
Antonio Álvarez-López 1/24

Control-based classification with neural ordinary
differential equations

X Partial differential equations, optimal design and numerics

Antonio Álvarez-López
Joint work with Rafael Orive Illera and Enrique Zuazua

Department of Mathematics,
Universidad Autónoma de Madrid

August 27, 2024



Introduction | Supervised Learning Antonio Álvarez-López 2/24

Supervised Learning

Goal

Input space (X , µ∗) ⊂ Rd F∗

−−−−−−−−−−−−→Output space Y ⊂ Rm

Approximate (learn) F ∗ from a dataset D = {(xn,yn)}N
n=1 ⊂ X × Y:

xn ∼ µ∗, yn = F ∗(xn), n = 1, . . .N.

Dog

Cat
Classification

↓

range(F ∗) is finite
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Motivation
E. Weinan, ‘‘A proposal on machine learning via dynamical systems’’ (2017).
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Neural ODEs

ẋ(t) =
p∑

i=1

wi(t)σ (ai(t) · x + bi(t)) , t ∈ (0,T ).

Control: θ := (wi ,ai ,bi)
p
i=1, θ(t) ∈ L∞

(
(0,T );

(
Rd × Rd × R

)p
)

.

ReLU activation: σ(z) = (z)+ Lipschitz, nonlinear.
Flow map in time T generated by (3) is well defined:

ΦT (·; θ) : Rd → Rd

x0 7→ x(T ;x0).

Assume θ piecewise constant in (0,T ), L discontinuities︸ ︷︷ ︸
∼ Transitions between layers

ẋ(t) =
p∑

i=1

L∑
j=1

wi,jσ
(
ai,j · x + bi,j

)
1(tj−1,tj )(t), t ∈ (0,T ).
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Problem statement
Worst-case scenario:

xn ∼ µ = U([0,1]d ) for all n.
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Framework
Worst-case scenario:

xn ∼ µ = U([0,1]d ) for all n.

Binary classification:

D = {(xn, yn)} ⊂ Rd × {1,0}.

1←→ Ω1 := {x (1) > 0.5}, 0←→ Ω0 := {x (1) < 0.5}.
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Problem statement

Fix p = 1 : ẋ(t) = w(t)σ(a(t) · x(t) + b(t)). (1)

For any T > 0, find a control θ = (w,a,b) for (1) such that

ΦT (xn; θ) ∈ Ωyn for all n

with the minimal possible complexity (number of discontinuities L).

→ →
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Human’s designed algorithm

Source: ‘‘Two approaches in solving Rubik’s cube with Hardware-Software Co-design’’, E. Barucija
et al.
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God’s algorithm

Source: Wikipedia
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How to move our Rubik’s cube

ẋ(t) = w(t)σ(a(t) · x(t) + b(t))

a(t),b(t) determine the hyperplane in Rd given by

H(x) = a(t) · x + b(t) = 0.

σ(z) = (z)+ ‘‘activates’’ H(x) > 0 and ‘‘freezes’’ H(x) ≤ 0.

w(t) determines the direction of the field in H(x) > 0.

From left to right: Compression, laminar motion, expansion.
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Prior work

Theorem (D. Ruiz-Balet, E. Zuazua)

Let d ≥ 2, and R := {xn}, B := {xm} ⊂ Rd finite datasets of different points.
For any T > 0, there exists a control

θ ∈ L∞ (
(0,T );Rd × Rd × R

)
such that

ΦT (xn; θ)
(1) > 0.5 and ΦT (xm; θ)

(1) < 0.5,

for all n = 1, . . . , |R|, m = 1, . . . , |B|.
Furthermore, θ is piecewise constant and the number of switches is

L = 3(|R|+ |B|) + 1.
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Prior work

Number of discontinuities: L = O(N). Classification algorithm from D. Ruiz-Balet, E. Zuazua,
‘‘Neural ode control for classification, approximation and transport’’ (2021).


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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But... how does the computer classify?


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Probabilistic complexity

Theorem (A. Á-L, R. Orive-Illera, E. Zuazua)

Assume that |R| = |B| = N, and xn, xm ∼ U
(
[0, 1]d

)
, for all n,m = 1, . . . ,N.

For any T > 0, there exists a control θ = (w, a, b) where
a ∈ {e1, . . . , ed} ⊂ Sd−1 const, (w, b) ∈ L∞((0,T );Rd × R),

such that
ΦT (xn; θ)

(1) > 0.5 and ΦT (xm; θ)
(1) < 0.5, for all n,m = 1, . . . ,N.

Furthermore, θ is piecewise constant with L discontinuities satisfying:

P(L ≤ k) = 1 −

 N∑
p=⌈ k

2 +1⌉

(N − 1
p − 1

)2
+

N−1∑
p=

⌈
k+1

2

⌉
(N − 1

p

)(N − 1
p − 1

)
d (

2(N!)2

(2N)!

)d

,

for k = 0, . . . , 2N − 2.

Linear separability (k = 0): P(L = 0) ≥ 1 −
(

2(N!)2

(2N)!

)d
∼ 1 − exp

{
−

√
πN

22N−1 d
}
.

Asymptotics: P(L = 0) → 1 ⇐⇒ d ≳ 2N/
√

N.

The optimal number of discontinuities L∗(R,B) will satisfy

P(L ≤ k) ≤ P(L∗ ≤ k) ≤ 1, for all k .
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Probabilistic complexity

For k = 0, . . . , 2N − 2:

P(L ≤ k) = 1 −

 N∑
p=⌈ k

2 +1⌉

(
N − 1
p − 1

)2

+
N−1∑

p=⌈ k+1
2 ⌉

(
N − 1

p

)(
N − 1
p − 1

)
d (

2(N!)2

(2N)!

