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Introduction Overview

The Main Setting

Main setting. Heat equation with critically singular potential:
−∂tv +

(
∆+ σ

d2

)
v = Y · ∇v + W v on (0,T )×Ω,

v |t=0 = v0 on Ω,
“v |(0,T)×Γ” = f on (0,T )× Γ .

Ω ⊆ Rn: open, bounded.
Γ := ∂Ω ∈ C2.
d := d(·, Γ): distance to boundary.
σ ∈ R: strength of singular potential.
Y ∈ C1(Ω;Rn), W ∈ d−1 L∞(Ω;R): lower-order coefficients.
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Introduction Overview

Control of Heat Equations

Q. Can solutions be controlled via Dirichlet data?

Null controllability:
Given any initial data v0, is there a control f such that v |t=T = 0?

Approximate controllability:
Given any initial data v0, final data vT , and ε > 0, is there a control f with

‖v |t=T − vT‖ < ε?
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Introduction Overview

Critically Singular Potentials

σ = 0: classical heat equation.
Spectral/Fourier methods: precise results, but for specific Y , W .
Carleman estimates: robust results, for general Y , W .

σ 6= 0: adds “infinite potential well”.
Remark. Natural to consider Y , W .

d not regular away from Γ .

Some motivations for σ 6= 0:
Wave equations: AdS/CFT, holography.

Heat equations: “playground” for understanding σ/d2.
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Introduction Overview

Boundary Asymptotics

Difficulty. Potential is critically singular:
Same scaling as ∆ ⇒ cannot treat perturbatively.

1. Modified asymptotics of solutions at Γ :
v ∼Γ dκvD + d1−κvN , κ := 1−

√
1−4σ
2 , σ ≤ 1

4 .
Dirichlet trace: Dσv := d−κv |Γ .

Neumann trace: Nσv := d2κ∇d · ∇(d−κv)|Γ .

Remark. Threshold values of σ:
σ = 1

4 (κ = 1
2 ): threshold for well-posedness and controllability.

σ ≤ − 3
4 (κ ≤ − 1

2 ): Dirichlet branch 6∈ L2.

2. Shift of regularity for solutions at Γ .
L2-norm of Nσv ⇔ H1+δ(σ)-norm of solution.
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Introduction Previous Results

The Case n = 1

Existing results only for n = 1:
−∂tv + ∂2

x v + σ
x2 v = 0, on (0,T )× (0, 1).

Boundary null control at x = 1: Martinez-Vancostenoble
Boundary null control at x = 0: Biccari, Cannarsa-Martinez-Vancostenoble, Gueye

(Biccari, 2019) Boundary null controllability for (− 3
4 <) σ < 1

4
Proved via moment method (Fattorini-Russell, 1970s).
Cost of controllability → +∞ as σ ↗ 1

4 .

(Biccari, 2019) Several key open questions remain:
Null controllability via global Carleman estimates?
Potential critically singular at x = 0 and x = 1?
Higher dimensions, Ω ⊆ Rn, n > 1?
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Introduction Previous Results

The Case n > 1

Results only for interior null control.

Null controllability for
−∂tv + ∆v + σ

|x−x0|2
v = . . . .

Cannarsa-Martinez-Vancostenoble, Cazacu, Ervedoza, Vancostenoble-Zuazua.
Via global Carleman estimates.

(Biccari-Zuazua, 2016) Interior null controllability for
−∂tv +

(
∆ + σ

d2

)
v = . . . .

Via global Carleman estimate.
Does not work for boundary control.
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Introduction The Main Results

Theorem 1: Null Control

Theorem (Enciso-S-Vergara, 2023)
Assume:

Y ∈ C1(Ω), d · W ∈ L∞(Ω).

Γ is C2 and convex.
− 3

4 < σ < 0.

Then, ∀ T > 0 and ∀ v0 ∈ H−1(Ω), ∃ f ∈ L2((0,T )× Γ) s.t. solution v of
−∂tv + (∆ + σ

d2 ) v = Y · ∇v + W v on (0, T) × Ω,

v |t=0 = v0 on Ω,
Dσv = f on (0, T) × Γ ,

satisfies v |t=T = 0.

First boundary control result for n > 1.
First boundary control result for Y , W 6= 0 for any n.
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Introduction The Main Results

Theorem 2: Approximate Control

Theorem (S-Vergara, 2024)
Assume:

Y ∈ C1(Ω), d · W ∈ L∞(Ω).

