Control of Parabolic Equations with Inverse Square Infinite Potential Wells

Arick Shao

Queen Mary University of London

X Partial Differential Equations, Optimal Design and Numerics Centro de Ciencias de Benasque Pedro Pascual 27 August, 2024

Joint work with Alberto Enciso (ICMAT), Bruno Vergara (Brown).

イロト イ押 トイヨ トイヨト

Section 1

[Introduction](#page-1-0)

Ε

メロトメ 倒 トメ 君 トメ 君 トー

The Main Setting

Main setting. Heat equation with critically singular potential:

- $-\partial_t v + \left(\Delta + \frac{\sigma}{d^2}\right)v = Y \cdot \nabla v + W v$ on $(0, T) \times \Omega$, $v|_{t=0} = v_0$ on Ω , " $v|_{(0,T)\times\Gamma}$ " = f on $(0,T)\times\Gamma$.
- $\Omega \subseteq \mathbb{R}^n$: open, bounded.
- $\Gamma := \partial \Omega \in C^2$.
- \bullet d := $d(\cdot, \Gamma)$: distance to boundary.
- $\bullet \ \sigma \in \mathbb{R}$: strength of singular potential.
- $Y \in C^1(\Omega; \mathbb{R}^n)$, $W \in d^{-1} L^{\infty}(\Omega; \mathbb{R})$: lower-order coefficients.

造

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

Control of Heat Equations

Q. Can solutions be controlled via Dirichlet data?

É

メロメメ 御き メミメメ ミメー

Q. Can solutions be controlled via Dirichlet data?

Null controllability:

Given any initial data v_0 , is there a control f such that $v|_{t=T} = 0$?

活

メロメメ 御 メメ きょく きょう

Q. Can solutions be controlled via Dirichlet data?

Null controllability:

Given any initial data v_0 , is there a control f such that $v|_{t=T} = 0$?

Approximate controllability:

Given any initial data v_0 , final data v_T , and $\varepsilon > 0$, is there a control f with

$$
\|v|_{t=T}-v_T\|<\epsilon?
$$

メロメメ 御き メミメメ ミメー

Critically Singular Potentials

 $\sigma = 0$: classical heat equation.

- \bullet Spectral/Fourier methods: precise results, but for specific Y, W.
- \bullet Carleman estimates: robust results, for general Y, W.

∍

メロトメ 伊 トメ ミトメ ミト

Critically Singular Potentials

$\sigma = 0$: classical heat equation.

- \bullet Spectral/Fourier methods: precise results, but for specific Y, W.
- \bullet Carleman estimates: robust results, for general Y, W.

$\sigma \neq 0$: adds "infinite potential well".

- **Remark.** Natural to consider Y, W.
	- d not regular away from Γ.

メロトメ 伊 トメ ミトメ ミト

Critically Singular Potentials

$\sigma = 0$: classical heat equation.

- \bullet Spectral/Fourier methods: precise results, but for specific Y, W.
- \bullet Carleman estimates: robust results, for general Y, W.

$\sigma \neq 0$: adds "infinite potential well".

- **Remark.** Natural to consider Y, W.
	- d not regular away from Γ.

Some motivations for $\sigma \neq 0$:

- Wave equations: AdS/CFT, holography.
- Heat equations: "playground" for understanding σ/d^2 .

メロトメ 御 トメ ヨ トメ ヨト

Difficulty. Potential is critically singular:

■ Same scaling as $\Delta \Rightarrow$ cannot treat perturbatively.

活

メロトメ 伊 トメ ミトメ ミト

Difficulty. Potential is critically singular:

- **•** Same scaling as $\Delta \Rightarrow$ cannot treat perturbatively.
- **1.** Modified asymptotics of solutions at Γ:

$$
v \sim_{\Gamma} d^{\kappa} v_D + d^{1-\kappa} v_N, \qquad \kappa := \frac{1-\sqrt{1-4\sigma}}{2}, \quad \sigma \leq \frac{1}{4}.
$$

Dirichlet trace: $\mathcal{D}_{\sigma} v := d^{-\kappa} v|_{\Gamma}$.

• Neumann trace:
$$
\mathcal{N}_{\sigma} v := d^{2\kappa} \nabla d \cdot \nabla (d^{-\kappa} v)|_{\Gamma}
$$
.

メロメ メタメ メミメ メミメ

Difficulty. Potential is critically singular:

• Same scaling as $\Delta \Rightarrow$ cannot treat perturbatively.

1. Modified asymptotics of solutions at Γ:

$$
v \sim_{\Gamma} d^{\kappa} v_D + d^{1-\kappa} v_N, \qquad \kappa := \frac{1-\sqrt{1-4\sigma}}{2}, \quad \sigma \leq \frac{1}{4}
$$

.

イロメ イ部メ イ君メ イ君メー

Dirichlet trace: $\mathcal{D}_{\sigma} v := d^{-\kappa} v|_{\Gamma}$.

• Neumann trace:
$$
\mathcal{N}_{\sigma} v := d^{2\kappa} \nabla d \cdot \nabla (d^{-\kappa} v)|_{\Gamma}
$$
.

Remark. Threshold values of σ:

- $\sigma = \frac{1}{4}$ ($\kappa = \frac{1}{2}$): threshold for well-posedness and controllability.
- $\sigma \leq -\frac{3}{4}$ ($\kappa \leq -\frac{1}{2}$): Dirichlet branch $\not\in L^2$.

