POPULATION BALANCE EQUATION FOR COLLISIONAL FRAGMENTATION

Arijit Das

Presented in

X Partial differential equations, optimal design and numerics Benasque 2024

August 28, 2024

Outline of the presentation

- General introduction: The nonlinear collisional fragmentation model
- Existence, uniqueness and asymptotic analysis
- Finite volume discretization: A mass conserving number preserving scheme
- Numerical test for mass conservation and shattering transition
- Conclusions and future scopes

General introduction

Linear and nonlinear fragmentation

Collisional breakage equation

The pure binary nonlinear collisional breakage equation is given by

$$\frac{\partial \varphi(x,t)}{\partial t} = \int_0^\infty \int_x^\infty \mathcal{B}(x|y,z)\mathcal{K}(y,z)\varphi(y,t)\varphi(z,t)\mathrm{d}y\mathrm{d}z \\
-\int_0^\infty \mathcal{K}(x,y)\varphi(x,t)\varphi(y,t)\mathrm{d}y$$
(1)

Supported with the initial data:

$$\varphi(x,0) = \varphi_0(x) (\geq 0)$$
 for all $x \in (0,\infty)$ (2)

 ${\cal B}$ satisfies the following properties:

$$\mathcal{B}(x|y,z) = 0$$
 for all $x \ge y$, and $\int_0^y x \mathcal{B}(x|y,z) dx = y;$ (3)

$$\int_0^y \mathcal{B}(x|y,z) \mathrm{d}x = \nu(y,z) < \infty \quad \text{for all} \quad y > 0, z > 0. \tag{4}$$

August 28, 2024

Moment functions

The p-th order moment of the solution to the fragmentation equation:

$$\mathcal{M}^{(p)}(t) = \int_0^\infty x^p \varphi(x,t) \mathrm{d}x, \quad \text{and} \quad \mathcal{M}^{(p)}_m(t) = \int_m^\infty x^p \varphi(x,t) \mathrm{d}x.$$

Total mass of the particles present in the system:

$$\mathcal{M}^{(1)} = \int_0^\infty x \varphi(x, t) \mathrm{d}x.$$

• Total number of the particles present in the system:

$$\mathcal{M}^{(0)} = \int_0^\infty \varphi(x, t) \mathrm{d}x.$$

The system obeys the mass conservation law:

$$\frac{\mathrm{d}\mathcal{M}^{(1)}(t)}{\mathrm{d}t}=0 \implies \mathcal{M}^{(1)}(t)=\mathcal{M}^{(1)}(0).$$

Solution

We consider the solution space

$$\Psi_{r,\sigma} := L^1\left[(0,\infty); \left(x^r + x^{-2\sigma}\right) \mathrm{d}x\right] \qquad \text{for} \qquad r \ge 1, \sigma > 0.$$

Also $\Psi_{r,\sigma}^+$ be the positive cone of the space $\Psi_{r,\sigma}$.

Definition

Let $T \in (0,\infty)$. A solution of the IVP (1)-(2) is a function $\varphi : [0,T] \longrightarrow \Psi_{r,\sigma}^+$ such that for x>0 a.e.

- $\varphi(x,\cdot)$ is continuous on [0,T],
- \bullet for all $t \in [0, T]$,

$$\varphi(x,t) = \varphi_0(x) + \int_0^t \left[\int_0^\infty \int_x^\infty \mathcal{B}(x|y,z) \mathcal{K}(y,z) \varphi(y,t) \varphi(z,t) dy dz - \int_0^\infty \mathcal{K}(x,y) \varphi(x,t) \varphi(y,t) dy \right] ds.$$

Assumptions

- (A1) The collisional kernel $\mathcal{K}(x,y) \leq k \frac{(1+x+y)^{\lambda}}{(x+y)^{\sigma}}$, for some constants k, $\lambda, 0 \leq \sigma < \frac{1+\nu}{2}$ satisfying $\sigma \leq \lambda \leq \min\{1+\nu+\sigma,r-1\}$, is nonnegative and continuous on $(0,\infty)^2$;
- (A2) The fragmentation kernel $\mathcal{B}(x|y,z)$ is nonnegative and continuous on $(0,\infty)^3$ and satisfies the 'power-law' rates given by

$$\mathcal{B}(x|y,z) = \begin{cases} (\nu+2) \frac{x^{\nu}}{y^{\nu+1}}, & \text{when } y > x, \\ 0, & \text{when } x \ge y, \end{cases}$$

for $-1 < \nu < 0$.

