l)p+ f

pip

(p,q
pip,l,t) = 0, (58)

D

val

d

dt

q

val

+ f

val

(p,q
val

,t) = 0, (59)

D

reg

d

dt

q

reg

− f

reg

(p,q
reg

,t) = 0, (60)

A

pip,lqpip,l+A

pip,rqpip,r+A

val

q

val

+A

reg

q

reg

= q

set(t), (61)

f

pb

(p) = 0, (62)

f

qb

(q
pip,l,qpip,r,qval,qreg) = 0, (63)
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where A

pip,l :=
(
a

pip,l
ij

)
i=1,...,|V

qset

|,
j=1,...,|E

pip

|
, A

pip,r :=
(
a

pip,r
ij

)
i=1,...,|V

qset

|,
j=1,...,|E

pip

|
,

A

val

:=
(
a

val

ij

)
i=1,...,|V

qset

|,
j=1,...,|E

val

|
and A

reg

:=
(
a

reg

ij

)
i=1,...,|V

qset

|,
j=1,...,|E

reg

|
are onstant inidene

matries with the entries presented in [KSSTW22℄, D

q

:= diag{..., κ
e

L

e

,...}
e∈E

pip

,

D

p

:= diag{..., Se
L

e

,...}
e∈E

pip

, D

val

:= diag{...,µ
e

,...}
e∈E

val

and

D

reg

:= diag{...,µ
e

,...}
e∈E

reg

are onstant diagonal matries, where µ
e

≥ 0,

κ
e

= R

s

T

0

/S
e

(as above, T

0

= onst is the temperature and R

s

is the spei�

gas onstant), S

e

and L

e

are the ross-setional area and the length of pipe e,

respetively. Here p, q

pip,r, qpip,l, qval and q

reg

are unknown and the remaining

funtions and parameters are given. f

pip

(p,q
pip,l,t), fval(p,qval,t) and freg(p,qreg,t)

are funtions spei�ed in [KSSTW22, p.5�7℄; f

pb

(p) and f

qb

(q
pip,l,qpip,r,qval,qreg)

are given ontinuous funtions.

[KSSTW22℄ = [T. Kreimeier, H. Sauter, S.T. Streubel, C. Tishendorf, and A.

Walther, Solving Least-Squares Colloated Di�erential Algebrai Equations by

Suessive Abs-Linear Minimization � A Case Study on Gas Network Simulation,

Humboldt-Universit�at zu Berlin, 2022, preprint℄.
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We introdue an additional variable ρ =




.

.

.

ρ
u

.

.

.



u∈V

qset

, and instead of (57) we

use the system

A

T

pip,r

d

dt

ρ +D

q

(q
pip,r−q

pip,l) = 0,

ρ = φ(p),

whih is equivalent to (57), taking into aount the oe�ient κ
e

. Also, we rewrite

the funtion f

pip

(p,q
pip,l,t), without hanging its notation, as f

pip

(ρ ,q
pip,l,t).

These system an be written in the form of the singular (nonregular) DAE

d

dt

[Ax]+Bx(t) = f(t,x), (64)
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where

x=




ρ
q

pip,l

q

val

q

reg

q

pip,r

p



, f(t,x) =




0

−f
pip

(ρ ,q
pip,l,t),

−f
val

(p,q
val

,t)
f

reg

(p,q
reg

,t),
q

set(t)
φ(p)
f

pb

(p)
f

qb

(q
pip,l,qpip,r,qval,qreg)




A=




A

T

pip,r 0 0 0 0 0

0 I 0 0 0 0

0 0 D

val

0 0 0

0 0 0 0 D

reg

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,
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B=




0 −D
q

0 0 D

q

0

0 0 0 0 0 D

p

(AT

pip,r+A

T

pip,l)

0 0 0 0 0 0

0 0 0 0 0 0

0 A

pip,l A

val

A

reg

A

pip,r 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (65)

The initial ondition for the DAE (64) has the form

x(0) = x

0

, (66)

where x

0

= (ρ0,q0
pip,l,q

0

val

,q0
reg

,q0
pip,r,p

0)T is hosen so that the values t

0

, x

0

satisfy the onsisteny ondition.

[Filipkovska M. Qualitative analysis of nonregular di�erential-algebrai

equations and the dynamis of gas networks. Journal of Mathematial Physis,

Analysis, Geometry, Vol. 19, No. 4, 719�765 (2023).
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Disussions

For the abstrat semilinear DAE (1) with the regular harateristi penil, the

riterion of the global solvability is obtained in a preprint. Here we suppose that

the penil P(λ ) is a regular penil of index ν, where ν ∈N is some number. Thus,

we onsider higher-index regular abstrat DAEs .
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Thank you for your attention!

M. Filipkovska (FAU) 48/48


