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Prototype

Let (Wt)t≥0 denotes a real Brownian motion, and consider the
Stochastic process (Vt , Yt)t≥0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Vt = v0 +
√

2Wt ,

Yt = y0 + ∫
t

0
Vsds.

The density p = p(v , y , v0, y0, t) is a solution to

L p = ∂2
vv p + v∂y p − ∂tp = 0

that we notice to be a degenerate equation.
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Kolmogorov equation

L p = ∂2
vv p + v∂y p − ∂tp

Kolmogorov (1934) provided us with the explicit expression of the
density p (that is the fundamental solution of the operator)

p =
√

3
2πt2 exp(−(v − v0)

2

t
− 3(v − v0)(y − y0 − tv0)

t2 − 3(y − y0 − tv0)
2

t3 ) .

We point out that despite the degeneracy of the equations the
density is smooth, this indicating that the operator is hypoelliptic.
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Hypoelliptic operator

Hypoellipticity

An operator L is hypoelliptic if, for every distributional so-
lution u ∈ L1

loc(Ω) to the equation L u = f , we have that

f ∈ C∞(Ω) Ô⇒ u ∈ C∞(Ω).

An hypoelliptic operator posses the same regularity property of
elliptic operator with C∞ coefficients.
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Hypoelliptic operator

Starting from Kolmogorov’s observations, Hörmander (1967)
considered a more general class of operators on RN+1

L =
m
∑
k=1

X 2
k +Y ,

where Xk and Y are smooth vector fields of the form

Xk = Xk(z) =
N+1
∑
j=1

aj,k(z)∂zj , Y = Y (z) =
N+1
∑
j=1

aj,m+1(z)∂zj ,

with aj,k , aj,m+1 ∈ C∞(Ω).
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Smooth vector fields

Given two vector fields Z1, Z2, their commutator is given by

[Z1, Z2] = Z1Z2 − Z2Z1.

Lie(Z1, ..., ZM) denotes the Lie algebra generated by Z1, ..., ZM ,
that is the span of these vector fields and their commutators.

We identify every vector field Z(z) = ∑N+1
j=1 aj(z)∂zj with the vector

(a1(z), ..., aN+1(z)).
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Hörmander’s rank condition

Theorem (Hörmander)

Suppose that

rank Lie(X1, ..., Xm, Y )(z) = N + 1, ∀z ∈ Ω.

Then the operator L = ∑m
k=1 X 2

k +Y , is hypoelliptic.

The Kolmogorov operator

L = ∂2
vv + v∂y − ∂t

is of Hörmander type with X = ∂v , Y = v∂y − ∂t and [X , Y ] = ∂y .
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Lie group

Since the regularity properties of Hörmander operators are related
to a Lie algebra, the natural framework for the regularity theory is
the non-euclidean setting of the homogeneous Lie groups, as
pointed out by Folland and Stein (1974).

Homogeneous Lie groups

A Lie group G = (RN+1, ○, δr) is a group on RN+1 with a
smooth composition law ○ and a dilation law {δr}r≥0 that is
an automorphism of the group

δr(x ○ y) = δr(x) ○ δr(y), ∀x , y ∈ RN+1, r ≥ 0.
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Lie group

L = ∂2
vv + v∂y − ∂t

Let consider on R3 an homogeneous Lie group with composition
law and dilation law given by

(v , y , t) ○ (v0, y0, t0) = (v + v0, y + y0 − tv0, t + t0),

δr(v , y , t) = (rv , r3y , r2t).

L is left invariant w.r.t. ○ and homogeneous of degree 2 with
respect to δr . This also appears from the fundamental solution

p =
√

3
2πt2 exp(−(v − v0)

2

t
− 3(v − v0)(y − y0 − tv0)

t2 − 3(y − y0 − tv0)
2

t3 ) .
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Kolmogorov operators

Starting from these observation, some mathematicians (Lanconelli,
Polidoro, Pascucci, Pagliarani, Manfredini...) investigated a wide
class of Kolmogorov operators

L = Tr(AD2
) + ⟨Bx , D⟩ − ∂t , (x , t) ∈ RN+1,

with A = AT ≥ 0. There are many condition for the hypoellipticity
of L to hold. One is the Kalman’s rank condition

rank (A
1
2 , BA

1
2 , B2A

1
2 , ..., BN−1A

1
2 ) = N.