Difficulty. Potential is critically singular:

• Same scaling as $\Delta \Rightarrow$ cannot treat perturbatively.

1. Modified asymptotics of solutions at Γ:

$$
v \sim_{\Gamma} d^{\kappa} v_D + d^{1-\kappa} v_N, \qquad \kappa := \frac{1-\sqrt{1-4\sigma}}{2}, \quad \sigma \leq \frac{1}{4}
$$

.

メロメメ 御 メメ きょくきょう

Dirichlet trace: $\mathcal{D}_{\sigma} v := d^{-\kappa} v|_{\Gamma}$.

• Neumann trace:
$$
\mathcal{N}_{\sigma} v := d^{2\kappa} \nabla d \cdot \nabla (d^{-\kappa} v)|_{\Gamma}
$$
.

Remark. Threshold values of σ:

- $\sigma = \frac{1}{4}$ ($\kappa = \frac{1}{2}$): threshold for well-posedness and controllability.
- $\sigma \leq -\frac{3}{4}$ ($\kappa \leq -\frac{1}{2}$): Dirichlet branch $\not\in L^2$.
- **2.** Shift of regularity for solutions at Γ .
	- L^2 -norm of $\mathcal{N}_{\sigma} v \Leftrightarrow H^{1+\delta(\sigma)}$ -norm of solution.

The Case $n = 1$

Existing results only for $n = 1$:

$$
-\partial_t v + \partial_x^2 v + \tfrac{\sigma}{x^2} v = 0, \quad \text{on } (0, T) \times (0, 1).
$$

- \bullet Boundary null control at $x = 1$: Martinez-Vancostenoble
- \bullet Boundary null control at $x = 0$: Biccari, Cannarsa-Martinez-Vancostenoble, Gueye

活

イロメ イ部メ イ君メ イ君メー

The Case $n = 1$

Existing results only for $n = 1$:

$$
-\partial_t v + \partial_x^2 v + \tfrac{\sigma}{x^2} v = 0, \quad \text{on } (0, T) \times (0, 1).
$$

- \bullet Boundary null control at $x = 1$: Martinez-Vancostenoble
- \bullet Boundary null control at $x = 0$: Biccari, Cannarsa-Martinez-Vancostenoble, Gueye

(Biccari, 2019) Boundary null controllability for $(-\frac{3}{4} <) \sigma < \frac{1}{4}$

- **•** Proved via moment method (Fattorini-Russell, 1970s).
- Cost of controllability $\rightarrow +\infty$ as $\sigma \nearrow \frac{1}{4}$.

∍

イロメ イ部メ イ君メ イ君メー

The Case $n = 1$

Existing results only for $n = 1$:

$$
-\partial_t v + \partial_x^2 v + \tfrac{\sigma}{x^2} v = 0, \quad \text{on } (0, T) \times (0, 1).
$$

- \bullet Boundary null control at $x = 1$: Martinez-Vancostenoble
- \bullet Boundary null control at $x = 0$: Biccari, Cannarsa-Martinez-Vancostenoble, Gueve

(Biccari, 2019) Boundary null controllability for $(-\frac{3}{4} <) \sigma < \frac{1}{4}$

- **•** Proved via moment method (Fattorini-Russell, 1970s).
- Cost of controllability $\rightarrow +\infty$ as $\sigma \nearrow \frac{1}{4}$.

(Biccari, 2019) Several key open questions remain:

- \bullet Null controllability via global Carleman estimates?
- \bullet Potential critically singular at $x = 0$ and $x = 1$?
- Higher dimensions, $\Omega \subseteq \mathbb{R}^n$, $n > 1$?

メロメメ 倒 メメ ミメメ ヨメ

The Case $n > 1$

Results only for interior null control.

重

メロメ メ御 メメ きょくきょう

The Case $n > 1$

Results only for interior null control.

Null controllability for

$$
-\partial_t v + \Delta v + \frac{\sigma}{|x-x_0|^2} v = \ldots
$$

- Cannarsa-Martinez-Vancostenoble, Cazacu, Ervedoza, Vancostenoble-Zuazua.
- **•** Via global Carleman estimates.

活

メロメメ 御き メミメメ ミメー

The Case $n > 1$

Results only for interior null control.

Null controllability for

$$
-\partial_t v + \Delta v + \frac{\sigma}{|x-x_0|^2} v = \ldots
$$

- Cannarsa-Martinez-Vancostenoble, Cazacu, Ervedoza, Vancostenoble-Zuazua.
- **•** Via global Carleman estimates.

(Biccari-Zuazua, 2016) Interior null controllability for

$$
-\partial_t v + \left(\Delta + \frac{\sigma}{d^2}\right)v = \ldots.
$$

- Via global Carleman estimate.
- \bullet Does not work for boundary control.

メロメ メタメ メミメ メミメ

Theorem 1: Null Control

Theorem (Enciso-S-Vergara, 2023)

Assume:

- $Y \in C^1(\Omega)$, $d \cdot W \in L^{\infty}(\Omega)$.
- Γ is C^2 and convex.
- $-\frac{3}{4} < \sigma < 0$.

Then, \forall $T > 0$ and \forall $v_0 \in H^{-1}(\Omega)$, \exists $f \in L^2((0, T) \times \Gamma)$ s.t. solution v of

$$
-\partial_t v + (\Delta + \frac{\sigma}{d^2}) v = Y \cdot \nabla v + Wv \quad \text{on } (0, T) \times \Omega,
$$

$$
v|_{t=0} = v_0 \quad \text{on } \Omega,
$$

$$
\mathcal{D}_{\sigma} v = f \quad \text{on } (0, T) \times \Gamma,
$$

satisfies $v|_{t=T} = 0$.

