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One considers the affine system:

x" = fo(x) + uhi(x) + vh(x),

with fo, i, £ € C*(R?). The terms fy is called the drift.

(1)
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One considers the affine system:
X' = folx) + ufi(x) + vh(x), (1)
with fo, i, £ € C*(R?). The terms fy is called the drift.

We assume that f(0) = 0, i.e. (0,(0,0)) is an equilibrium trajectory of the
system (1).

We focus on small time and small controls: the solution is well-defined, and we
note it x(+; (u, v),0).
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STLC of affine systems of finite dimension

Definition (E-STLC)
(1) is E—STLC around the equilibrium if : for all T > 0, € > 0,

Schrodinger equation thanks to a quadratic term



Definitions: STLC, Lie brackets
Magnus representation formula
Theorem and idea of proof

STLC of affine systems of finite dimension

Definition (E-STLC)

(1) is E— STLC around the equilibrium if : for all T > 0, ¢ > 0, there exists
8 > 0 such that, for all target x € R? such that ||x¢|| < 9,
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STLC of affine systems of finite dimension

Definition (E-STLC)

(1) is E— STLC around the equilibrium if : for all T > 0, ¢ > 0, there exists
8 > 0 such that, for all target xr € R such that ||x¢|| < 8, there exists u,v € E
with ||(u, v)||g < € such that x(T; (u, v),0) = x¢.

x(t; (u,v),0)
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STLC of affine systems of finite dimension

Definition (E-STLC)

(1) is E— STLC around the equilibrium if : for all T > 0, ¢ > 0, there exists
8 > 0 such that, for all target xr € R such that ||x¢|| < 8, there exists u,v € E
with ||(u, v)||g < € such that x(T; (u, v),0) = x¢.

Historical definition : E = L.
|

x(t; (u,v),0)
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STLC of affine systems of finite dimension

Definition (E-STLC)

(1) is E— STLC around the equilibrium if : for all T > 0, ¢ > 0, there exists
8 > 0 such that, for all target xr € R such that ||x¢|| < 8, there exists u,v € E
with ||(u, v)||g < € such that x(T; (u, v),0) = x¢.

Let
E2

. —
Tl vy = x(T:(u,v),0)

Then,
E—STLC & VT >0, Fris locally onto at (0,0).
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Definition (E-STLC)

(1) is E— STLC around the equilibrium if : for all T > 0, ¢ > 0, there exists
8 > 0 such that, for all target xr € R such that ||x¢|| < 8, there exists u,v € E
with ||(u, v)||g < € such that x(T; (u, v),0) = x¢.

Let
E2

. —
Tl vy = x(T:(u,v),0)

Then,
E—STLC & VT >0, Fris locally onto at (0,0).

Definition (smooth-STLC)

(1) is smooth-STLC if (1) is W™> — STLC, for every m € N
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STLC of affine systems of finite dimension

Definition (Lie Brackets)

For f, g, regular vectors fields on RY, we define the vector field [f, g] as :
[f,g] : x € R? — Dg.f(x) — Dfg(x).

By induction, one defines : ad’g = g and Vk € N,adf"(g) = [f,adf(g)]-
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STLC of affine systems of finite dimension

Definition (Lie Brackets)

For f, g, regular vectors fields on RY, we define the vector field [f, g] as :
[f,g] : x € R? — Dg.f(x) — Dfg(x).

By induction, one defines : ad’g = g and Vk € N,adf"(g) = [f,adf(g)]-

If f <> opr :=f -V, Lie brackets coincide with operator commutators.
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Definition (Lie Brackets)

For f, g, regular vectors fields on RY, we define the vector field [f, g] as :
[f,g] : x € R? — Dg.f(x) — Dfg(x).

By induction, one defines : ad’g = g and Vk € N,adf"(g) = [f,adf(g)]-

2
One supposes f(x) = ()§> and fi(x) = (?) Then,

maw=(g o) (1) = (%)

ad ()(0) = [ 2 (#10) = (o ) (3) =2

\.
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Definition (Lie Brackets)

For f, g, regular vectors fields on RY, we define the vector field [f, g] as :
[f,g] : x € R? — Dg,f(x) — Df.g(x).

