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Supervised Learning

Input space (X, u*) C RY - Output space Y c R”

Approximate (learn) F* from a dataset D = {(Xp,Yn)}N_; C X x V:

X~ p*, Yn = F*(Xn), n=1,...N.

I ificati
y1 = (1,0) = cat Classification

F !

y> = (0,1) = Dog range(F*) is finite
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Motivation

E. Weinan, “A proposal on machine learning via dynamical systems” (2017).

In this note, we go one step further, by exploring the possibility of producing
nonlinear functions using continuous dynamical systems, pushing the compositional
approach to an infinitesimal limit. In the framework of supervised learning, this gives
rise to a new class of control problems. In this view, the deep neural networks can be
thought of as being discrete dynamical systems. Compared with deep neural networks,
there are several potential advantages with a continuous approach.

—

. Mathematically it is easier to think about and deal with continuous dynamical
systems. Continuous formulation offers more flexibility (for example adding con-
straints, adapting the dynamical system to the problem, imposing structure on the
dynamical system), and it is easier to analyze continuous dynamical systems than
discrete ones.

. Deep neural network can be thought of as a discretization of the continuous dynam-
ical systems. However, from the viewpoint of discretizing dynamical systems, there
are many possibilities that one can explore. For example, one can use adaptive time
step size, which corresponds to choosing the layers adaptively. One can use high
order or even implicit discretization, and these do not yet have an analog in deep
neural networks. One can also use advanced numerical methods for training, such
as the multi-grid method or the parallel shooting method (see [4,5]).

. Most models in physical sciences (physics, chemistry, etc) are represented using
dynamical systems in the form of differential equations. The continuous dynamical
systems approach makes it easier to combining ideas from machine learning and
physical modeling.

. The vast majority of the applied mathematics community is familiar with differen-
tial equations. The continuous dynamical systems approach to machine learning
will be of particular interest to them.
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Neural ODEs

Zw.(t

aj(t) -

X+ bi(t)),

te(0,T).
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Neural ODEs

Zw.(t (ai(t) - x + bi(t)), te(0,T).

e Control: 0 := (w,,a;,b)°,, 6(t)€L> ((o, T): (RY x RY x R)P).
@ RelLU activation: o(z) =(z); Lipschitz, nonlinear.
@ Flow map in time T generated by (3) is well defined:

or(50):RY — R
Xo — X(T;Xo).

Assume 6 piecewise constantin (0, T), L discontinuities
—_—

~ Transitions between layers

p
= Z Zwi,ia (aij - X+ bij) 1_,.4)(1), te (0, 7).

i=1 j=1



Problem statement

@ Worst-case scenario:
Xn ~ p = U([0,1]9) forall n.
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Framework
@ Worst-case scenario:
Xn ~ p = U([0,1]9) forall n.
@ Binary classification:
D = {(Xn, ¥n)} C RY x {1,0}.
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Framework
@ Worst-case scenario:
Xn ~ p = U([0,1]9) forall n.
@ Binary classification:
D = {(Xn, ¥n)} C RY x {1,0}.

1¢—Qr={xM>05}, 0+ Q:={x" <05}
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Problem statement

Fixp=1: X(1) = w(t) o(a(t) - x(t) + b(t)). (1)



Problem statement

Fixp=1: X(1) = w(t) o(a(t) - x(t) + b(t)). (1)

Forany T > 0, find a control § = (w, a, b) for (1) such that
O7r(Xn; 0) € Qy, forall n

with the minimal possible complexity (number of discontinuities L).

o}: “3.

2 T N A .

9:\. °.; @




Problem statement

Fixp=1: X(1) = w(t) o(a(t) - x(t) + b(t)). (1)

Forany T > 0, find a control § = (w, a, b) for (1) such that
®7(Xn; 0) € Qy, forall n

with the minimal possible complexity (number of discontinuities L).
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Human’s designed algorithm
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Source: “Two approaches in solving Rubik’s cube with Hardware-Software Co-design”, E. Barucija
etal
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God’s algorithm

God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle,!l but which can also be applied
to other combinatorial puzzles and mathematical games.?! It refers to any algorithm which produces a solution having the fewest
possible moves. The allusion to the deity is based on the notion that an omniscient being would know an optimal step from any
given configuration.

An algorithm to determine the minimum number of moves to solve Rubik's Cube was
published in 1997 by Richard Korf.!'% While it had been known since 1995 that 20 was a
lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved
in 2010 that no configuration requires more than 20 moves.!""] Thus, 20 is a sharp upper
bound on the length of optimal solutions. Mathematician David Singmaster had "rashly
conjectured" this number to be 20 in 1980.14]

Source: Wikipedia



How to move our Rubik’s cube

x(t) = w(t)o(a(t) - x(t) + b(t))
@ a(t), b(t) determine the hyperplane in R? given by
H(x)=a(t)-x+b(t) =0

® o(z) = (z), “activates” H(x) > 0 and “freezes” H(x) < 0.