Ε

メロメメ 御 メメ きょく ミメー

Theorem 1: Null Control

Theorem (Enciso-S-Vergara, 2023)

Assume:

- $Y \in C^1(\Omega)$, $d \cdot W \in L^{\infty}(\Omega)$.
- Γ is C^2 and convex.
- $-\frac{3}{4} < \sigma < 0$.

Then, \forall $T > 0$ and \forall $v_0 \in H^{-1}(\Omega)$, \exists $f \in L^2((0, T) \times \Gamma)$ s.t. solution v of

$$
-\partial_t v + (\Delta + \frac{\sigma}{d^2}) v = Y \cdot \nabla v + Wv \quad \text{on } (0, T) \times \Omega,
$$

$$
v|_{t=0} = v_0 \quad \text{on } \Omega,
$$

$$
\mathcal{D}_{\sigma} v = f \quad \text{on } (0, T) \times \Gamma,
$$

satisfies $v|_{t=T} = 0$.

First boundary control result for $n > 1$.

• First boundary control result for $Y, W \neq 0$ for any n.

э

メロメメ 御 メメ きょくきょう

Theorem 2: Approximate Control

Theorem (S-Vergara, 2024)

Assume:

- $Y \in C^1(\Omega)$, $d \cdot W \in L^{\infty}(\Omega)$.
- $Γ$ is C^2 , $ω ⊆ Γ$ open.
- $-\frac{3}{4} < \sigma < \frac{1}{4}$.

Then, \forall T > 0 and \forall $v_0, v_T \in H^{-1}(\Omega)$, \exists $f \in L^2((0, T) \times \omega)$ s.t. solution v of

$$
-\partial_t v + (\Delta + \frac{\sigma}{d^2}) v = Y \cdot \nabla v + Wv \quad \text{on } (0, T) \times \Omega,
$$

$$
v|_{t=0} = v_0 \quad \text{on } \Omega,
$$

$$
\mathcal{D}_{\sigma} v = f \quad \text{on } (0, T) \times \Gamma,
$$

satisfies $||v|_{t=T} - v_T ||_{H^{-1}(\Omega)} < \varepsilon$.

B

メロメメ 御 メメ きょく ミメー

Theorem 2: Approximate Control

Theorem (S-Vergara, 2024)

Assume:

- $Y \in C^1(\Omega)$, $d \cdot W \in L^{\infty}(\Omega)$.
- $Γ$ is C^2 , $ω ⊆ Γ$ open.
- $-\frac{3}{4} < \sigma < \frac{1}{4}$.

Then, \forall T > 0 and \forall $v_0, v_T \in H^{-1}(\Omega)$, \exists $f \in L^2((0, T) \times \omega)$ s.t. solution v of

$$
-\partial_t v + (\Delta + \frac{\sigma}{d^2}) v = Y \cdot \nabla v + Wv \quad \text{on } (0, T) \times \Omega,
$$

$$
v|_{t=0} = v_0 \quad \text{on } \Omega,
$$

$$
\mathcal{D}_{\sigma} v = f \quad \text{on } (0, T) \times \Gamma,
$$

satisfies $||v|_{t=T} - v_T ||_{H^{-1}(\Omega)} < \varepsilon$.

Approximate control is weaker, but result is definitive:

- **Can** localise control f to arbitrarily small $ω ⊆ Γ$.
- \bullet Handles full range of σ .

э

メロメメ 御 メメ きょくきょう

Section 2

[Proof of Null Control](#page-23-0)

重

メロトメ 倒 トメ きょくきょう

Duality

Proof via duality (Russell) and HUM (Lions) machinery:

- Controllability [⇔] quantitative uniqueness for dual problem.
- \bullet Need dual, well-posed theories for both settings.

∍

メロトメ 伊 トメ ミトメ ミト

Duality

Proof via duality (Russell) and HUM (Lions) machinery:

- Controllability [⇔] quantitative uniqueness for dual problem.
- \bullet Need dual, well-posed theories for both settings.

Controllability:

$$
-\partial_t v + \left(\Delta + \frac{\sigma}{d^2}\right) v = Y \cdot \nabla v + W v,
$$

$$
v|_{t=0} = v_0 \in H^{-1}(\Omega),
$$

$$
\mathcal{D}_{\sigma} v = f \in L^2((0, T) \times \Gamma).
$$

- Holds for $-\frac{3}{4} < \sigma < \frac{1}{4}$.
- \bullet "New" for all Y, W.

Observability:

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

\n
$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

\n
$$
\mathcal{D}_{\sigma} u = 0.
$$

\n• Holds for $-\frac{3}{4} < \sigma < \frac{1}{4}.$
\n• "New" for $X, V \neq 0.$

メロメ メ御 メメ きょく きょう

活

Duality

Proof via duality (Russell) and HUM (Lions) machinery:

- Controllability [⇔] quantitative uniqueness for dual problem.
- Need dual, well-posed theories for both settings.

Controllability: $-\partial_t v + \left(\Delta + \frac{\sigma}{d^2}\right)v = Y \cdot \nabla v + W v,$ $v|_{t=0} = v_0 \in H^{-1}(\Omega),$ $\mathcal{D}_{\sigma}\mathsf{v}=f\in L^2((0,T)\times\Gamma).$ Holds for $-\frac{3}{4} < \sigma < \frac{1}{4}$. \bullet "New" for all Y, W.