Well-posedness ¹

Theorem (Existence)

Let the functions $\mathcal{K}(x,y)$ and $\mathcal{B}(x|y,z)$ satisfy the assumptions (A1) and (A2) respectively. If the initial data $\varphi_0(x)$ is continuous and belongs to $\Psi^+_{r,\sigma}$, then the IVP (1)-(2) has at least one mass conserving solution in $\mathcal{C}\left([0,T];\Psi^+_{r,\sigma}\right)$ for some T>0.

Theorem (Uniqueness)

Let the functions $\mathcal{K}(x,y)$ and $\mathcal{B}(x|y,z)$ be nonnegative and continuous $(0,\infty)^2$ and $(0,\infty)^3$ respectively, and satisfy the conditions (A1)-(A2) with $\sigma=0$ and $0\leq \lambda\leq \min\{1,r-1\}$. If the initial data $\varphi_0(x)$ is continuous and belongs to $\Psi_{r,0}^+$, then the IVP (1)-(2) has a unique solution in $\mathcal{C}\left([0,T];\Psi_{r,0}^+\right)$ for some T>0.

Sketch of the proof

• Kernel truncation:

$$\mathcal{K}_n(x,y)$$
 $\begin{cases} = \mathcal{K}(x,y), & \text{when } x,y \geq \frac{1}{n}, \text{ and } x,y \leq n, \\ \leq \mathcal{K}(x,y), & \text{otherwise.} \end{cases}$

• **Relative compactness:** The sequence of solution $\{\varphi_n\}_{n=1}^{\infty}$ is relatively compact over a compact rectangular subset of

$$\Xi = \{(x, t) : 0 < x < \infty, 0 \le t \le T\}.$$

- ▶ uniform boundedness of the sequence $\{\varphi_n\}_{n=1}^{\infty}$ is obtained over a compact subset of Ξ .
- equi-continuity of the sequence $\{\varphi_n\}_{n=1}^{\infty}$

Combining all these results along with the Arzelà-Ascoli theorem ensure that

$$\lim_{n\to\infty}\varphi_n=\varphi$$

uniformly on each compact subset $\Xi_1 = \{(x,t) : \frac{1}{X} < x < X, 0 \le t \le T\}$ of Ξ .

Large time analysis ²

Proposition (Formation of dust particles)

Let the assumptions (A1) and (A2) on the kinetic kernels \mathcal{K} and \mathcal{B} holds good and in addition, the initial data $\varphi_0(x)$ is continuous and belong to $\Psi_{r,\sigma}^+$, then $\mathcal{M}^{(0)}(t)$ is a nondecreasing function. Moreover, $\mathcal{M}^{(0)} \longrightarrow \infty$ as $t \longrightarrow \infty$.

²Das, A. Saha, J. Mass-Conservation and Finite-Time Shattering transition in a Nonlinear Collisional Fragmentation with Singular Kinetic Rates, *submitted* (2024).

Finite time shattering

Theorem

Let the kinetic kernels $\mathcal K$ and $\mathcal B$ have the same growth rate (A1) and (A2) respectively. If the initial data $\varphi_0(x)$ is continuous and belongs to $\Psi^+_{r,\sigma}$ with $\mathcal Q:=\xi_1(0)<\infty$. There is a constant κ depending on λ and k_0 such that the nonlinear collisional equation (1) has a unique mass conserving solution φ on $[0,T_0)$, where

$$T_0 := \frac{\mathcal{M}_{\lambda}^{(-\sigma)}(\varphi_0)}{\mathcal{D}(r, \sigma, \lambda)}.$$
 (5)

where $\mathcal{D}(r, \sigma, \lambda) := \kappa \bar{M}_0 \left(\bar{M}_0 + 2 \bar{M}_r \right)$. In particular, $T_{sh} \geq T_0$.

Sketch of the proof

If possible let, there exist a mass conserving solution to the given problem (1)-(2) on $\mathcal{C}\left([0,T^*);\Psi_{r,\sigma}^+\right)$ for some $T^* < T_0$.

