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General introduction
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Linear and nonlinear fragmentation
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Collisional breakage equation

The pure binary nonlinear collisional breakage equation is given by

∂φ(x , t)

∂t
=

∫ ∞

0

∫ ∞

x

B(x |y , z)K(y , z)φ(y , t)φ(z , t)dydz

−
∫ ∞

0

K(x , y)φ(x , t)φ(y , t)dy

(1)

Supported with the initial data:

φ(x , 0) = φ0(x)(≥ 0) for all x ∈ (0,∞) (2)

B satisfies the following properties:

B(x |y , z) = 0 for all x ≥ y , and

∫ y

0

xB(x |y , z)dx = y ; (3)

∫ y

0

B(x |y , z)dx = ν(y , z) < ∞ for all y > 0, z > 0. (4)
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Moment functions

The p−th order moment of the solution to the fragmentation equation:

M(p)(t) =

∫ ∞

0

xpφ(x , t)dx , and M(p)
m (t) =

∫ ∞

m

xpφ(x , t)dx .

Total mass of the particles present in the system:

M(1) =

∫ ∞

0

xφ(x , t)dx .

Total number of the particles present in the system:

M(0) =

∫ ∞

0

φ(x , t)dx .

The system obeys the mass conservation law:

dM(1)(t)

dt
= 0 =⇒ M(1)(t) = M(1)(0).
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Solution

We consider the solution space

Ψr ,σ := L1
[
(0,∞) ;

(
x r + x−2σ

)
dx

]
for r ≥ 1, σ > 0.

Also Ψ+
r ,σ be the positive cone of the space Ψr ,σ.

Definition

Let T ∈ (0,∞). A solution of the IVP (1)-(2) is a function φ : [0,T ] −→ Ψ+
r ,σ

such that for x > 0 a.e.

1 φ(x , ·) is continuous on [0,T ],

2 for all t ∈ [0,T ] ,

∫ t

0

∫ ∞

0

∫ ∞

0

K(y , z)φ(y , t)φ(z , t)dydzds < +∞,

3 for all t ∈ [0,T ] ,

φ(x , t) = φ0(x) +

∫ t

0

[∫ ∞

0

∫ ∞

x

B(x |y , z)K(y , z)φ(y , t)φ(z , t)dydz

−
∫ ∞

0

K(x , y)φ(x , t)φ(y , t)dy

]
ds.
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Assumptions

(A1) The collisional kernel K(x , y) ≤ k
(1 + x + y)λ

(x + y)σ
, for some constants k, λ, 0 ≤

σ < 1+ν
2 satisfying σ ≤ λ ≤ min{1 + ν + σ, r − 1}, is nonnegative and

continuous on (0,∞)2;

(A2) The fragmentation kernel B(x |y , z) is nonnegative and continuous on (0,∞)3

and satisfies the ‘power-law’ rates given by

B(x |y , z) =

{
(ν + 2) xν

yν+1 , when y > x ,

0, when x ≥ y ,

for −1 < ν ≤ 0.
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Well-posedness 1

Theorem (Existence)

Let the functions K(x , y) and B(x |y , z) satisfy the assumptions (A1) and (A2)
respectively. If the initial data φ0(x) is continuous and belongs to Ψ+

r ,σ, then the

IVP (1)-(2) has at least one mass conserving solution in C
(
[0,T ] ; Ψ+

r ,σ

)
for some

T > 0.

Theorem (Uniqueness)

Let the functions K(x , y) and B(x |y , z) be nonnegative and continuous (0,∞)2 and

(0,∞)3 respectively, and satisfy the conditions (A1)− (A2) with σ = 0 and 0 ≤
λ ≤ min{1, r − 1}. If the initial data φ0(x) is continuous and belongs to Ψ+

r ,0, then

the IVP (1)-(2) has a unique solution in C
(
[0,T ] ; Ψ+

r ,0

)
for some T > 0.