@ w(t) determines the direction of the field in H(x) > 0.
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From left to right: Compression, laminar motion, expansion.
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Prior work

Theorem (D. Ruiz-Balet, E. Zuazua)

Letd > 2, and R := {xn}, B := {xm} C RY finite datasets of different points.
Forany T > 0, there exists a control

0 €L>((0,T)R? x RY x R)
such that
Or(xn;0) > 05 and d7(xm;0) < 0.5,
foralln=1,...,|Rl,m=1,...,|B|.
Furthermore, 6 is piecewise constant and the number of switches is
L=3(|R|+|B|)+1.
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Prior work

Number of discontinuities: L = O(N). Classification algorithm from D. Ruiz-Balet, E. Zuazua,
“Neural ode control for classification, approximation and transport” (2021).



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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But... how does the computer classify?



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Probabilistic complexity

Theorem (A. A-L, R. Orive-lllera, E. Zuazua)

Assume that |R| = |B| = N, and X, Xm ~ U ([0,1]), foralln,m=1,...,N.
Forany T > 0, there exists a control 0 = (w, a, b) where
ac{er....,eat CS" const,  (w,b)e L®((0,T);R? x R),
such that
Or(xn;0)V > 05 and dr(xm;0)" <05,  foralln,m=1,...,N.
Furthermore, 0 is piecewise constant with L discontinuities satisfying:

d
N 42 N—1 _ . 12 d
reso-1-( > (T S (NI ()
p=[4+1] p=[551]

fork =0,...,2N — 2.
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Probabilistic complexity

Theorem (A. A-L, R. Orive-lllera, E. Zuazua)

Assume that |R| = |B| = N, and X, Xm ~ U ([0,1]), foralln,m=1,...,N.
Forany T > 0, there exists a control 0 = (w, a, b) where
ac{er....,eat CS" const,  (w,b)e L®((0,T);R? x R),
such that
Or(xn;0)V > 05 and dr(xm;0)" <05,  foralln,m=1,...,N.
Furthermore, 0 is piecewise constant with L discontinuities satisfying:

d
N 42 N—1 _ . 12 d
reso-1-( > (T S (NI ()
p=[4+1] p=[551]

fork =0,...,2N — 2.

11/24

v

(2N)!
@ Asymptotics: P(L=0) — 1< d>2"/VN.
@ The optimal number of discontinuities L* (R, B) will satisfy

P(L<k)<P(L*<k)<1, forallk.

22N—1

d
@ Linear separability (k =0): P(L=0)>1— (2(’\”)2) ~1—exp {— VN d}.
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Probabilistic complexity

Fork=0,...,2N - 2:

Lower Bound
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Data classification

Step 1: Separability in dimension d = 1

Let
Z(R, B) := Minimum number of points needed to separate (A, B)
e Z=2N-1if
=+ -
o e e e e e
e Z=1if
2(N)?




Step 1: Separability in dimension d = 1

Let

Z(R, B) := Minimum number of points needed to separate (R, B)

FHO—0 0 3%+ 00+ +— 100333
R B R, B Hp Bp
_1\2 2 .
(’;’_11) %, if k=2p—1,

P(Z = k)=

2 N
MG S i k=2p,

fork=1,...,2N — 1.
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Z(R, B) = Z(mi(R), mi(B))
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Z(R, B) = Z(mi(R), mi(B))
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Z(R, B) = Z(mi(R), mi(B))
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Zi(R,B) .= Z(xi{(R), wi(B))

(a)Z'(R,B)=3 (b)
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Zi(R,B) .= Z(xi{(R), wi(B))

(a)Z'(R,B)=3 (b)
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Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Zi(R,B) .= Z(xi{(R), wi(B))

(a)Z'(R,B)=3 (b)



Step 2: Separability in dimension d > 1

Let

7; = i-th canonical projection in R, Zi(R,B) .= Z(xi{(R), wi(B))

(a) Z'(R,B) =3 (b) Z2(R,B) = 4



Step 2: Separability in dimension d > 1

Let
7; = i-th canonical projection in R, Z(R, B) = Z(i(R), mi(B))

Z; independent and identically distributed to Z for all /, so we can compute:

P (pin (2} 2 k) = (B2 = ).
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Data classification

Step 3: Control

4 ¢}
£ <}
F - o
IS
= o
1
C -
.8t

< k+1>.

2

min
=1,...,

The statement is concluded via P(L < k) =P (
I
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Characterization of the worst-case scenario

Theorem (A. A-L, R. Orive-lllera, E. Zuazua)

For any R, B c R? with |R| = |B| = N and RN B = (), the maximum number of
hyperplanes required to separate their points is 2N — 1.

Furthermore, the maximum is attained if and only if the 2N points of R and B
are interspersed along a straight line in R9.
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Characterization of the worst-case scenario

Theorem (A. A-L, R. Orive-lllera, E. Zuazua)

For any R, B c R? with |R| = |B| = N and RN B = (), the maximum number of
hyperplanes required to separate their points is 2N — 1.

Furthermore, the maximum is attained if and only if the 2N points of R and B
are interspersed along a straight line in R9.

For general a € RY, these configurations are very pathological!



