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Data-Driven Modeling

Given some data, build a model for generalization and/or
prediction

Data can be
1 Time-dependent (e.g. time series)
2 Dynamic (e.g. coming from sensors)
3 Irregularly spaced

⇒ Strong need for flexible architectures for data-driven
modeling
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Current Approaches

Fully Data-Driven. NODEs, RNN, Reservoir
Computing (RC) etc. ⇝ No connection to physics, but
very flexible
(Possibly hybrid) Physics-Based. PINNs,
Hamiltonian NN, Universal differential equations (UDE)
etc. ⇝ Require knowledge of the system, but are rigid
and difficult to train
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Problem Motivation

Suppose to have recorded some data
We can construct a synthetic model with one of the
approaches described above
At the same time, if we assume that the data is the
realization of a physical law depending on some structural
parameters (diffusivity, Young modulus, Reynold
number...), we might try to fit the parameters so that the
solution is as close as possible to the observed data

⇝ But the two obtained models might be very different in
general!
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Figure: The two models perfectly interpolate the data points, but
behave in completely different ways

In medio stat virtus ⇝ The "best" model should be close
to both the physical and the synthetic model ⇒ Try to
collapse the two into a single hybrid model
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Strategy Overview

Advantages:
1 Highly adaptable: Data can be very rough, unbalanced in

space or irregular in time
2 Physics based: The model is not purely data-driven, but

exploits theoretical information
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Data collection

We suppose to have M sensors which can move in space and
record data (e.g. a temperature) at N equispaced intervals in
time. The j-th sensor records uj(ti) at time ti , so that the
final form of the data is

Dataj = (xj(ti), uj(ti))
N
i=1

for j = 1, . . . ,M
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From discrete to continuous (time)

We build a NODE system{̇̂
xj = fj(x̂j , ûj , t; Θ)
˙̂uj = gj(x̂j , ûj , t; Θ)

to track the discrete data trajectories at every time t
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From discrete to continuous (space)

To interpolate at every space point, we exploit the connection
between ODEs and Transport equations. We consider

ρt + f (t, x , v)ρx + g(t, x , v)ρv = 0.

This equation is linear and is reminiscent of kinetic models.
We see the function ρ(t, x , v) as a probability density on R for
v . So we have

u(t, x) =

∫
R
vρ(t, x , v)dv
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Physical model

Assume that the underlying system is some PDE, for example
a 1D heat equation with unknown diffusivity d(x),

ut − ∂x(d(x)∂xu) = 0, x ∈ [0, 1], t ∈ (0,T ]

u(0, t) = u(1, t) = 0,
u(x , 0) = u0(x).

Discretizing this using finite elements with basis
Φ = (ϕ1, ..., ϕn),

MU̇(t) + K (d)U(t) = 0,
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Collapse

The aim of the collapse strategy is to minimize the gap
between the physical model and the synthetic one by training
both in tandem. Thus, the goal is to minimize a loss
functional of the form

L(d ,Θ) = α1Lphy (d) + α2Lsyn(Θ) + α3Int(d ,Θ)
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Loss connected to the physical model:

Lphy (d) =
1
M

M∑
j=1

∫ T

0
|
〈
U(t),Φ(xDj )

〉
− uD

j (t)|2dt

Loss connected to the synthetic model:

Lsyn(Θ) =
1
M

M∑
j=1

∫ T

0

(
|x̂j(t)− xDj (t)|2 + |ûj(t)− uD

j (t)|2
)
dt

The interaction functional for hybrid training:

Int(d ,Θ) =
1
K

K∑
j=1

∫ T

0
| ⟨U(t),Φ(x̂j(t))⟩ − ûj(t)|2dt.
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Training Approach

To train both models, we will do gradient descent while
calculating the gradients using the adjoint method.

d l+1(x) = d l(x)− βd
∂L

∂d

Θl+1 = Θl − βΘ
∂L

∂Θ

where

∂L

∂d(x)
= −

∫ T

0

∑
ij

Λi (t)Uj(t)∇Φi (x) · ∇Φj(x)dt

∂L

∂Θ
= −

M∑
j=1

∫ T

0

(
µj(t)

T ∂f (xj(t), uj(t), t)

∂Θ
+ νj(t)

T ∂g(xj(t), uj(t), t)

∂Θ

)
dt
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The adjoint connected to the FE solution U(t) :

Λ̇(t) = KT (d)Λ(t) +
2α1

M

M∑
j=1

(〈
U(t),Φ(xDj (t))

〉
− uDj (t)

)
Φ(xDj )

+
2α3

K

K∑
j=1

(⟨U(t),Φ(x̂j(t))⟩ − ûj(t)) Φ(x̂j)

The adjoint connected to the NODE solution x̂j :

µ̇j(t) =
2α2

M

(
x̂j(t)− xDj (t)

)
+

2α3

K
(⟨U(t),Φ(x̂j(t))⟩ − uj(t))

〈
U(t),

∂Φ(x̂j)

∂x̂j

〉
− µj(t)

T ∂f (xj(t), uj(t), t)

∂xj(t)
− νj(t)

T ∂g(x̂j(t), ûj(t), t)

∂uj(t)

The adjoint connected to the NODE solution ûj :

ν̇j(t) =
2α2

M

(
ûj(t)− uDj (t)

)
+

2α3

K
(⟨U(t),Φ(x̂j)⟩ − ûj)

+ µj(t)
T ∂f (xj(t), uj(t), t)

∂xj(t)
+ νj(t)

T ∂g(x̂j(t), ûj(t), t)

∂uj(t)
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Training data

Figure: Data from the exact model
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Training performance

Figure: MSE over the entire domain.
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Separate models

Figure: Result without the collapse loss term
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Hybrid models

Figure: Result with the collapse loss term
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Further work

Extend the code for general
sensor trajectories.

Extend the code for more
complex physical models.

Understand what information is contained in the "gap".
Understand the implications of the interaction functional
in the loss function.
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Remarks and further work

This formulation can be applied to hybridize any two
data-driven and physics-based models.
It can be used NODE training from sparse data by
assuming a particular underlying system, similar to the
idea behind PINNs and Universal Differential Equations.
Our goal would be to extend this for parameter/flux
identification.
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Inverse coefficient problem

Nonlinear Diffusion in 2D/3D{
ut −∇ · (Φ(θ,∇u)) = g ,

+ Initial and Boundary conditions

1 Porous media equation
2 Image processing

Flux Identification in 1D Conservation Laws

ut + (f (u))x = 0
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Conclusions

Introduction of the collapse strategy by considering the
connection between ODEs and PDEs using the transport
equation.
The implementation for fixed-position sensors on a
heat-type equation.
Planned further work and possible applications including
flux-identification and nonlinear diffusion.
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Thank you for listening!
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