1Das, A. Saha, J. Mass-Conservation and Finite-Time Shattering transition in a Nonlinear
Collisional Fragmentation with Singular Kinetic Rates, submitted, (2024).
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Sketch of the proof

Kernel truncation:

Kn(x , y)

{
= K(x , y), when x , y ≥ 1

n , and x , y ≤ n,
≤ K(x , y), otherwise.

Relative compactness: The sequence of solution {φn}∞n=1 is relatively
compact over a compact rectangular subset of

Ξ = {(x , t) : 0 < x < ∞, 0 ≤ t ≤ T}.

▶ uniform boundedness of the sequence {φn}∞n=1 is obtained over a compact
subset of Ξ.

▶ equi-continuity of the sequence {φn}∞n=1

Combining all these results along with the Arzelà-Ascoli theorem ensure that

lim
n→∞

φn = φ

uniformly on each compact subset Ξ1 = {(x , t) : 1

X
< x < X , 0 ≤ t ≤ T} of Ξ.

Arijit Das (FAU DCN-AvH) The nonlinear fragmentation August 28, 2024 10 / 24



Large time analysis 2

Proposition (Formation of dust particles)

Let the assumptions (A1) and (A2) on the kinetic kernels K and B holds good and
in addition, the initial data φ0(x) is continuous and belong to Ψ+

r ,σ, then M(0)(t)

is a nondecreasing function. Moreover, M(0) −→ ∞ as t −→ ∞.

2Das, A. Saha, J. Mass-Conservation and Finite-Time Shattering transition in a Nonlinear
Collisional Fragmentation with Singular Kinetic Rates, submitted, (2024).
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Finite time shattering

Theorem

Let the kinetic kernels K and B have the same growth rate (A1) and (A2) re-
spectively. If the initial data φ0(x) is continuous and belongs to Ψ+

r ,σ with
Q := ξ1(0) < ∞. There is a constant κ depending on λ and k0 such that the non-
linear collisional equation (1) has a unique mass conserving solution φ on [0,T0),
where

T0 :=
M(−σ)

λ (φ0)

D(r , σ, λ)
. (5)

where D(r , σ, λ) := κM̄0

(
M̄0 + 2M̄r

)
. In particular, Tsh ≥ T0.
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Sketch of the proof

If possible let, there exist a mass conserving solution to the given problem (1)-(2)
on C

(
[0,T ∗); Ψ+

r ,σ

)
for some T ∗ < T0.

Multiplying the equation (1) by the test function ϕm(x) := xmχ[λ,∞](x) and
using the moment estimations, we can obtain

dΘλ
m(t)

dt
≥ Λ (1−m)Q

−σ
1−m

m + ν + 1
Θλ

m (t)
1+σ−m
1−m . (6)

where

Θλ
m (φ) (t) := A(r , σ, λ) +

Λ (1−m)Q
−σ
1−m

m + ν + 1

∫ t

0

[
M(m)

λ (φ(s))
] 1+σ−m

1−m

ds,

with A(r , σ, λ) := M(−σ)
λ (φ0)−D(r , σ, λ)T ∗.

t ≤ (m + ν + 1)

σΛ
Q

σ
1−mA(r , σ, λ)

−σ
1−m . (7)

Now by taking the limit t −→ T ∗ and then m −→ −ν − 1 on the above
relation, we can obtain T ∗ = 0, a contradiction.
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Divergence form and discretization

The mass conserving form of nonlinear collisional breakage equation:

∂ (xφ(x , t))

∂t
=

∂

∂x

∫ ∞

0

∫ ∞

x

∫ x

0

uB(u|v ,w)K(v ,w)φ(v , t)φ(w , t)dudvdw , (8)

with the initial data φ(x , 0) = φ0(x).

Let Λ :=]0, xmax] be the computational domain and Λi :=
]
xi−1/2, xi+1/2

]
, i =

1, 2, . . . , I with x1/2 = 0, xI+1/2 = xmax and ∆xi := xi+1/2 − xi−1/2.