By induction, one defines : ad’g = g and Vk € N,adf"(g) = [f,adf(g)]-

2
One supposes f(x) = ()§> and fi(x) = (?) Then,

maw=(g o) (1) = (%)

ad ()(0) = [ 2 (#10) = (o ) (3) =2

v

We want to prove sufficient conditions of controllability in terms of the evalu-
ation at x = 0 of Lie brackets of fy, i and f.
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STLC of affine systems of finite dimension

Theorem (W.-L. Chow, 1939, P.K. Rashevski, 1938)
If fo = 0 (no drift), then, the system (1) is L°° — STLC iff LARC holds, i.e.

Lie(ﬁ), f17 fz)(o) = Rd'
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STLC of affine systems of finite dimension

Theorem (W.-L. Chow, 1939, P.K. Rashevski, 1938)
If fo = 0 (no drift), then, the system (1) is L°° — STLC iff LARC holds, i.e.

Lie(ﬁ), f17 fz)(o) = Rd'

X = X3 >0
This result is false in general. For example, {Xl, 7 u/ . Then, fy(x) =
g =

0
system is not controllable.

2
(X2> and fi(x) = <2> Thus, Span(£(0), ad? (£)(0)) = R®. Nevertheless, the
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STLC of affine systems of finite dimension

Theorem (W.-L. Chow, 1939, P.K. Rashevski, 1938)
If fo = 0 (no drift), then, the system (1) is L°° — STLC iff LARC holds, i.e.

Lie(ﬁ), f17 fz)(o) = Rd'

X3

’
>
This result is false in general. For example, {il, u/ 0. Then, fo(x) =
2

0
system is not controllable.

2
(X2> and fi(x) = <2> Thus, Span(£(0), ad? (£)(0)) = R®. Nevertheless, the

Theorem (R. Hermann 1963, T. Nagano 1966)
If the system (1) is L°° — STLC, then LARC holds, i.e.

Lie(fy, fi, £)(0) = R”.
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The solution of (1) is given by

x(T;(u,v),0) = Z &(T,(u,v)) X fo  (0) + remainders,
T T ~~

|b]<L explicit functional in (uv)  €Lie(fo,f1,f)
<

where B[y o is a set of brackets.

[1] Karine Beauchard, Jérémy Le Borgne, and Frédéric Marbach. “On expansions for nonlinear
systems Error estimates and convergence issues”. In: Comptes Rendus. Mathématique 361 (Jan.
2023), 97-189.
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The solution of (1) is given by

x(T;(u,v),0) = Z &(T,(u,v)) X fo  (0) + remainders,
T T ~~

|b]<L explicit functional in (uv)  €Lie(fo,f1,f)
<

where B[y o is a set of brackets.

The set Bpy o is defined as:

. od
Bz = B U B2, g00d U B2, bad
~—~ N—————
linear terms: brackets quadratic terms: brackets

with f; or f, one time with i or f, two times

For b € B2, bad,

t s 2
&p(t, (u,v)) >0, for example ad? (fo) — /o (/0 u(a)da) ds.

[1] Karine Beauchard, Jérémy Le Borgne, and Frédéric Marbach. “On expansions for nonlinear
systems Error estimates and convergence issues”. In: Comptes Rendus. Mathématique 361 (Jan.
2023), 97-189.
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The solution of (1) is given by

x(T;(u,v),0) = Z &(T, (u,v)) x fy  (0) + remainders,
beBIIL?]]’

bl<L explicit functional in (uv)  ELie(fo,f1,f)

where By o is a set of brackets.

The set Bpy o is defined as:

L >
Bz = B U B2, g00d U B2, bad
~— N————

linear terms: brackets quadratic terms: brackets

with f; or f; one time with i or fy two times

For b € I3, ood

g
»8

§B(t7 (_ua V)) = —55(1.“, (ua V))

[1] Karine Beauchard, Jérémy Le Borgne, and Frédéric Marbach. “On expansions for nonlinear
systems Error estimates and convergence issues”. In: Comptes Rendus. Mathématique 361 (Jan.
2023), 97-189.
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STLC of affine systems of finite dimension

Theorem ( , R. Kalman 1960)

If {f»(0), b€ B:i} =RY, then system (1) is W™ — STLC, for every m € N.