Γ is C2, ω ⊆ Γ open.
− 3

4 < σ < 1
4 .

Then, ∀ T > 0 and ∀ v0, vT ∈ H−1(Ω), ∃ f ∈ L2((0,T )×ω) s.t. solution v of
−∂tv + (∆ + σ

d2 ) v = Y · ∇v + W v on (0, T) × Ω,

v |t=0 = v0 on Ω,
Dσv = f on (0, T) × Γ ,

satisfies ‖v |t=T − vT‖H−1(Ω) < ε.

Approximate control is weaker, but result is definitive:
Can localise control f to arbitrarily small ω ⊆ Γ .
Handles full range of σ.
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Proof of Null Control

Section 2

Proof of Null Control
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Proof of Null Control The Hilbert Uniqueness Method

Duality

Proof via duality (Russell) and HUM (Lions) machinery:
Controllability ⇔ quantitative uniqueness for dual problem.
Need dual, well-posed theories for both settings.

Controllability:
−∂tv +

(
∆ + σ

d2

)
v = Y · ∇v + W v ,

v |t=0 = v0 ∈ H−1(Ω),

Dσv = f ∈ L2((0,T )× Γ).
Holds for − 3

4 < σ < 1
4 .

“New” for all Y , W .

Observability:
∂tu +

(
∆ + σ

d2

)
u = X · ∇u + V u,

u|t=T = uT ∈ H1
0 (Ω),

Dσu = 0.
Holds for − 3

4 < σ < 1
4 .

“New” for X, V 6= 0.

HUM ⇒ controllability follows from observability-side estimates:
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Proof of Null Control The Hilbert Uniqueness Method

Observability

Crucial estimates. For any solution u of
∂tu +

(
∆ + σ

d2

)
u = X · ∇u + V u,

u|t=T = uT ∈ H1
0 (Ω),

Dσu = 0,
then:

Neumann trace: Nσu is well-defined in L2((0, T) × Γ).

Hidden regularity (via trace, energy/smoothing estimates):
‖Nσu‖L2((0,T)×Γ) . ‖uT‖H1(Ω), − 3

4 < σ < 1
4 .

Observability inequality (via Carleman and energy estimates):
‖u|t=0‖H1(Ω) . ‖Nσu‖L2((0,T)×Γ), − 3

4 < σ < 0.

Main objective. Prove the lemma!
Focus on global Carleman estimate (key step and contribution).
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Proof of Null Control The Hilbert Uniqueness Method

The HUM Machinery

Rough sketch. Define functional:

Iσ : H1
0 (Ω) → R, Iσ(uT ) :=

1
2

∫
(0,T)×Γ

|Nσu|2 −
∫
Ω

u(0)v0.
Lemma, upper bound ⇒ Iσ is continuous.
Lemma, observability ⇒ Iσ is coercive (in certain norm).

Thus, Iσ has minimiser ũT :
Null control given by Nσũ.

Arick Shao (QMUL) Control of Parabolic Equations 14 / 26



Proof of Null Control The Hilbert Uniqueness Method

The HUM Machinery

Rough sketch. Define functional:

Iσ : H1
0 (Ω) → R, Iσ(uT ) :=

1
2

∫
(0,T)×Γ

|Nσu|2 −
∫
Ω

u(0)v0.
Lemma, upper bound ⇒ Iσ is continuous.
Lemma, observability ⇒ Iσ is coercive (in certain norm).

Thus, Iσ has minimiser ũT :
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Proof of Null Control Carleman Estimate

Carleman Overview

Goal. Weighted spacetime estimate (roughly):

C ′λ

∫
(0,T)×Γ

(Nσu)2 +

∫
(0,T)×Ω

e−2λF
(
∂tu + ∆u + σ

d2 u
)2

≥ Cλ

∫
(0,T)×Ω

e−2λF
(
|∇u|2 + 1

d2 u2
)

.

F = F(t, x): specially chosen weight.
λ � 1: large free parameter.

Allows to absorb X · ∇u + V u terms.

Very rough derivation. Integrate by parts:∫
(0,T)×Ω

e−λF (∂t + ∆)(eλF w)Sw , w := e−λF u.