The discrete number density function over the cell Λi is calculated as

Ni (t) ≈
∫ xi+1/2

xi−1/2

φ(x , t)dx .
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Discrete scheme

The mass conserving finite volume scheme of equation (8) is written as

xi
dNi

dt
= Gi+1/2(t)− Gi−1/2(t), (9)

where Gi+1/2 is the numerical flux at the right end of i th cell Λi and is defined as

Gi+1/2 :=
I∑

p=1

I∑
q=i+1

i∑
r=1

βp
r ,qKq,pNq(t)Np(t), (10)

with, βp
r ,q :=

∫
Λr

xB(x |xq, xp)dx , denoting the splitting of particles of size xq in

the interval
[
xr−1/2, xr+1/2

]
. The numerical flux at the boundaries of domain D

are taken as

G1/2 = 0 and GI+1/2 = 0. (11)
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Test case I: K =
(x + y)2.5

(xy)0.3
, B = 2

y and φ0(x) = xe−x
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Figure: Time evolution of (A) total number of particles ξ0(t), (B) the total mass of
particles M1(t) and second order moment M2(t), (C) negative moment function ξ−2σ(t),
and (D) the number density φ(x , t) in log scale at time t = 2, 4, 6 and 8.
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Finite time shattering and blowup of moments
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Figure: (A) Mass loss near time t = 4.25, (B) sudden increment of total number of
particles near time t = 4.25, (C) blowup of the negative moment near time t = 4.25.
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Predict the other moments with low accuracy

Scheme 1 (MC):

xi
dNi

dt
= Gi+1/2(t)− Gi−1/2(t), (12)

with weight function Gi+1/2 :=
I∑

p=1

I∑
q=i+1

i∑
r=1

βp
r ,qKp.qNq(t)Np(t).
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Figure: Comparison of zeroth and first moments predicted by MC scheme for
B(x |y , z) = δ(x − 0.4y) + δ(x − 0.6y) and φ0(x) = δ(x − 1).

Return
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Improved formulation with weighted numerical flux3

Scheme 2 (MCNP):

xi
dNi

dt
= G̃i+1/2(t)− G̃i−1/2(t). (13)

Here, G̃i+1/2 is the revised weighted numerical flux at the i th cell and is defined as

G̃i+1/2 :=
I∑

p=1

I∑
q=i+1

i∑
r=1

βp
r ,qΘq,pKq,pNq(t)Np(t), (14)

where, the weight function Θq,p is defined as,

Θq,p :=
xq (ν(xq, xp)− 1)

q∑
j=1

(xq − xj)

∫
Λj

B(x |xq, xp)dx
, (15)

with Θ1,p = 0 and G̃1/2 = G̃I+1/2 = 0.
3Das, A. Kushwah, P. Saha, J. Singh, M. Improved higher-order finite volume scheme and its

convergence analysis for collisional breakage equation, Applied Numerical Mathematics 196 (1),
(2024).
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Test case II:

Problem: B(x |y ; z) = 2

y
, K(x , y) = xy and n0(x) = δ(x − 1).

Exact solution: n(t, x) = exp(−tx)[2t + t2(1− x)] + δ(x − 1) exp(−t)
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Figure: A comparison of numerical results of Test problem I
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Concluding discussion

Analytical study of the nonlinear fragmentation equation.
▶ Existence of mass conserving solution for a class of unbounded singular

collision kernels,
▶ The existing mass conserving solution is unique,
▶ Due to pure fragmentation, the particles become dust after a large time.

Numerical approximation of the nonlinear collisional fragmentation
equation
▶ Formulation of a mass conserving number preserving finite volume scheme,
▶ Numerical simulations of test problem
▶ Finite time shattering.
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Future scopes

Collisional fragmentation with source term

∂tφ(x , t) = Q(φ)(x , t) + V (φ, t)︸ ︷︷ ︸
source

,

with the initial condition

φ(x , 0) = φ0(x).

Our interest is to find such V for which there exist a sharp time T such that∫ ∞

0

xφ(x , t) =

∫ ∞

0

xφ0(x)dx for t ≥ T .

Being a pure fragmentation model, to achieve the steady state is not possible,
however a self similar profile can be obtain for large time scale.
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