Idea of the proof: For all T > 0,

dF7(0,0)(u,v) = X(T) is the solution

of the linearized system, starting from 0.

However,

v
linearized system controllable K<|:> {f(0), be B} = RY.

almam
condition
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STLC of affine systems of finite dimension

Theorem ( , R. Kalman 1960)

If {f»(0), b€ B:i} =RY, then system (1) is W™ — STLC, for every m € N.

Idea of the proof: For all T > 0,

dF7(0,0)(u,v) = X(T) is the solution

of the linearized system, starting from 0.

However,

v

linearized system controllable K<|:> {f(0), be B} = RY.
condition
v
linearized system controllable = =—  STLC.
inverse mapping
theorem

B1 is good.
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Remark: For mono-control system, B = B pad (132 2004 = 0), [Beauchard,
Marbach].
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Remark: For mono-control system, B = B pad (132 2004 = 0), [Beauchard,
Marbach].

Let L > 0. One supposes that:

Span (fu(0), b € B U B soos,  |b] < L) = R

For all b € BZ,bad7 |b‘ <L=> fb(O) S B1(f)(0)
Then, the system (1) is smooth—STLC, i.e. W™ — STLC, for every m € N.

ocal Controllability of the multi-input bilinear Schrodinger equation thanks to a quadratic term
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Remark: For mono-control system, B = B pad (132 2004 = 0), [Beauchard,
Marbach].

Let L > 0. One supposes that:
Span (f(0), b € BiU B ooy, |b] < L) =R

For all b € BZ,bad7 |b‘ <L=> fb(O) S B1(f)(0)
Then, the system (1) is smooth—STLC, i.e. W™ — STLC, for every m € N.J

A typical example is the following one:

x{ = u
Xy = x1

i = v

zZ1 = xu1— Taen
7y = X2+ x

.
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If we want to change the hypothesis as:
For all b € B2,bad7 |b| <L= fb(O) S Bl(f)(0)+/32g00d(f)(0).

we can have problems !

X1 = u
no= v ,
Z = G+25+ X
Indeed, )
/ 3 23 ,
= — —vy; > 0.
Z (Xl T 4_)/1> aF 16}/1 >0
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X Included in the H. Sussmann’s S(#) condition (1987), with ¢ — 0.

One considers a basis of R given by the LARC:
R? = B5:()(0) & Spn (£, (0),--~ , £, (0)) ,
with r = dim (B1(f)(0)) and b, 1.+, by € B2 good. Let m € N.
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X Included in the H. Sussmann’s S(#) condition (1987), with ¢ — 0.

One considers a basis of R given by the LARC:
R? = B1(F)(0) @ Spn (i, (0). - ., (0)) ,
with r = dim (B1(f)(0)) and byi1,- -+, by € B2 good. Let m € N.
Let j € [r 4+ 1,d]. It is sufficient to prove that we can create a motion
along f, (0), i.e. there exists a continuous map = : [0, +oo[— R’ with Z(0) =

f,,(0) such that for all T > 0, there exists C,p,s; > 0 and a continuous map
z € (—p,p) > (uz,vz) € W™(0, T)? such that,

Vz € (=p,p), Ix(T;(uz,v2),0) = 2Z(T)|| < Clz[**7,
with

H(u27 VZ)HWm,oo S C‘Z|sj.

Then, the Brouwer fixed-point theorem gives the STLC result.

Small-Time Local Controllability of the multi-input bilinear Schrédinger equation thanks to a quadratic term
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Idea of the proof: Let j € [r+ 1, d]. One considers P, the linear projection on
Span (£;,(0)),,,<;<q Parallel to 3:(f)(0).