This is the starting point to study more general operators (variable
coefficients, non-local terms...). The matrices A and B defines the
Lie group structure useful to study these operators.
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Intrinsic regularity space

When working with Hörmander vector fields, is useful to work in
the regularity framework that they induce. Let Z be a vector field,
we denote by s ↦ esZ(z) the integral curve of Z , that is the unique
solution to

⎧⎪⎪
⎨
⎪⎪⎩

d
ds esZ(z) = Z(esZ(z)),
esZ(z)∣s=0 = z .

A function u is Z -Lie differentiable if the function s ↦ u(esZ(z)) is
differentiable.
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Intrinsic regularity space

We closely inspect the prototype Kolmogorov operator

L = ∂2
vv + v∂y − ∂t = X 2

+Y .

The integral curve of X is esX(v , y , t) = (v + s, y , t), while the
integral curve of Y is esY (v , y , t) = (v , y + sv , t − s) .
The intrinsic regularity space of classical solutions is the space of
functions u with two continuous derivatives w.r.t. the
non-degenerate variable v , and with continuous Lie-derivative Yu

Yu ∶= lim
s→0

u(v , y + sv , t − s) − u(v , y , t)
s
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Kuramoto model with inertia

These operators appear for instance in the following Kuramoto-type
model, that describes the synchronization of coupled oscillators.
Let us consider a continuum of coupled oscillators, whose natural
frequencies are distributed according to a function g(Ω). The
density function ρ that describes the fraction of oscillators at phase
θ, frequency ω, natural frequency Ω at time t solves

∂2ρ

∂ω2 +
∂

∂ω
[(ω −Ω −Kρ(θ, t))ρ] − ω

∂ρ

∂θ
−

∂ρ

∂t
= 0,

Kρ(θ, t) = K ∫
R
∫
R
∫

2π

0
g(Ω′) sin(θ′ − θ)ρ(ω′, θ′, Ω′, t)dθ′dω′dΩ′.

where K represents the strength coupling between oscillators.
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Assumptions

1 the initial condition ρ0 is continuous, strictly positive, 2π
periodic in θ and for every Ω ∈ R verifies

∫]0,2π[×R
ρ0(ω, θ, Ω)dθdω = 1.

2 ρ0 has an exponential decay in ω

ρ0(ω, θ, Ω, t) ≤ Ce−Mω2
.

3 g is a non-negative, normalized function such that

∫
R

g(Ω)e∣Ω∣
β

dΩ < +∞, for some β > 2.
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Existence result

Theorem (P., Polidoro, Vernia)
Under assumptions 1 , 2 , 3 there exists a strictly positive
classical solution ρ in R3 × [0,+∞[ such that

∫]0,2π[×R
ρ(ω, θ, Ω, t)dθdω = 1, for every t ≥ 0, Ω ∈ R.

Moreover ρ is 2π periodic in θ, continuously depends on Ω and
verifies the following bounds

ρ(ω, θ, Ω, t) ≤ CΩe−Mω2
, ∣∂ρ(ω, θ, Ω, t)∣ ≤ t−k/2CΩe−Mω2

for k = 1 (∂ω) and k = 2 (∂2
ω and Y ). Furthermore, if g has

compact support ρ is the unique solution satisfying the properties
above.
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Numerical method

We apply the Kolmogorov operator structure to define a stable
numerical scheme. We use a finite difference scheme based on the
approximation of the Lie derivative

Y ρ = (−ω
∂

∂θ
−

∂

∂t
)ρ

⇓

ρ(ω, θ − ω∆t, Ω, t −∆t) − ρ(ω, θ, Ω, t)
∆t
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Test parameters

We test this numerical method evaluating the following quantity

∣r(t)∣ = ∣∫
2π

0 ∫
R
∫
R

eiθρ(θ, ω, Ω, t)g(Ω)dΩdωdθ∣

This parameter (that lives in the interval [0, 1]) give us key
informations about phase synchronization: a value close to 0
implies low synchronization, while a value closer to 1 has the
opposite meaning.
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Results

Figure 1: Time evolution of the phase coherence, T = 10, ∆t = 0.0317
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That’s all!

Thanks for the attention!
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