Sw := ∂tw + λ∇F · ∇w + . . . : multiplier.
Good choice of F , large λ ⇒ positive bulk term.
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Proof of Null Control Carleman Estimate

A Boundary-Adapted Weight

(Biccari-Zuazua, 2016) Carleman weight roughly of form (near Γ)
FI(t, x) :≈ 1

t(T−t)
[
C − d2(x) − d s(x)es d(x)], s � 1.

Does not capture Nσu at boundary.
Carleman estimate bounds L2-norm of u, but not full H1-norm.

Idea. Need special power of d in F to capture Nσu:
F0(t, x) := 1

t(T−t)
[ 1

1+2κ d1+2κ(x) + β
]
, κ := 1−

√
1−4σ
2 , β > 0.

Integrations by parts ⇒ L2-norm of Nσu at boundary.

Lemma. Boundary only sees Nσu—assuming uT ∈ H1
0 (Ω):

d−1+κu|Γ = 1
1−2κ Nσu,

∫
(0,T)×Γ

e−2λF ∂t(Dσu)Nσu = 0.
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(Biccari-Zuazua, 2016) Carleman weight roughly of form (near Γ)
FI(t, x) :≈ 1

t(T−t)
[
C − d2(x) − d s(x)es d(x)], s � 1.

Does not capture Nσu at boundary.
Carleman estimate bounds L2-norm of u, but not full H1-norm.

Idea. Need special power of d in F to capture Nσu:
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Proof of Null Control Carleman Estimate

The Global Weight

Problem. d fails to be differentiable away from Γ .
F0 not viable away from Γ .

Proposition. There exists “boundary-defining function” 0 < y ∈ C2(Ω) such that:
Near-boundary (d < δ0): y = d, and −∇2y ≥ 0.

Intermediate (δ0 ≤ d ≤ 2δ0): |∇y | ≥ c, and −∇2y ≥ −ε ′.

Far region (d > 2δ0): −∇2y ≥ ε, and y has unique critical point x∗.

Idea. Replace d by y in Carleman weight

F (t, x) := 1
t(T−t)

[
1

1+2κ y(x)1+2κ + β
]
.

Also work with smoother operator ∂t + ∆ + σy−2.
y = dΓ near Γ ⇒ estimate still captures Nσu on (0, T) × Γ .

Γ convex ⇒ y “almost-convex” ⇒ controls Ḣ1-norm on all of (0, T) × Ω.

L2-terms contain many singular weights, but most leading terms positive.
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Proof of Null Control Carleman Estimate

Double Carleman

Problem. Estimate does not control L2-norm of u near critical point x∗!

C ′
λ

∫
(0,T)×Γ

(Nσu)2
+

∫
(0,T)×Ω

e−2λF
(
∂tu + ∆u + σ

y2 u
)2

≥ Cλ

∫
(0,T)×Ω

e−2λF
. . . |∇u|2 − C∗λ

2
∫
(0,T)×Bδ(x∗)

e−2λF
. . . u2

+ Cλ
3
∫
(0,T)×[Ω\Bδ(x∗)]

e−2λF
. . . u2.

L2-part positive only away from x∗ (contains |∇y |2-weight).

Idea. Construct two boundary-defining functions y1 and y2, with x∗,1 6= x∗,2.
Sum Carleman estimates obtained from y1 and y2.

Balance β1 and β2, take λ large enough:
Near x∗,1: positive L2-part from y2-bound absorbs negative L2-part from y1-bound.
Near x∗,2: positive L2-part from y1-bound absorbs negative L2-part from y2-bound.
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Proof of Null Control Carleman Estimate

The Double Carleman Estimate

Theorem. Let Fj be the Carleman weight from yj . Then,

C ′λ

∫
(0,T)×Γ

(Nσu)2 +

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
∂tu + ∆u + σ

y2
j
u
)2

≥ Cλ

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
|∇u|2 + λ2

y2
j

u2
)

.

Combine with energy estimates ⇒ observability ⇒ null controllability.

Questions. Weaker results than for classical parabolic equations:
Can convexity assumption for Γ be removed?
Must control be on all of Γ?
What about 0 < σ < 1

4 ?

Recently. Can address all three points for approximate control.