0 T T

(uz, vz) (dz, V)

The proof is divised in two steps:

1. We construct (u., v.) such that:
. 1+s; -
P(x(Ti; (1., .),0)) = £, (0) + O (|z| ) , with 5; > 0.

2. STLC in By(£)(0).
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Step 1: Let 4, v € C°((0,1),R)

Let T1i(z) > 0, &(z),&'(z) > 0 and w..v. : t € (0, T1) > i (i) 'V (i)
Then, with the Magnus formula,

P(x(Tui (1-.v.),0) =P | > | +P 3

be By, |b|<L bEBy pad,|bISL

+ee’ Z T1‘b‘ &b(1, (u, v)) P (f5(0)) + remainders.

bEBs good>
[b|<L
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Step 1: Let i, v € C2°((0,1),R) s.t.
for every b € B35 gooa with |b] < L, &p(1, (&, 7)) = Op,p,-

We need to prove the existence of such functions

Let T1i(z) > 0, &(z),&'(z) > 0 and w..v. : t € (0, T1) > i (Til) 'V (i)
Then, with the Magnus formula,

P(x(Tui (1-.v.),0) =P | > | +P 3

be By, |b|<L bEBy pad,|bISL

+ee’ Z T1‘b‘ &b(1, (u, v)) P (f5(0)) + remainders.
—

bEB sood» s
|b|<L = b,b/
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Step 1: Let i, v € C2°((0,1),R) s.t.
for every b € B35 gooa with |b] < L, &p(1, (&, 7)) = Op,p,-

We need to prove the existence of such functions

Let T1i(z) > 0, &(z),&'(z) > 0 and w..v. : t € (0, T1) > i (Til) 'V (i)
Then, with the Magnus formula,

P(x(Tui (1-.v.),0) =P | > | +P 3

be By, |b|<L bEBy pad,|bISL

+ee’ Z T1‘b‘ &b(1, (u, v)) P (f5(0)) + remainders.
—

bEB sood» s
|b|<L = b,b/

Then,

| i1

P(x(Ta; (1, v.),0)) = ee' TV £, (0) + O (aa’ T (et a’)3T13) .
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Taking € = sgn(z)|z]7, ¢’ = |z|7?, and T1 = € = |z|?3, with 01,02,03 =
f(|b;j|, m), well chosen, one has: P(x(T1;(u.,v.),0)) = zf,(0) + O (|z|1+sf) .
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Taking € = sgn(z)|z]7, ¢’ = |z|7?, and T1 = € = |z|?3, with 01,02,03 =
f(|b;j|, m), well chosen, one has: P(x(T1;(u.,v.),0)) = zf,(0) + O (|z|1+sf) .

Step 2: Thanks linear test, one considers (i, V;) s.t.

Ps,(n0) (x (T (0,0), 21, (0))) =: Ps,(r)0) (2=(1))

Ps.(ro) (x(T1; (12, v2),0))

Note that Pg,(ry0) = / — P. Then,
[x(T: (Uz, V2),0) = z=(2) ]| = [P (x(T (Uz, V2),0)) — zP (z=(¢))] -

Using the explicit form of 31, one proves that the new step doesn’t destroy the
first step.
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We consider the following PDE:

10 = —05 — (u(t)pa(x) + v(t)ua(x)) ¥, (t,x) € (0,T) x (0,1)
¥(t,0) =9(t,1) =0, te(0,T)
¥(0,x) = vo(x), x €(0,1)
(2)
iOvh = fo(v) + ufi(¢) + vi(Y),
with
(V) = —05), fi(y) = i x v, i€{1,2}.

Small-Time Local Controllability of the multi-input bilinear Schrédinger equation thanks to a quadratic term
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Small Time Local Controllability of the bilinear Schrédinger equation

Conclusion and perspectives
We consider the following PDE:

10 = —05 — (u(t)pa(x) + v(t)ua(x)) ¥, (t,x) € (0,T) x (0,1)
¥(t,0) =9(t,1) =0, te(0,T)
¥(0,x) = vo(x), x €(0,1)

(2)
iOvh = fo(v) + ufi(¢) + vi(Y),

with
— 0%, fi() = pi x v, ie{l,2}.

