Hypoelliptic Kolmogorov operators

Giulio Pecorella

University of Modena and Reggio Emilia

28/08/2024

Prototype

Let $(W_t)_{t\geq 0}$ denotes a real Brownian motion, and consider the Stochastic process $(V_t,Y_t)_{t\geq 0}$

$$\begin{cases} V_t = v_0 + \sqrt{2}W_t, \\ Y_t = y_0 + \int_0^t V_s ds \end{cases}$$

The density $p = p(v, y, v_0, y_0, t)$ is a solution to

$$\mathcal{L}p=\partial_{vv}^2p+v\partial_yp-\partial_tp=0$$

that we notice to be a **degenerate** equation.

Kolmogorov equation

$$\mathcal{L}p = \partial_{vv}^2 p + v \partial_y p - \partial_t p$$

Kolmogorov (1934) provided us with the explicit expression of the density p (that is the *fundamental solution* of the operator)

$$p = \frac{\sqrt{3}}{2\pi t^2} \exp\left(-\frac{(v-v_0)^2}{t} - 3\frac{(v-v_0)(y-y_0-tv_0)}{t^2} - 3\frac{(y-y_0-tv_0)^2}{t^3}\right).$$

We point out that despite the degeneracy of the equations the density is smooth, this indicating that the operator is **hypoelliptic**.

Hypoelliptic operator

Hypoellipticity

An operator \mathscr{L} is **hypoelliptic** if, for every distributional solution $u \in L^1_{loc}(\Omega)$ to the equation $\mathscr{L}u = f$, we have that

$$f \in C^{\infty}(\Omega) \implies u \in C^{\infty}(\Omega).$$

An hypoelliptic operator posses the same regularity property of elliptic operator with C^{∞} coefficients.

Hypoelliptic operator

Starting from Kolmogorov's observations, Hörmander (1967) considered a more general class of operators on \mathbb{R}^{N+1}

$$\mathcal{L} = \sum_{k=1}^m X_k^2 + Y,$$

where X_k and Y are smooth vector fields of the form

$$X_k = X_k(z) = \sum_{j=1}^{N+1} a_{j,k}(z)\partial_{z_j}, \qquad Y = Y(z) = \sum_{j=1}^{N+1} a_{j,m+1}(z)\partial_{z_j},$$

with $a_{j,k}, a_{j,m+1} \in C^{\infty}(\Omega)$.

Smooth vector fields

Given two vector fields Z_1, Z_2 , their commutator is given by

$[Z_1, Z_2] = Z_1 Z_2 - Z_2 Z_1.$

Smooth vector fields

Given two vector fields Z_1, Z_2 , their commutator is given by

$$[Z_1, Z_2] = Z_1 Z_2 - Z_2 Z_1.$$

 $\text{Lie}(Z_1,...,Z_M)$ denotes the Lie algebra generated by $Z_1,...,Z_M$, that is the span of these vector fields and their commutators.

Smooth vector fields

Given two vector fields Z_1, Z_2 , their commutator is given by

$$[Z_1, Z_2] = Z_1 Z_2 - Z_2 Z_1.$$

 $\text{Lie}(Z_1,...,Z_M)$ denotes the Lie algebra generated by $Z_1,...,Z_M$, that is the span of these vector fields and their commutators.

We identify every vector field $Z(z) = \sum_{j=1}^{N+1} a_j(z) \partial_{z_j}$ with the vector $(a_1(z), ..., a_{N+1}(z))$.

Hörmander's rank condition

Theorem (Hörmander)

Suppose that

$$\mathrm{rank}\,\mathrm{Lie}(X_1,...,X_m,Y)(z)=N+1,\qquad\forall z\in\Omega.$$

Then the operator $\mathscr{L} = \sum_{k=1}^{m} X_k^2 + Y$, is hypoelliptic.

The Kolmogorov operator

$$\mathcal{L} = \partial_{vv}^2 + v \partial_y - \partial_t$$

is of Hörmander type with $X = \partial_v$, $Y = v\partial_y - \partial_t$ and $[X, Y] = \partial_y$.