 $\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,$ $|u|_{t=T} = u_T \in H_0^1(\Omega),$ $\mathcal{D}_{\sigma}u=0.$ Holds for $-\frac{3}{4} < \sigma < \frac{1}{4}$. \bullet "New" for X, $V \neq 0$.

メロメメ 御 メメ きょく ミメー

 $HUM \Rightarrow$ controllability follows from observability-side estimates:

造

Crucial estimates. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + Vu,
$$

\n
$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

\n
$$
\mathcal{D}_{\sigma} u = 0,
$$

then:

Neumann trace: $\mathcal{N}_{\sigma} u$ is well-defined in $L^2((0, T) \times \Gamma)$.

目

メロメ メ御 メメ きょくきょう

Crucial estimates. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

$$
\mathcal{D}_{\sigma} u = 0,
$$

then:

- Neumann trace: $\mathcal{N}_{\sigma} u$ is well-defined in $L^2((0, T) \times \Gamma)$.
- Hidden regularity (via trace, energy/smoothing estimates):

$$
\|\mathcal{N}_{\sigma} u\|_{L^2((0,T)\times\Gamma)} \lesssim \|u_T\|_{H^1(\Omega)}, \quad -\tfrac{3}{4} < \sigma < \tfrac{1}{4}.
$$

活

メロメメ 御き メミメメ ミメー

Crucial estimates. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

$$
\mathcal{D}_{\sigma} u = 0,
$$

then:

- Neumann trace: $\mathcal{N}_{\sigma} u$ is well-defined in $L^2((0, T) \times \Gamma)$.
- Hidden regularity (via trace, energy/smoothing estimates):

$$
\|\mathcal{N}_{\sigma} u\|_{L^{2}((0,T)\times\Gamma)} \lesssim \|u_{T}\|_{H^{1}(\Omega)}, \quad -\frac{3}{4} < \sigma < \frac{1}{4}.
$$

Observability inequality (via Carleman and energy estimates):

 $\|u\|_{t=0}\|_{H^1(\Omega)} \lesssim \|\mathcal{N}_{\sigma}u\|_{L^2((0,T)\times\Gamma)}, \quad -\frac{3}{4} < \sigma < 0.$

造

メロメメ 御 メメ きょくきょう

Crucial estimates. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

$$
\mathcal{D}_{\sigma} u = 0,
$$

then:

- Neumann trace: $\mathcal{N}_{\sigma} u$ is well-defined in $L^2((0, T) \times \Gamma)$.
- Hidden regularity (via trace, energy/smoothing estimates):

$$
\|\mathcal{N}_{\sigma} u\|_{L^2((0,T)\times\Gamma)} \lesssim \|u_T\|_{H^1(\Omega)}, \quad -\tfrac{3}{4} < \sigma < \tfrac{1}{4}.
$$

Observability inequality (via Carleman and energy estimates):

 $\|u\|_{t=0}\|_{H^1(\Omega)} \lesssim \|\mathcal{N}_{\sigma}u\|_{L^2((0,T)\times\Gamma)}, \quad -\frac{3}{4} < \sigma < 0.$

Main objective. Prove the lemma!

• Focus on global Carleman estimate (key step and contribution).

造

メロメメ 御 メメ きょく ミメー

The HUM Machinery

Rough sketch. Define functional:

$$
I_{\sigma}: H_0^1(\Omega) \to \mathbb{R}, \qquad I_{\sigma}(u_{\tau}) := \frac{1}{2} \int_{(0, \tau) \times \Gamma} |\mathcal{N}_{\sigma} u|^2 - \int_{\Omega} u(0) v_0.
$$

- **•** Lemma, upper bound $\Rightarrow I_{\sigma}$ is continuous.
- **•** Lemma, observability $\Rightarrow I_{\sigma}$ is coercive (in certain norm).

活

メロメ メ御 メメ きょく きょう

The HUM Machinery

Rough sketch. Define functional:

$$
I_{\sigma}: H_0^1(\Omega) \to \mathbb{R}, \qquad I_{\sigma}(u_{\tau}) := \frac{1}{2} \int_{(0, \tau) \times \Gamma} |\mathcal{N}_{\sigma} u|^2 - \int_{\Omega} u(0) v_0.
$$

- **•** Lemma, upper bound $\Rightarrow I_{\sigma}$ is continuous.
- **•** Lemma, observability $\Rightarrow I_{\sigma}$ is coercive (in certain norm).

Thus, I_{σ} has minimiser \tilde{u}_{τ} :

• Null control given by $\mathcal{N}_{\sigma} \tilde{u}$.

∍

メロメメ 御 メメ きょく きょう

Carleman Overview

Goal. Weighted spacetime estimate (roughly):

$$
C'\lambda \int_{(0,T)\times\Gamma} (\mathcal{N}_{\sigma} u)^2 + \int_{(0,T)\times\Omega} e^{-2\lambda F} \left(\partial_t u + \Delta u + \frac{\sigma}{d^2} u\right)^2
$$

$$
\geq C\lambda \int_{(0,T)\times\Omega} e^{-2\lambda F} \left(|\nabla u|^2 + \frac{1}{d^2} u^2\right).
$$

- $F = F(t, x)$: specially chosen weight.
- $\bullet \ \lambda \gg 1$: large free parameter.
	- Allows to absorb $X \cdot \nabla u + V u$ terms.