Well-posedness

Let T > 0, pi,p2 € H*((0,T),R), u,v € L[*((0,T),R), and 9o €
H(30)(0, 1). There exists a unique weak solution of (2), i.e. a function ¢ €
C° ([0, T], Hip(0,1)) s.t., in H, for every t € [0, T]:

W(t) = e Ao + i / e (u(s)ps + v(s)2)(s)) ds.

Small-Time Local Controllability of the multi-input bilinear Schrédinger equation thanks to a quadratic term
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a2
— e
@ eigenvalues: \; = (jr)?, j > 1.

@ eigenvectors: ; := \/2sin(jr-), j > 1.
@ (i))j>1 orthonormal basis of L2(0,1).

Functional analysis: A := D(A) = H*(0,1) N H3(0,1).

Ground state: 1 (t, x) := p1(x)e” "1 = (t; (0,0), ¢1).
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a2
— e
@ eigenvalues: \; = (jr)?, j > 1.

@ eigenvectors: ; := \/2sin(jr-), j > 1.
@ (i))j>1 orthonormal basis of L2(0,1).

Functional analysis: A := D(A) = H*(0,1) N H3(0,1).

Ground state: 1 (t, x) := p1(x)e” "1 = (t; (0,0), ¢1).

Definition (L*> — STLC)

(2) is L2 = STLC in H(30)(0,1) around the ground state if: for all T > 0,
€ > 0, there exists § > 0 such that, for all target ¢y € SN H(30)(0, 1) such that
llibr — 1(T)||,s < 9, there exists u, v € L*(0, T) with ||(u, v)||,2 < € such that
’()b(T; (U7 V)7 901) = vr.

Small-Time Local Controllability of the multi-input bilinear Schrédinger equation thanks to a quadratic term



Presentation
Main theorem and ideas of proof

Small Time Local Controllability of the bilinear Schrédinger equation Generalization
Conclusion and perspectives

Let pu1, 12 € H*((0,1),R) such that

. o c
Jdc>0, VjeN", H((/Li@l-,‘19j>)1<i<2H > 7

Then, the bilinear Schrédinger equation (2) is L2>—STLC in H(30)(O, 1).

[2] Karine Beauchard and Camille Laurent. “Local controllability of 1D linear and nonlinear
Schrédinger equations with bilinear control”. In: Journal de Mathématiques Pures et Appliquées
94.5 (2010), pp. 520-554.

[3] Mégane Bournissou. “Quadratic behaviors of the 1D linear Schrodinger equation with bilinear
control”.
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Conclusion and perspectives

Let pu1, 12 € H*((0,1),R) such that

c
F.
Then, the bilinear Schrédinger equation (2) is L2>—STLC in H(30)(O, 1).

dc >0, VjeN, H((/li801799j>)1<i<2H Z

Mégane Bournissou: Quadratic obstructions for the bilinear Schrédinger equation
with single-input system[3].

Framework of the article: 3K > 2 such that {(u1p1, ox) = (p2¢1, pk) = 0.
— use quadratic expansion of the solution to recover this direction

[2] Karine Beauchard and Camille Laurent. “Local controllability of 1D linear and nonlinear
Schrédinger equations with bilinear control”. In: Journal de Mathématiques Pures et Appliquées
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Theorem (T.G., 2024)
One considers u1, g2 such that:
Q 1, p2 € H3((0,1),R).
Q (11, oK) = (p2p1, pk) =0.
@3>0, VieN\{K}h [(meredcics

Q Al = ([u1, [11, Allr, ok) = 0.
© Al = ([u2, [u2, Allr, ) = 0.
@ 1= ([u2, [11, Allpr, pk) # 0.
The equation (2) is L2—STLC around the ground state in H(30).

©
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@ Point 1: well-posedness.
@ Point 3: related to control in projection.
@ Point 4 and 5: prevents the system from a drift.

@ Point 6: allows us to use the bracket to recover the direction.
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Idea of the proof:
0 T T

(uz, v2) (dz, Vv2)

1 <1/)(T1, (UZ- Vz),@1)7¢K(Tl)> =iz+ 0O (‘z'%) .