)d

,
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Step 1: Separability in dimension d = 1

Let

Z (R,B) := Minimum number of points needed to separate (R,B)

Z = 2N − 1 if

Z = 1 if

P(Z = 1) = P(Z = 2N − 1) =
2(N!)2

(2N)!
.
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Step 1: Separability in dimension d = 1

Let

Z (R,B) := Minimum number of points needed to separate (R,B)

R1 B1 B2R2 Rp Bp

P(Z = k) =


(N−1

p−1

)2 2(N!)2

(2N)! , if k = 2p − 1,

(N−1
p

)(N−1
p−1

) 2(N!)2

(2N)! , if k = 2p,

for k = 1, . . . ,2N − 1.
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Step 2: Separability in dimension d > 1

Let

πi := i-th canonical projection in Rd , Zi(R,B) := Z (πi(R), πi(B))

(a) (b)
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Step 2: Separability in dimension d > 1

Let

πi := i-th canonical projection in Rd , Zi(R,B) := Z (πi(R), πi(B))

(a) Z 1(R,B) = 3 (b) Z 2(R,B) = 4
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Step 2: Separability in dimension d > 1

Let

πi := i-th canonical projection in Rd , Zi(R,B) := Z (πi(R), πi(B))

Zi independent and identically distributed to Z for all i , so we can compute:

P
(

min
i=1,...,d

{Zi} ≥ k
)

= (P (Z ≥ k))d
.
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Step 3: Control

The statement is concluded via P(L ≤ k) = P
(

min
i=1,...,d

{Zi} ≤ k + 1
)
.
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Characterization of the worst-case scenario

Theorem (A. Á-L, R. Orive-Illera, E. Zuazua)

For any R,B ⊂ Rd with |R| = |B| = N and R ∩ B = ∅, the maximum number of
hyperplanes required to separate their points is 2N − 1.
Furthermore, the maximum is attained if and only if the 2N points of R and B
are interspersed along a straight line in Rd .

For general a ∈ Rd , these configurations are very pathological!
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Generic minimax bound

Theorem (A. Á-L, R. Orive-Illera, E. Zuazua)

Assume that R ∪ B ⊂ Rd is in general positiona. For any T > 0, there exists
θ ∈ L∞ (

(0,T );Rd × Rd × R
)

such that
ΦT (xn; θ)

(1) > 0.5 and ΦT (xm; θ)
(1) < 0.5, for all n = 1, . . . ,N.

Furthermore, θ is piecewise constant with L = 4
⌈
min{|R|,|B|}

d

⌉
− 1 switches.

ano d + 1 points can lie on the same hyperplane

General position configurations in R2 and R3. Observe that they are generic when points are
sampled from a non-singular measure.
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Idea of the proof
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Idea of the proof
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Idea of the proof: Algorithm
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Numerical experiments: Goal

Evaluate the performance of our algorithm.
How?
We estimate the minimum number of discontinuities L which allows to
classify any dataset of N red and N blue points in Rd and compare it with
the complexity required by our algorithms, given by L0 := 4⌈N/d⌉ − 1.
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Numerical experiments: Setting

Data. 10 datasets of N = 30 red points and N = 30 blue points sampled from
U([0, 1]d) for various dimensions d ranging from 2 to 2N.

Model. Piecewise constant controls over L + 1 intervals of length ∆t = T
L+1 , where

T = 60. Explicit Euler scheme with step size of 0.25∆t .

Complexity. For each d , we verify that L = L0 discontinuities suffice to classify all
datasets. Then we reduce L until any dataset fails to be classified.

Error.

1
|R|

∑
xn∈R

dist
(
ΦT (xn, θ), {x (1) < 1}

)2
+

1
|B|

∑
xn∈B

dist
(
ΦT (xn, θ), {x (1) > 0}

)2
.

Training. Adam optimizer with a learning rate of 0.01.

Stopping criteria.
1 The maximum number of 70000 epochs is reached.
2 Slow convergence, if L ≥ 0.15 at 20000 epochs or L ≥ 0.1 at 40000 epochs,

or if the minimum error does not decrease over 5000 consecutive epochs.
3 Local minima detection, if the maximum relative error on every 50 consecutive

epochs exceeds a threshold of 10−20.
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Numerical experiments: Goal

Evaluate the performance of our algorithm.
How?
We estimate the minimum number of discontinuities L which allows to
classify any dataset of N red and N blue points in Rd and compare it with
the complexity required by our algorithms, given by L0 := 4⌈N/d⌉ − 1.

Close. We conclude that the trained model does not have the capacity to
classify with L discontinuities if a stopping criterion is met for 20 randomized
initializations of the parameters in any of the 10 datasets.

Available codes in GitHub
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Numerical experiments: Results (L vs d)

(a) Green bars → Our algorithm. Purple bars → Numerical training. (b) After rescaling
to zero mean and
unit variance.
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Conclusions

We have found a new minimal value of L that ensures that any given
dataset in Rd can be almost surely classified.

In any dataset we can generically find clusters of d points that can be
isolated from the rest using two parallel hyperplanes.

For any N ≥ 1, if d ≳ 2N/
√

N then two sets of N points can be almost
surely classified with L = 0 discontinuities (autonomous neural ODE).

Open problems

Further reduce the maximum number of switches.

Is L = 4⌈N/d⌉ − 1 sharp? In such case, what configurations attain this
maximality?

Role played by the chosen boundary decision? Which is the optimal one?

Potential application for initialization of parameters in training.
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Thank you for your attention!
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Analogy
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