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Hypoelliptic PDEs
Prototype
Let (W;)¢s0 denotes a real Brownian motion, and consider the

Stochastic process ( V4, Y¢)ts0

Vo + \/E‘/Vt7

t
Yo + fo V.ds.

The density p = p(v,y, v, yo, t) is a solution to

Vi
Yt

Lp=02p+ vOyp—-0tp=0

that we notice to be a degenerate equation.
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Hypoelliptic PDEs
Kolmogorov equation

ZLp = a&vp +vOyp—0¢p

Kolmogorov (1934) provided us with the explicit expression of the
density p (that is the fundamental solution of the operator)

p= V3 ex _(V—V0)2_3(V—V0)(y—)/o—tvo)_3(y—YO—tV0)2 .
2mt? t t2 i

We point out that despite the degeneracy of the equations the
density is smooth, this indicating that the operator is hypoelliptic.
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Hypoelliptic PDEs
Hypoelliptic operator

Hypoellipticity

An operator .Z is hypoelliptic if, for every distributional so-
lution u e L} () to the equation Zu = f, we have that

feC®(Q) = ueC™(Q).

An hypoelliptic operator posses the same regularity property of
elliptic operator with C* coefficients.

DEGLI STUDI
NA E REGGIO EMIL
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Hypoelliptic PDEs

Hypoelliptic operator

Starting from Kolmogorov's observations, Hérmander (1967)
considered a more general class of operators on RV*1

m
L= X2+,
k=1

where X and Y are smooth vector fields of the form

N+1 N+1
Xk = Xk(z) = Z aj,k(z)azj7 Y = Y(Z) = Z aj,m+1(Z)azJ-7
j=1 J=1

with dj ks dj,m+1 € COO(Q)
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Hypoelliptic PDEs

Smooth vector fields

Given two vector fields Z7, Z», their commutator is given by

[21,25] = 2125 - Z:2;.
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Hypoelliptic PDEs

Smooth vector fields

Given two vector fields Z7, Z», their commutator is given by
(21, 22] = 2122 - 222y

Lie(Z1, ..., Zm) denotes the Lie algebra generated by 71, ..., Zy,
that is the span of these vector fields and their commutators.

A DEGLI STUD!
NA E REGGIO EMIL
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Hypoelliptic PDEs

Smooth vector fields

Given two vector fields Z7, Z», their commutator is given by
(21, 22] = 2122 - 222y

Lie(Z1, ..., Zm) denotes the Lie algebra generated by 71, ..., Zy,
that is the span of these vector fields and their commutators.

We identify every vector field Z(z) = Zj'\fil aj(z)0z; with the vector
(a1(2), .-y an+1(2)).
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Hypoelliptic PDEs

Hormander's rank condition

Theorem (Hérmander)

Suppose that
rank Lie(X1,..., Xm, Y)(2) = N +1, VzeQ.

Then the operator £ = Y1 X,f + Y, is hypoelliptic.

The Kolmogorov operator

& =%, +vdy, -0

is of Hormander type with X =0,, Y =vd, - 0 and [X, Y] =0,.

UNIMORE /o

Giulio Pecorella



Lie group

Lie group

Since the regularity properties of Hormander operators are related
to a Lie algebra, the natural framework for the regularity theory is
the non-euclidean setting of the homogeneous Lie groups, as
pointed out by Folland and Stein (1974).

Homogeneous Lie groups

A Lie group G = (RN*1.0,6,) is a group on RN*! with a
smooth composition law o and a dilation law {J,},>o that is
an automorphism of the group

br(xoy) =0r(x)dr(y), Vx,y e RV, r > 0.

J
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Lie group
Lie group

& =%, +vdy, -0

Let consider on R3 an homogeneous Lie group with composition
law and dilation law given by

(V’ya t) © (V07y0: tO) = (V+ Vo, + Yo — tvo, t + tO)v

5 (v,y,t) = (rv, PPy, r’t).

Z is left invariant w.r.t. o and homogeneous of degree 2 with
respect to d,. This also appears from the fundamental solution

p ﬁexp (—(V—tVO)2 _3(V— vo) (¥ — yo — tvo) _3()’—)/0— tVo)2).