2. STLC in projection. We must do it carefully in order not to destroy the
first step (weak norms)

The proof is divised in two steps:

+ Brouwer fixed-point theorem
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Idea of the proof:
0 T T

(uz, v2) (dz, Vv2)

1 <1/)(T1, (UZ- Vz),@1)7¢K(Tl)> =iz+ 0O (‘z'%) .

2. STLC in projection. We must do it carefully in order not to destroy the
first step (weak norms)

The proof is divised in two steps:

+ Brouwer fixed-point theorem

Step 1: Let 7,7 € L?((0,1),R) be such that, [, a(t)dt = [; ¥(t)dt = 0. Let
Ti(z) > 0, g(2),€'(z) > 0 and u,,v, : t € (0, T1) — el (Til) ,e'v! (Til)
Then,
<w(le (uz- Vz),‘pl)wa(Tl)> = FTI(Uz) + gT] (U27 Vz) +.FT1(V2)
+0 (Il vl ) -
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A direct computation gives:
1
Fr,(u;) = —ie’ T{?’A%/ a(t)’dt + O (52 T14) =0 (52 Tf) .
0

Similarly, Fr,(v.) = O (8'2 T14)-
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A direct computation gives:
1
Fri(uz) = —1'52T13’A%/ a(t)’dt + O (E2T14) =0 (52 Tf) .
0
Similarly, Fr,(vz) = O (5'2 Tf). Moreover,
-1
Gy (uz, v2) = iee’ Tim / a(t)v(t)dt+ O (EE'T{') .
Jo
Thus,
-1
(O(Tii (e v2), ), ox(To)) = i€/ Tion | a(e)i(e)de
Jo

+(’)((5+5) T4+(s3+5'3) T;

Nlw
N——
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A direct computation gives:

1
Fri(uz) = —1'52T13’A%/ a(t)’dt + O (E2T14) =0 (52 Tf) .

0

Similarly, Fr,(vz) = O (5'2 Tf). Moreover,

1
Gy (uz, v2) = iee’ Tim / a(t)v(t)dt + 0O (EEIT{‘) :
Jo

Thus,

<1/)(T1;(UZ~VZ)>SOI)7¢K(T1) = jee Tl e! dt

+0 ((a—i—a (a3+5'3) Tlg) .

Let p > 0 and z € (—p, p). With ¢ = sgn(z)|z
1

o\

§, e = |Z|% and T; = |z‘1712Y

(&, %) € €2°(0,1) such that / a(t)v(t)dt = %7 one obtains:
0 1

(T () 01), o (T2)) = 200 ./oil 57 +0 (|218) = iz+ 0 (|2 t)
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Theorem (T.G., 2024)

Let n>1, m,p >0, K> 2 such that | 7| < p. Let p1, p12 such that:

O i1, o € HPT™3((0,1),R) with ) |13 =0, for 0< k< p—1.
Q (11, ¢k) = (p2¢p1, k) = 0.

© 3c>0, YeN (KL ||(wen ehicical| > s

O Vk e [1, [ 2], Ak := ([ads *(11), adj (1)1, ¢k ) = 0.

© Vk e [1, [ "], AL = ([ada™" (k2), adA (p2)]1, k) = 0.

® = (ladh ™ (), a0k (uo)on o ) 0.

The equation (2) is H'—STLC around the ground state in H2(P+m)+3(0 1): for all

T >0, e > 0, there exists § > 0 such that, for all target 1r € SﬁH P+m 13(0,1)
such that |[¢r — 1(T) | peeem+s < 0, there exists u,v € Ho (O T) with
[[(u; V)|l < € such that (T (U, v), 1) = r.
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Perspectives:

@ Several lost directions (as in finite dimension) ? An infinite number ?
@ Obstruction for STLC with multi-input systems
@ Other equations ? KdV ?




Presentation
Main theorem and ideas of proof

Small Time Local Controllability of the bilinear Schrédinger equation Generalization
Conclusion and perspectives

Perspectives:
@ Several lost directions (as in finite dimension) ? An infinite number ?
@ Obstruction for STLC with multi-input systems
@ Other equations ? KdV ?

Théo Gherdaoui. “Small-Time Local Controllability of the multi-input bilinear
Schrédinger equation thanks to a quadratic term”.

Thank you for your attention !
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