• Multiplying the equation (1) by the test function $\phi_m(x) := x^m \chi_{[\lambda,\infty]}(x)$ and using the moment estimations, we can obtain

$$\frac{\mathrm{d}\Theta_{m}^{\lambda}(t)}{\mathrm{d}t} \geq \frac{\Lambda(1-m)\mathcal{Q}^{\frac{-\sigma}{1-m}}}{m+\nu+1}\Theta_{m}^{\lambda}(t)^{\frac{1+\sigma-m}{1-m}}.$$
 (6)

where

•

$$\begin{split} \Theta_{m}^{\lambda}\left(\varphi\right)\left(t\right) &:= \mathcal{A}(r,\sigma,\lambda) + \frac{\Lambda\left(1-m\right)\mathcal{Q}^{\frac{-\sigma}{1-m}}}{m+\nu+1} \int_{0}^{t} \left[\mathcal{M}_{\lambda}^{(m)}\left(\varphi(s)\right)\right]^{\frac{1+\sigma-m}{1-m}} \mathrm{d}s, \\ \text{with } \mathcal{A}(r,\sigma,\lambda) &:= \mathcal{M}_{\lambda}^{(-\sigma)}\left(\varphi_{0}\right) - \mathcal{D}(r,\sigma,\lambda)\mathcal{T}^{*}. \end{split}$$

$$t \leq \frac{(m+\nu+1)}{\sigma\Lambda} \mathcal{Q}^{\frac{\sigma}{1-m}} \mathcal{A}(r,\sigma,\lambda)^{\frac{-\sigma}{1-m}}.$$
 (7)

• Now by taking the limit $t \longrightarrow T^*$ and then $m \longrightarrow -\nu - 1$ on the above relation, we can obtain $T^* = 0$, a contradiction.

Divergence form and discretization

The mass conserving form of nonlinear collisional breakage equation:

$$\frac{\partial \left(x\varphi(x,t)\right)}{\partial t} = \frac{\partial}{\partial x} \int_{0}^{\infty} \int_{x}^{\infty} \int_{0}^{x} u \mathcal{B}(u|v,w) \mathcal{K}(v,w) \varphi(v,t) \varphi(w,t) du dv dw, \quad (8)$$

with the initial data $\varphi(x,0) = \varphi_0(x)$.

Let $\Lambda :=]0, x_{\max}]$ be the computational domain and $\Lambda_i :=]x_{i-1/2}, x_{i+1/2}]$, $i = 1, 2, \ldots, I$ with $x_{1/2} = 0$, $x_{I+1/2} = x_{\max}$ and $\Delta x_i := x_{i+1/2} - x_{i-1/2}$.

The discrete number density function over the cell Λ_i is calculated as

$$N_i(t) pprox \int_{x_{i-1/2}}^{x_{i+1/2}} \varphi(x,t) \mathrm{d}x.$$

Discrete scheme

The mass conserving finite volume scheme of equation (8) is written as

$$x_i \frac{\mathrm{d}N_i}{\mathrm{d}t} = \mathcal{G}_{i+1/2}(t) - \mathcal{G}_{i-1/2}(t), \tag{9}$$

where $G_{i+1/2}$ is the numerical flux at the right end of i^{th} cell Λ_i and is defined as

$$\mathcal{G}_{i+1/2} := \sum_{p=1}^{I} \sum_{q=i+1}^{I} \sum_{r=1}^{i} \beta_{r,q}^{p} \mathcal{K}_{q,p} N_{q}(t) N_{p}(t), \tag{10}$$

with, $\beta_{r,q}^{p}:=\int_{\Lambda_{r}}x\mathcal{B}(x|x_{q},x_{p})\mathrm{d}x$, denoting the splitting of particles of size x_{q} in the interval $\left[x_{r-1/2},x_{r+1/2}\right]$. The numerical flux at the boundaries of domain \mathcal{D} are taken as

$$G_{1/2} = 0$$
 and $G_{I+1/2} = 0$. (11)

Test case I:
$$\mathcal{K} = \frac{(x+y)^{2.5}}{(xy)^{0.3}}$$
, $\mathcal{B} = \frac{2}{y}$ and $\varphi_0(x) = xe^{-x}$

The nonlinear fragmentation

August 28, 2024

Finite time shattering and blowup of moments

Predict the other moments with low accuracy

Scheme 1 (MC):

$$x_i \frac{\mathrm{d}N_i}{\mathrm{d}t} = \mathcal{G}_{i+1/2}(t) - \mathcal{G}_{i-1/2}(t), \tag{12}$$

with weight function

$$\mathcal{G}_{i+1/2} := \sum_{p=1}^{l} \sum_{q=i+1}^{l} \sum_{r=1}^{i} eta_{r,q}^{p} \mathcal{K}_{p,q} N_{q}(t) N_{p}(t).$$

Figure: Comparison of zeroth and first moments predicted by MC scheme for $\mathcal{B}(x|y,z) = \delta(x-0.4y) + \delta(x-0.6y)$ and $\varphi_0(x) = \delta(x-1)$.