Lie group

Since the regularity properties of Hörmander operators are related to a Lie algebra, the natural framework for the regularity theory is the non-euclidean setting of the homogeneous Lie groups, as pointed out by Folland and Stein (1974).

Homogeneous Lie groups

A Lie group $\mathbb{G} = (\mathbb{R}^{N+1}, \circ, \delta_r)$ is a group on \mathbb{R}^{N+1} with a smooth composition law \circ and a dilation law $\{\delta_r\}_{r\geq 0}$ that is an automorphism of the group

$$\delta_r(x \circ y) = \delta_r(x) \circ \delta_r(y), \qquad \forall x, y \in \mathbb{R}^{N+1}, r \ge 0.$$

Lie group

$$\mathcal{L} = \partial_{vv}^2 + v \partial_y - \partial_t$$

Let consider on \mathbb{R}^3 an homogeneous Lie group with composition law and dilation law given by

$$(v, y, t) \circ (v_0, y_0, t_0) = (v + v_0, y + y_0 - tv_0, t + t_0),$$

 $\delta_r(v, v, t) = (rv, r^3v, r^2t).$

 \mathscr{L} is left invariant w.r.t. \circ and homogeneous of degree 2 with respect to δ_r . This also appears from the fundamental solution

$$p = \frac{\sqrt{3}}{2\pi t^2} \exp\left(-\frac{(v-v_0)^2}{t} - 3\frac{(v-v_0)(y-y_0-tv_0)}{t^2} - 3\frac{(y-y_0-tv_0)^2}{t^3}\right).$$

Kolmogorov operators

Starting from these observation, some mathematicians (Lanconelli, Polidoro, Pascucci, Pagliarani, Manfredini...) investigated a wide class of Kolmogorov operators

$$\mathcal{L} = \mathrm{Tr}(AD^2) + \langle Bx, D \rangle - \partial_t, \quad (x,t) \in \mathbb{R}^{N+1},$$

with $A = A^T \ge 0$. There are many condition for the hypoellipticity of \mathscr{L} to hold. One is the *Kalman's rank condition*

$$\mathrm{rank} \; \left(A^{\frac{1}{2}}, BA^{\frac{1}{2}}, B^{2}A^{\frac{1}{2}}, ..., B^{N-1}A^{\frac{1}{2}} \right) = N.$$

This is the starting point to study more general operators (variable coefficients, non-local terms...). The matrices *A* and *B* defines the Lie group structure useful to study these operators.

Intrinsic regularity space

When working with Hörmander vector fields, is useful to work in the regularity framework that they induce. Let Z be a vector field, we denote by $s \mapsto e^{sZ}(z)$ the integral curve of Z, that is the unique solution to

$$\frac{d}{ds} e^{sZ}(z) = Z(e^{sZ}(z)),$$
$$e^{sZ}(z)|_{s=0} = z.$$

A function *u* is *Z*-Lie differentiable if the function $s \mapsto u(e^{sZ}(z))$ is differentiable.

Intrinsic regularity space

We closely inspect the prototype Kolmogorov operator

$$\mathcal{L}=\partial_{vv}^2+v\partial_y-\partial_t=X^2+Y.$$

The integral curve of X is $e^{sX}(v, y, t) = (v + s, y, t)$, while the integral curve of Y is $e^{sY}(v, y, t) = (v, y + sv, t - s)$. The intrinsic regularity space of classical solutions is the space of functions *u* with two continuous derivatives w.r.t. the non-degenerate variable *v*, and with continuous Lie-derivative *Yu*

$$Yu \coloneqq \lim_{s \to 0} \frac{u(v, y + sv, t - s) - u(v, y, t)}{s}$$

Kuramoto model with inertia

These operators appear for instance in the following Kuramoto-type model, that describes the synchronization of coupled oscillators. Let us consider a continuum of coupled oscillators, whose natural frequencies are distributed according to a function $g(\Omega)$. The density function ρ that describes the fraction of oscillators at phase θ , frequency ω , natural frequency Ω at time t solves

$$\frac{\partial^2 \rho}{\partial \omega^2} + \frac{\partial}{\partial \omega} [(\omega - \Omega - K_{\rho}(\theta, t))\rho] - \omega \frac{\partial \rho}{\partial \theta} - \frac{\partial \rho}{\partial t} = 0,$$

$$\mathcal{K}_{\rho}(\theta,t) = \mathcal{K} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{0}^{2\pi} g(\Omega') \sin(\theta'-\theta) \rho(\omega',\theta',\Omega',t) d\theta' d\omega' d\Omega'.$$

where K represents the strength coupling between oscillators.