目

メロメメ 御 メメ きょくきょう

Carleman Overview

Goal. Weighted spacetime estimate (roughly):

$$
C'\lambda \int_{(0,T)\times\Gamma} (\mathcal{N}_{\sigma}u)^2 + \int_{(0,T)\times\Omega} e^{-2\lambda F} (\partial_t u + \Delta u + \frac{\sigma}{d^2} u)^2
$$

$$
\geq C\lambda \int_{(0,T)\times\Omega} e^{-2\lambda F} (\vert \nabla u \vert^2 + \frac{1}{d^2} u^2).
$$

- $F = F(t, x)$: specially chosen weight.
- $\bullet \ \lambda \gg 1$: large free parameter.
	- Allows to absorb $X \cdot \nabla u + V u$ terms.

Very rough derivation. Integrate by parts: $\sqrt{2}$

$$
e^{-\lambda F}(\partial_t + \Delta)(e^{\lambda F}w) \, Sw, \qquad w := e^{-\lambda F}u.
$$

- \bullet Sw := $\partial_t w + \lambda \nabla F \cdot \nabla w + \dots$: multiplier.
- Good choice of F, large $\lambda \Rightarrow$ positive bulk term.

э

メロメメ 倒 メメ きょくきょう

A Boundary-Adapted Weight

(Biccari-Zuazua, 2016) Carleman weight roughly of form (near Γ)

$$
F_I(t,x): \approx \frac{1}{t(T-t)} \big[C - d^2(x) - d^s(x) e^{s d(x)} \big], \qquad s \gg 1.
$$

- \bullet Does not capture $\mathcal{N}_{\sigma} u$ at boundary.
- Carleman estimate bounds L^2 -norm of u, but not full H^1 -norm.

メロメメ 倒 メメ きょくきょう

A Boundary-Adapted Weight

(Biccari-Zuazua, 2016) Carleman weight roughly of form (near Γ)

$$
F_I(t,x): \approx \frac{1}{t(T-t)} \big[C - d^2(x) - d^s(x) e^{s d(x)} \big], \qquad s \gg 1.
$$

- **O** Does not capture $\mathcal{N}_{\sigma} u$ at boundary.
- Carleman estimate bounds L^2 -norm of u, but not full H^1 -norm.

Idea. Need special power of d in F to capture $\mathcal{N}_{\sigma} u$.

 $F_0(t, x) := \frac{1}{t(T-t)} \left[\frac{1}{1+2\kappa} d^{1+2\kappa}(x) + \beta \right], \quad \kappa := \frac{1-\sqrt{1-4\sigma}}{2}, \quad \beta > 0.$

Integrations by parts \Rightarrow L^2 -norm of $\mathcal{N}_{\sigma} u$ at boundary.

メロメ メタメ メモメ メモメー

A Boundary-Adapted Weight

(Biccari-Zuazua, 2016) Carleman weight roughly of form (near Γ)

$$
F_I(t,x): \approx \frac{1}{t(T-t)} \big[C - d^2(x) - d^s(x) e^{s d(x)} \big], \qquad s \gg 1.
$$

- **O** Does not capture $\mathcal{N}_{\sigma} u$ at boundary.
- Carleman estimate bounds L^2 -norm of u, but not full H^1 -norm.

Idea. Need special power of d in F to capture $\mathcal{N}_{\sigma} u$. $F_0(t, x) := \frac{1}{t(T-t)} \left[\frac{1}{1+2\kappa} d^{1+2\kappa}(x) + \beta \right], \quad \kappa := \frac{1-\sqrt{1-4\sigma}}{2}, \quad \beta > 0.$ Integrations by parts \Rightarrow L^2 -norm of $\mathcal{N}_{\sigma} u$ at boundary.

Lemma. Boundary only sees $\mathcal{N}_{\sigma} u$ —assuming $u_{\tau} \in H_0^1(\Omega)$: $d^{-1+\kappa}u|_{\Gamma}=\frac{1}{1-2\kappa}\mathcal{N}_{\sigma}u,$ $e^{-2\lambda F} \partial_t (\mathcal{D}_{\sigma} u) \mathcal{N}_{\sigma} u = 0.$
(0, T) × Γ

K ロ > K 個 > K 경 > K 경 > X 경

The Global Weight

Problem. d fails to be differentiable away from Γ.

 \bullet F₀ not viable away from Γ .

活

メロメメ 御き メミメメ ミメー

The Global Weight

Problem. *d* fails to be differentiable away from Γ.

 \bullet F₀ not viable away from Γ .

Proposition. There exists "boundary-defining function" $0 < y \in C^2(\Omega)$ such that:

- **Near-boundary** $(d < \delta_0)$ **:** $y = d$, and $-\nabla^2 y \ge 0$.
- **Intermediate** $(\delta_0 \leq d \leq 2\delta_0)$ **:** $|\nabla y| \geq c$, and $-\nabla^2 y \geq -\epsilon'$.
- Far region $(d > 2\delta_0)$: $-\nabla^2 y \geq \epsilon$, and y has unique critical point x_* .

э

メロメメ 御 メメ きょくきょう

The Global Weight

Problem. d fails to be differentiable away from Γ.

F⁰ not viable away from Γ.