T ort? £2 £3

DEGLI STUDI
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Kolmogorov operators

Kolmogorov operators

Starting from these observation, some mathematicians (Lanconelli,
Polidoro, Pascucci, Pagliarani, Manfredini...) investigated a wide
class of Kolmogorov operators

& =Tr(AD?) + (Bx,D) - 8;, (x,t)eRN*,

with A= AT >0. There are many condition for the hypoellipticity
of .Z to hold. One is the Kalman's rank condition

rank (A2, BAz, B2A%, .., BNIAT) = .

This is the starting point to study more general operators (variable
coefficients, non-local terms...). The matrices A and B defines the
Lie group structure useful to study these operators. UNIMORE *
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Kolmogorc

Intrinsic regularity space

When working with Hérmander vector fields, is useful to work in
the regularity framework that they induce. Let Z be a vector field,
we denote by s ~ e%4(z) the integral curve of Z, that is the unique
solution to

%e%(2) = Z(e¥(2)),

e (2)|s=0 = z.
A function u is Z-Lie differentiable if the function s~ u(e$?(z)) is
differentiable.

DEGLI STUDI
REGGIO EMIL
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Kolmogorov operators

Intrinsic regularity space

We closely inspect the prototype Kolmogorov operator

L =02, +vd, -0 =X>+ Y.

The integral curve of X is eSX(v,y, t)=(v+s,y,t), while the
integral curve of Yis €Y (v,y,t) = (v,y +sv,t—s) .

The intrinsic regularity space of classical solutions is the space of
functions u with two continuous derivatives w.r.t. the
non-degenerate variable v, and with continuous Lie-derivative Yu

Yir = lim u(v,y+sv,t—s)—u(v,y,t)
s—0 S

DEGLI STUDI
NA E REGGIO EMIL
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Kuramoto model
Kuramoto model with inertia

These operators appear for instance in the following Kuramoto-type
model, that describes the synchronization of coupled oscillators.
Let us consider a continuum of coupled oscillators, whose natural
frequencies are distributed according to a function g(2). The
density function p that describes the fraction of oscillators at phase
0, frequency w, natural frequency Q at time t solves

P?p 0 op Op

9P I (w--K,(8,t))p] w2l - 2P _

K,(0,t) = Kfff Q) sin(60' - 0)p(o', 0, ', £)d0' de dSY'.

where K represents the strength coupling between oscillators.

UNIN\ORE *

Giulio Pecorella




Kuramoto model
Assumptions

(D the initial condition pg is continuous, strictly positive, 27
periodic in 8 and for every Q € R verifies

0,Q2)d0dw = 1.
/]O’M[X]RPO(WH )dfdw

2 po has an exponential decay in w
2
po(w,0,Q,t) < Ce M,
(3 g is a non-negative, normalized function such that

ng(Q)e‘Q'B dQ < +o0, for some 3 > 2.
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Kuramoto model
Existence result

Theorem (P., Polidoro, Vernia)

Under assumptions (1), ), 3) there exists a strictly positive
classical solution p in R3 x [0, +oo[ such that

/]-0 2] RP(W,9,Q, t)dOdw =1, for every t>0, QeR.

Moreover p is 27 periodic in 6, continuously depends on €2 and
verifies the following bounds

p(w,0,Q,t) < CQe_M“’Z, |0p(w,0,9Q,t)| < t_k/2CQe_W“2

for k=1 (0,) and k=2 (92 and Y). Furthermore, if g has
compact support p is the unique solution satisfying the properties
above.

v
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Numerical method
Numerical method

We apply the Kolmogorov operator structure to define a stable
numerical scheme. We use a finite difference scheme based on the
approximation of the Lie derivative

0 0
Yf’—(%‘a)

J

p(w,0 —wAt,Q, t - At) - p(w, 0,8, t)
At
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Numerical method
Test parameters

We test this numerical method evaluating the following quantity

()] = fozﬂfR[Reiep(e,w,Q,t)g(Q)dewda
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Numerical method
Test parameters

We test this numerical method evaluating the following quantity

()] = fozﬂfR[Reiﬁp(e,w,Q,t)g(Q)dewde

This parameter (that lives in the interval [0,1]) give us key
informations about phase synchronization: a value close to 0
implies low synchronization, while a value closer to 1 has the
opposite meaning.

A DEGLI STUD!
NA E REGGIO EMIL
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Numerical method
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Figure 1. Time evolution of the phase coherence, T =10, At =0.0317
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Numerical method

That's alll

=) & & &

Thanks fo attention!
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