Improved formulation with weighted numerical flux³

Scheme 2 (MCNP):

$$x_i \frac{\mathrm{d}N_i}{\mathrm{d}t} = \tilde{\mathcal{G}}_{i+1/2}(t) - \tilde{\mathcal{G}}_{i-1/2}(t). \tag{13}$$

Here, $ilde{\mathcal{G}}_{i+1/2}$ is the revised weighted numerical flux at the i^{th} cell and is defined as

$$\tilde{\mathcal{G}}_{i+1/2} := \sum_{p=1}^{I} \sum_{q=i+1}^{I} \sum_{r=1}^{i} \beta_{r,q}^{p} \Theta_{q,p} \mathcal{K}_{q,p} N_{q}(t) N_{p}(t), \tag{14}$$

where, the weight function $\Theta_{q,p}$ is defined as,

$$\Theta_{q,p} := \frac{x_q \left(\nu(x_q, x_p) - 1 \right)}{\sum_{j=1}^q \left(x_q - x_j \right) \int_{\Lambda_j} \mathcal{B}(x | x_q, x_p) \mathrm{d}x},\tag{15}$$

with $\Theta_{1,p} = 0$ and $\tilde{\mathcal{G}}_{1/2} = \tilde{\mathcal{G}}_{I+1/2} = 0$.

³Das, A. Kushwah, P. Saha, J. Singh, M. Improved higher-order finite volume scheme and its convergence analysis for collisional breakage equation, *Applied Numerical Mathematics 196 (1)*, (2024).

Test case II:

Problem:
$$\mathcal{B}(x|y;z) = \frac{2}{y}$$
, $\mathcal{K}(x,y) = xy$ and $n_0(x) = \delta(x-1)$.

Exact solution:
$$n(t,x) = \exp(-tx)[2t + t^2(1-x)] + \delta(x-1)\exp(-t)$$

Figure: A comparison of numerical results of Test problem I

Concluding discussion

- Analytical study of the nonlinear fragmentation equation.
 - Existence of mass conserving solution for a class of unbounded singular collision kernels,
 - ► The existing mass conserving solution is unique,
 - Due to pure fragmentation, the particles become dust after a large time.
- Numerical approximation of the nonlinear collisional fragmentation equation
 - Formulation of a mass conserving number preserving finite volume scheme,
 - Numerical simulations of test problem
 - Finite time shattering.

Future scopes

Collisional fragmentation with source term

$$\partial_t \varphi(x,t) = \mathcal{Q}(\varphi)(x,t) + \underbrace{V(\varphi,t)}_{source},$$

with the initial condition

$$\varphi(x,0)=\varphi_0(x).$$

Our interest is to find such V for which there exist a sharp time T such that

$$\int_0^\infty x \varphi(x,t) = \int_0^\infty x \varphi_0(x) dx \quad \text{for} \quad t \ge T.$$

• Being a pure fragmentation model, to achieve the steady state is not possible, however a self similar profile can be obtain for large time scale.

References

- Das, A. Saha, J. Trend to equilibrium solution to the discrete Safronov-Dubovskii aggregation equation with forcing, Proceeding of the Royal Society of Edinburgh Section A: Mathematics (2023).
- Das, A. Kushwah, P. Saha, J. Singh, M. Improved Higher-Order Finite Volume Scheme and its Convergence Analysis for Collisional Breakage Equation, Applied Numerical Mathematics, 196, 118-132 (2024).
- Das, A. Saha, J. The discrete Safronov-Dubovskii aggregation equation: Instantaneous gelation and nonexistence theorem, Journal of Mathematical Analysis and Applications, 514 (1), 126310 (2022).
- Das, A. Saha, J. On the global solutions of discrete Safronov-Dubovskii aggregation equation,
 - Zeitschrift für angewandte Mathematik und Physik, 75 (5), 183 (2021).