Proposition. There exists "boundary-defining function" $0 < y \in C^2(\Omega)$ such that:

- **Near-boundary** $(d < \delta_0)$ **:** $y = d$, and $-\nabla^2 y \ge 0$.
- **Intermediate** $(\delta_0 \leq d \leq 2\delta_0)$ **:** $|\nabla y| \geq c$, and $-\nabla^2 y \geq -\epsilon'$.
- Far region $(d > 2\delta_0)$: $-\nabla^2 y \geq \epsilon$, and y has unique critical point x_* .

Idea. Replace d by y in Carleman weight

$$
F(t,x):=\tfrac{1}{t(T-t)}\left[\tfrac{1}{1+2\kappa}y(x)^{1+2\kappa}+\beta\right].
$$

- Also work with smoother operator $\partial_t + \Delta + \sigma y^{-2}$.
- $\bullet \ \ y = d_{\Gamma}$ near $\Gamma \Rightarrow$ estimate still captures $\mathcal{N}_{\sigma} u$ on $(0, T) \times \Gamma$.
- $Γ$ convex \Rightarrow y "almost-convex" \Rightarrow controls \dot{H}^1 -norm on all of $(0, T) \times Ω$.
- L^2 -terms contain many singular weights, but most leading terms positive.

э

メロメメ 御 メメ きょく ミメー

Double Carleman

Problem. Estimate does not control L^2 -norm of u near critical point $x_*!$

$$
C'\lambda \int_{(0,T)\times\Gamma} (\mathcal{N}_{\sigma} u)^2 + \int_{(0,T)\times\Omega} e^{-2\lambda F} \left(\partial_t u + \Delta u + \frac{\sigma}{y^2} u\right)^2
$$

\n
$$
\geq C\lambda \int_{(0,T)\times\Omega} e^{-2\lambda F} \dots |\nabla u|^2 - C_*\lambda^2 \int_{(0,T)\times\mathcal{B}_{\delta}(x_*)} e^{-2\lambda F} \dots u^2
$$

\n
$$
+ C\lambda^3 \int_{(0,T)\times[\Omega\setminus\mathcal{B}_{\delta}(x_*)]} e^{-2\lambda F} \dots u^2.
$$

L²-part positive only away from x_* (contains $|\nabla y|^2$ -weight).

重

イロト イ団 トイミト イミト

Double Carleman

Problem. Estimate does not control L^2 -norm of u near critical point $x_*!$

$$
C'\lambda \int_{(0,T)\times\Gamma} (\mathcal{N}_{\sigma}u)^{2} + \int_{(0,T)\times\Omega} e^{-2\lambda F} \left(\partial_{t}u + \Delta u + \frac{\sigma}{y^{2}}u\right)^{2}
$$

\n
$$
\geq C\lambda \int_{(0,T)\times\Omega} e^{-2\lambda F} \dots |\nabla u|^{2} - C_{*}\lambda^{2} \int_{(0,T)\times B_{\delta}(x_{*})} e^{-2\lambda F} \dots u^{2}
$$

\n
$$
+ C\lambda^{3} \int_{(0,T)\times[\Omega\setminus B_{\delta}(x_{*})]} e^{-2\lambda F} \dots u^{2}.
$$

L²-part positive only away from x_* (contains $|\nabla y|^2$ -weight).

Idea. Construct two boundary-defining functions y_1 and y_2 , with $x_{*,1} \neq x_{*,2}$.

 \bullet Sum Carleman estimates obtained from y_1 and y_2 .

イロメ イ部メ イ君メ イ君メー

Double Carleman

Problem. Estimate does not control L^2 -norm of u near critical point $x_*!$

$$
C'\lambda \int_{(0,T)\times\Gamma} (\mathcal{N}_{\sigma}u)^{2} + \int_{(0,T)\times\Omega} e^{-2\lambda F} \left(\partial_{t}u + \Delta u + \frac{\sigma}{y^{2}}u\right)^{2}
$$

\n
$$
\geq C\lambda \int_{(0,T)\times\Omega} e^{-2\lambda F} \dots |\nabla u|^{2} - C_{*}\lambda^{2} \int_{(0,T)\times B_{\delta}(x_{*})} e^{-2\lambda F} \dots u^{2}
$$

\n
$$
+ C\lambda^{3} \int_{(0,T)\times[\Omega\setminus B_{\delta}(x_{*})]} e^{-2\lambda F} \dots u^{2}.
$$

L²-part positive only away from x_* (contains $|\nabla y|^2$ -weight).

Idea. Construct two boundary-defining functions y_1 and y_2 , with $x_{*1} \neq x_{*2}$.

 \bullet Sum Carleman estimates obtained from y_1 and y_2 .

Balance β_1 and β_2 , take λ large enough:

- Near $x_{*,1}$: positive L²-part from y₂-bound absorbs negative L²-part from y₁-bound.
- Near $x_{*,2}$: positive L²-part from y₁-bound absorbs negative L²-part from y₂-bound.

メロメメ 倒 メメ きょくきょう

The Double Carleman Estimate

Theorem. Let F_i be the Carleman weight from y_i . Then,

$$
C' \lambda \int_{(0,T) \times \Gamma} (\mathcal{N}_{\sigma} u)^2 + \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(\partial_t u + \Delta u + \frac{\sigma}{y_j^2} u \right)^2
$$

$$
\geq C \lambda \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(|\nabla u|^2 + \frac{\lambda^2}{y_j^2} u^2 \right).
$$

 \bullet Combine with energy estimates \Rightarrow observability \Rightarrow null controllability.