Assumptions

(1) the initial condition ρ_0 is continuous, strictly positive, 2π periodic in θ and for every $\Omega \in \mathbb{R}$ verifies

$$\int_{]0,2\pi[\times\mathbb{R}}\rho_0(\omega,\theta,\Omega)d\theta d\omega=1.$$

(2) ho_0 has an exponential decay in ω

$$\rho_0(\omega,\theta,\Omega,t) \leq C \mathrm{e}^{-M\omega^2}.$$

(3) g is a non-negative, normalized function such that

$$\int_{\mathbb{R}} g(\Omega) \mathrm{e}^{|\Omega|^{\beta}} d\Omega < +\infty, \qquad \text{for some } \beta > 2.$$

Existence result

Theorem (P., Polidoro, Vernia)

Under assumptions (1), (2), (3) there exists a strictly positive classical solution ρ in $\mathbb{R}^3 \times [0, +\infty[$ such that

$$\int_{]0,2\pi[\times\mathbb{R}}^{t}\rho(\omega,\theta,\Omega,t)d\theta d\omega = 1, \quad \text{for every} \quad t \ge 0, \ \Omega \in \mathbb{R}.$$

Moreover ρ is 2π periodic in $\theta,$ continuously depends on Ω and verifies the following bounds

 $\rho(\omega,\theta,\Omega,t) \leq C_{\Omega} \mathrm{e}^{-\overline{M}\omega^{2}}, \qquad |\partial \rho(\omega,\theta,\Omega,t)| \leq t^{-k/2} C_{\Omega} \mathrm{e}^{-\overline{M}\omega^{2}}$

for k = 1 (∂_{ω}) and k = 2 (∂_{ω}^2 and Y). Furthermore, if g has compact support ρ is the unique solution satisfying the properties above.

Numerical method

We apply the Kolmogorov operator structure to define a *stable* numerical scheme. We use a finite difference scheme based on the approximation of the Lie derivative

Test parameters

We test this numerical method evaluating the following quantity

$$|r(t)| = \left| \int_0^{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\theta} \rho(\theta, \omega, \Omega, t) g(\Omega) d\Omega d\omega d\theta \right|$$

Test parameters

We test this numerical method evaluating the following quantity

$$|r(t)| = \left| \int_0^{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{i\theta} \rho(\theta, \omega, \Omega, t) g(\Omega) d\Omega d\omega d\theta \right|$$

This parameter (that lives in the interval [0,1]) give us key informations about phase synchronization: a value close to 0 implies low synchronization, while a value closer to 1 has the opposite meaning.

Results

Figure 1: Time evolution of the phase coherence, $T = 10, \Delta t = 0.0317$

That's all!

Thanks for the attention!

A. Kolmogorov

Zuflige bewegungen. (zur theorie der brownschen bewegung.) Ann. of Math., II. Ser., 35 (1934), pp. 116–117.

L.Hörmander

Hypoelliptic second order differential equations Acta Math., 119 (1967), pp. 147–171.

F. Anceschi, S. Polidoro

A survey on the classical theory for Kolmogorov equation Matematiche 75. No. 1, 221–258 (2020).

G. Pecorella, S. Polidoro, C. Vernia

A study of the Kuramoto model for synchronization phenomena based on degenerate Kolmogorov-Fokker-Planck equations

arXiv preprint arXiv:2403.05342.

R. Spigler

The mathematics of Kuramoto models which describe synchronization phenomena Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Serie 1, Vol. 1 (2016), n.2, p. 123–132.