Generic minimax bound

Theorem (A. A-L, R. Orive-lllera, E. Zuazua)

Assume that R U B C RY is in general position?. For any T > 0, there exists
0 €L>((0,T);R?xRYxR) such that
Or(xn;0) >05 and o7(xm;0) <05,  foralln=1,...,N.

Furthermore, 0 is piecewise constant with L = 4 [%] — 1 switches.

4no d + 1 points can lie on the same hyperplane

General position configurations in R2 and R3. Observe that they are generic when points are
sampled from a non-singular measure.
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Idea of the proof
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Idea of the proof
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Idea of the proof
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Idea of the proof
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Idea of the proof
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Idea of the proof

? L
_______ ,_..’--__-...__---
® ,’ ®
e x -
.7
& "



Data classification Antonio Alvarez-Lépez  18/24

Idea of the proof




Idea of the proof: Algorithm
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Data classification

Numerical experiments: Goal

Evaluate the performance of our algorithm.

How?

We estimate the minimum number of discontinuities L which allows to
classify any dataset of N red and N blue points in RY and compare it with
the complexity required by our algorithms, given by Ly .= 4[N/d] — 1.
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Numerical experiments: Setting

@ Data. 10 datasets of N = 30 red points and N = 30 blue points sampled from
U([0, 1]%) for various dimensions d ranging from 2 to 2N.

@ Model. Piecewise constant controls over L + 1 intervals of length At = ;, where
T = 60. Explicit Euler scheme with step size of 0.25A¢.

@ Complexity. For each d, we verify that L = L, discontinuities suffice to classify all
datasets. Then we reduce L until any dataset fails to be classified.

@ Error.
2
Z dist (cbr(xn, 9), {x < 1}) B 3 dist (¢T(xn,9) {x® >0})
xp€R ‘ | XpeB
@ Training. Adam optimizer with a learning rate of 0.01.
@ Stopping criteria.

@ The maximum number of 70000 epochs is reached.

@ Slow convergence, if £ > 0.15 at 20000 epochs or £ > 0.1 at 40000 epochs,
or if the minimum error does not decrease over 5000 consecutive epochs.
© Local minima detection, if the maximum relative error on every 50 consecutive

epochs exceeds a threshold of 1072,
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Numerical experiments: Goal

Evaluate the performance of our algorithm.

How?

We estimate the minimum number of discontinuities L which allows to
classify any dataset of N red and N blue points in R and compare it with

the complexity required by our algorithms, given by Ly .= 4[N/d] — 1.

\.

Close. We conclude that the trained model does not have the capacity to
classify with L discontinuities if a stopping criterion is met for 20 randomized
initializations of the parameters in any of the 10 datasets.

Available codes in GitHub
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Numerical experiments: Results (L vs d)

N\
g

2 3 4 5 6 7 10 15 20 30 60 2 3 4

(a) Green bars — Our algorithm. Purple bars — Numerical training. (b) After rescaling
to zero mean and
unit variance.

[m] = = =
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Conclusions

@ We have found a new minimal value of L that ensures that any given
dataset in RY can be almost surely classified.

@ In any dataset we can generically find clusters of d points that can be
isolated from the rest using two parallel hyperplanes.

@ Forany N > 1,if d > 2V/+/N then two sets of N points can be almost
surely classified with L = 0 discontinuities (autonomous neural ODE).

Open problems

@ Further reduce the maximum number of switches.

@ Is L =4[N/d] — 1 sharp? In such case, what configurations attain this
maximality?

@ Role played by the chosen boundary decision? Which is the optimal one?
@ Potential application for initialization of parameters in training.
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Thank you for your attention!

Scan me!
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Analogy

Further improvements, and finding God's Number [edit]

In 2006, Silviu Radu further improved his methods to prove that every position can be solved in at most 27 face turns or 35
quarter turns.?%! Daniel Kunkle and Gene Cooperman in 2007 used a supercomputer to show that all unsolved cubes can be
solved in no more than 26 moves (in face-turn metric). Instead of attempting to solve each of the billions of variations explicitly,
the computer was programmed to bring the cube to one of 15,752 states, each of which could be solved within a few extra
moves. All were proved solvable in 29 moves, with most solvable in 26. Those that could not initially be solved in 26 moves were
then solved explicitly, and shown that they too could be solved in 26 moves.[211122]

Tomas Rokicki reported in a 2008 computational proof that all unsolved cubes could be solved in 25 moves or fewer.[>] This was
later reduced to 23 moves.[?4l In August 2008, Rokicki announced that he had a proof for 22 moves.[?°]

Finally, in 2010, Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge gave the final computer-assisted proof
that all cube positions could be solved with a maximum of 20 face turns.?! In 2009, Tomas Rokicki proved that 29 moves in the
quarter-turn metric is enough to solve any scrambled cube.[26] And in 2014, Tomas Rokicki and Morley Davidson proved that the
maximum number of quarter-turns needed to solve the cube is 26.1°!



	Introduction
	Supervised Learning

	Data classification

	fd@rm@1: 
	fd@rm@0: 