活

メロメメ 倒 メメ きょくきょう

The Double Carleman Estimate

Theorem. Let F_i be the Carleman weight from y_i . Then,

$$
C' \lambda \int_{(0,T) \times \Gamma} (\mathcal{N}_{\sigma} u)^2 + \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(\partial_t u + \Delta u + \frac{\sigma}{y_j^2} u \right)^2
$$

$$
\geq C \lambda \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(|\nabla u|^2 + \frac{\lambda^2}{y_j^2} u^2 \right).
$$

 \bullet Combine with energy estimates \Rightarrow observability \Rightarrow null controllability.

Questions. Weaker results than for classical parabolic equations:

- Can convexity assumption for Γ be removed?
- Must control be on all of Γ?
- What about $0 < \sigma < \frac{1}{4}$?

メロメメ 御 メメ きょく きょう

The Double Carleman Estimate

Theorem. Let F_i be the Carleman weight from y_i . Then,

$$
C' \lambda \int_{(0,T) \times \Gamma} (\mathcal{N}_{\sigma} u)^2 + \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(\partial_t u + \Delta u + \frac{\sigma}{y_j^2} u \right)^2
$$

$$
\geq C \lambda \sum_{j=1}^2 \int_{(0,T) \times \Omega} e^{-2\lambda F_j} \left(|\nabla u|^2 + \frac{\lambda^2}{y_j^2} u^2 \right).
$$

 \bullet Combine with energy estimates \Rightarrow observability \Rightarrow null controllability.

Questions. Weaker results than for classical parabolic equations:

- Can convexity assumption for Γ be removed?
- Must control be on all of Γ?
- What about $0 < \sigma < \frac{1}{4}$?

Recently. Can address all three points for approximate control.

メロメ メ御 メメ きょく きょう

Section 3

[Proof of Approximate Control](#page-47-0)

重

メロトメ 倒 トメ ミトメ ミトー

The HUM Revisited

Proof via same duality/HUM setup as before:

 \bullet Main difference. Need unique continuation property from ω , rather than observability.

活

メロメメ 御き メミメメ ミメー

The HUM Revisited

Proof via same duality/HUM setup as before:

Main difference. Need unique continuation property from ω, rather than observability.

Crucial properties. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

\n
$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

\n
$$
\mathcal{D}_{\sigma} u = 0,
$$

then $\mathcal{N}_{\sigma} \mu$ is well-defined in $\mathcal{L}^2((0,\,T)\times\Gamma)$, and

- $\|\mathcal{N}_{\sigma}u\|_{L^2((0,T)\times\Gamma)} \lesssim \|u_T\|_{H^1(\Omega)}.$
- If $\mathcal{N}_{\sigma} u|_{(0,T)\times\omega} = 0$, then $u \equiv 0$.

メロメメ 倒 メメ きょくきょう

The HUM Revisited

Proof via same duality/HUM setup as before:

Main difference. Need unique continuation property from ω, rather than observability.

Crucial properties. For any solution u of

$$
\partial_t u + \left(\Delta + \frac{\sigma}{d^2}\right) u = X \cdot \nabla u + V u,
$$

\n
$$
u|_{t=T} = u_T \in H_0^1(\Omega),
$$

\n
$$
\mathcal{D}_{\sigma} u = 0,
$$

then $\mathcal{N}_{\sigma} \mu$ is well-defined in $\mathcal{L}^2((0,\,T)\times\Gamma)$, and

- $\|\mathcal{N}_{\sigma}u\|_{L^2((0,T)\times\Gamma)} \lesssim \|u_T\|_{H^1(\Omega)}.$
- If $\mathcal{N}_{\sigma} u|_{(0,T)\times (0,T)} = 0$, then $u \equiv 0$.

Main objective. Prove the lemma!

- Hidden regularity: same proof as before.
- **Unique continuation property: new local Carleman estimate (near** $(0, T) \times \omega$ **).**

イロメ イ部メ イ君メ イ君メー

The HUM Machinery

Rough sketch. Can assume $v_0 \equiv 0$. Define functional:

$$
I_{\sigma,\varepsilon}:H_0^1(\Omega)\to\mathbb{R},\qquad I_{\sigma}(u_{\mathcal{T}}):=\varepsilon||u_{\mathcal{T}}||_{H^1(\Omega)}+\frac{1}{2}\int_{(0,\mathcal{T})\times\Gamma}|\mathcal{N}_{\sigma}u|^2+\int_{\Omega}u_{\mathcal{T}}v_{\mathcal{T}}.
$$

- **•** Lemma, upper bound $\Rightarrow I_{\sigma, \varepsilon}$ is continuous.
- **•** Lemma, unique continuation $\Rightarrow I_{\sigma, \varepsilon}$ is coercive.

メロメ メタメ メミメ メミメ

The HUM Machinery

Rough sketch. Can assume $v_0 \equiv 0$. Define functional:

$$
I_{\sigma,\varepsilon}:H_0^1(\Omega)\to\mathbb{R},\qquad I_{\sigma}(u_{\mathcal{T}}):=\varepsilon||u_{\mathcal{T}}||_{H^1(\Omega)}+\frac{1}{2}\int_{(0,\mathcal{T})\times\Gamma}|\mathcal{N}_{\sigma}u|^2+\int_{\Omega}u_{\mathcal{T}}v_{\mathcal{T}}.
$$

- **•** Lemma, upper bound $\Rightarrow I_{\sigma, \varepsilon}$ is continuous.
- **•** Lemma, unique continuation $\Rightarrow I_{\sigma, \varepsilon}$ is coercive.

Thus, I_{σ} has minimiser \tilde{u}_{τ} :

- **•** Approximate control given by $\mathcal{N}_{\sigma} \tilde{u}|_{(0,T)\times\omega}$.
- Extra term in $I_{\sigma,\varepsilon} \Rightarrow$ need less for coercivity, minimizer only approximate control.

メロメメ 御 メメ きょく きょう

Localising the Carleman estimate

Question. How to localise estimate to near ω?

重

メロメメ 御 メメ きょくきょう

Localising the Carleman estimate

Question. How to localise estimate to near ω?

Idea. Consider local Carleman weight near ω:

$$
F(t,x) := \frac{1}{t(T-t)} \left[\frac{1}{1+2\kappa} \, d(x)^{1+2\kappa} + |w(x)|^2 \right].
$$

- \bullet $w := (w_1, \ldots, w_{n-1})$ local coordinates on Γ near $x_0 \in \omega$, with $w(x_0) = 0$.
- w constant along integral curves of ∇y .
- **By construction,** $\nabla \mathbf{y} \cdot \nabla \mathbf{w} = \mathbf{0}$ (needed to avoid terms that are too singular).

メロメメ 倒 メメ きょくきょう

Localising the Carleman estimate

Question. How to localise estimate to near ω?

Idea. Consider local Carleman weight near ω:

$$
F(t,x) := \frac{1}{t(T-t)} \left[\frac{1}{1+2\kappa} \, d(x)^{1+2\kappa} + |w(x)|^2 \right].
$$

- \bullet $w := (w_1, \ldots, w_{n-1})$ local coordinates on Γ near $x_0 \in \omega$, with $w(x_0) = 0$.
- w constant along integral curves of ∇y .
- **By construction,** $\nabla \mathbf{y} \cdot \nabla \mathbf{w} = \mathbf{0}$ (needed to avoid terms that are too singular).

Observation. $F > 0$, and $F = 0$ only at $(0, T) \times \{x_0\}$.

O Leads to unique continuation from near $(0, T) \times \{x_0\}$ (rather than from $(0, T) \times \Gamma$).

メロメメ 御 メメ きょくきょう

Avoiding Convexity

Can remove convexity assumption on Γ:

- **Observation.** d^{-1} very large near $\Gamma \Rightarrow$ positive bulk terms.
- **•** Stronger than negative terms from concavity of d.
- $w \ll d^{-1}$ cannot interfere with positivity.

∍

メロメメ 御 メメ きょく きょう

Avoiding Convexity

Can remove convexity assumption on Γ:

- **Observation.** d^{-1} very large near $\Gamma \Rightarrow$ positive bulk terms.
- \bullet Stronger than negative terms from concavity of d.
- $w \ll d^{-1}$ cannot interfere with positivity.

Remark. In some ways, localisation makes estimate easier:

- \bullet Do not need to replace d by y.
- **O** Only need one Carleman estimate.

メロメ メ御 メメ きょく きょう

Extending to $\sigma > 0$

Question. How to extend result to $\sigma > 0$?

 \bullet Carleman estimate fails for $\sigma > 0!$

重

メロトメ 倒 トメ きょくきょう

Extending to $\sigma > 0$

Question. How to extend result to $\sigma > 0$?

• Carleman estimate fails for $\sigma > 0$!

Idea. Since $\mathcal{D}_{\sigma} u = \mathcal{N}_{\sigma} u = 0$ on $(0, T) \times \omega$:

- \bullet u vanishes to additional powers of d.
- **•** Extra vanishing \Rightarrow can apply Carleman estimate with $\sigma < 0$.

∍

イロメ イ部メ イ君メ イ君メー

Extending to $\sigma > 0$

Question. How to extend result to $\sigma > 0$?

• Carleman estimate fails for $\sigma > 0$!

Idea. Since
$$
\mathcal{D}_{\sigma} u = \mathcal{N}_{\sigma} u = 0
$$
 on $(0, T) \times \omega$:

- \bullet u vanishes to additional powers of d.
- **•** Extra vanishing \Rightarrow can apply Carleman estimate with $\sigma < 0$.

Theorem. The following estimate holds:

$$
C'\lambda\int_{(0,T)\times[\Gamma\cap B_{\varepsilon}(x_0)]}\left[\frac{1}{d^{q_1}}(\mathcal{N}_{\sigma}u)^2+\frac{1}{d^{q_0}}(\mathcal{D}_{\sigma}u)^2\right]+\int_{(0,T)\times B_{\varepsilon}(x_0)}e^{-2\lambda F}\left(\partial_t u+\Delta u+\frac{\sigma}{d^2}u\right)^2
$$

$$
\geq C\lambda\sum_{j=1}^2\int_{(0,T)\times B_{\varepsilon}(x_0)}e^{-2\lambda F}\left(|\nabla u|^2+\frac{\lambda^2}{d^2}u^2\right).
$$

• Leads to unique continuation property.

メロメメ 倒 メメ きょくきょう

Thank you for your attention!

A. Enciso, A. Shao, B. Vergara, Controllability of parabolic equations with inverse square infinite potential wells via global Carleman estimates, arXiv: 2112.04457

A. Shao, B. Vergara, Approximate boundary controllability for parabolic equations with inverse square infinite potential wells, arXiv: 2311.01628

メロトメ 伊 トメ ミトメ ミト