Arick Shao (QMUL) Control of Parabolic Equations 19 / 26



Proof of Null Control Carleman Estimate

The Double Carleman Estimate

Theorem. Let Fj be the Carleman weight from yj . Then,

C ′λ

∫
(0,T)×Γ

(Nσu)2 +

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
∂tu + ∆u + σ

y2
j
u
)2

≥ Cλ

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
|∇u|2 + λ2

y2
j

u2
)

.

Combine with energy estimates ⇒ observability ⇒ null controllability.

Questions. Weaker results than for classical parabolic equations:
Can convexity assumption for Γ be removed?
Must control be on all of Γ?
What about 0 < σ < 1

4 ?

Recently. Can address all three points for approximate control.

Arick Shao (QMUL) Control of Parabolic Equations 19 / 26



Proof of Null Control Carleman Estimate

The Double Carleman Estimate

Theorem. Let Fj be the Carleman weight from yj . Then,

C ′λ

∫
(0,T)×Γ

(Nσu)2 +

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
∂tu + ∆u + σ

y2
j
u
)2

≥ Cλ

2∑
j=1

∫
(0,T)×Ω

e−2λFj
(
|∇u|2 + λ2

y2
j

u2
)

.

Combine with energy estimates ⇒ observability ⇒ null controllability.

Questions. Weaker results than for classical parabolic equations:
Can convexity assumption for Γ be removed?
Must control be on all of Γ?
What about 0 < σ < 1

4 ?

Recently. Can address all three points for approximate control.

Arick Shao (QMUL) Control of Parabolic Equations 19 / 26



Proof of Approximate Control

Section 3

Proof of Approximate Control
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Proof of Approximate Control The Hilbert Uniqueness Method

The HUM Revisited

Proof via same duality/HUM setup as before:
Main difference. Need unique continuation property from ω, rather than observability.

Crucial properties. For any solution u of
∂tu +

(
∆ + σ

d2

)
u = X · ∇u + V u,

u|t=T = uT ∈ H1
0 (Ω),

Dσu = 0,
then Nσu is well-defined in L2((0,T )× Γ), and

‖Nσu‖L2((0,T)×Γ) . ‖uT‖H1(Ω).

If Nσu|(0,T)×ω) = 0, then u ≡ 0.

Main objective. Prove the lemma!
Hidden regularity: same proof as before.
Unique continuation property: new local Carleman estimate (near (0, T) × ω).
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Proof of Approximate Control The Hilbert Uniqueness Method

The HUM Machinery

Rough sketch. Can assume v0 ≡ 0. Define functional:

Iσ,ε : H1
0 (Ω) → R, Iσ(uT ) := ε‖uT‖H1(Ω) +

1
2

∫
(0,T)×Γ

|Nσu|2 +
∫
Ω

uT vT .
Lemma, upper bound ⇒ Iσ,ε is continuous.
Lemma, unique continuation ⇒ Iσ,ε is coercive.

Thus, Iσ has minimiser ũT :
Approximate control given by Nσũ|(0,T)×ω.
Extra term in Iσ,ε ⇒ need less for coercivity, minimizer only approximate control.
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Proof of Approximate Control Carleman Estimate

Localising the Carleman estimate

Question. How to localise estimate to near ω?

Idea. Consider local Carleman weight near ω:
F (t, x) := 1

t(T−t)
[ 1

1+2κ d(x)1+2κ + |w(x)|2
]
.

w := (w1, . . . , wn−1) local coordinates on Γ near x0 ∈ ω, with w(x0) = 0.
w constant along integral curves of ∇y .
By construction, ∇y · ∇w = 0 (needed to avoid terms that are too singular).

Observation. F ≥ 0, and F = 0 only at (0,T )× {x0}.
Leads to unique continuation from near (0, T) × {x0} (rather than from (0, T) × Γ ).
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Proof of Approximate Control Carleman Estimate

Avoiding Convexity

Can remove convexity assumption on Γ :
Observation. d−1 very large near Γ ⇒ positive bulk terms.
Stronger than negative terms from concavity of d.
w � d−1 cannot interfere with positivity.

Remark. In some ways, localisation makes estimate easier:
Do not need to replace d by y .
Only need one Carleman estimate.
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Proof of Approximate Control Carleman Estimate

Extending to σ > 0

Question. How to extend result to σ > 0?
Carleman estimate fails for σ > 0!

Idea. Since Dσu = Nσu = 0 on (0,T )×ω:
u vanishes to additional powers of d.
Extra vanishing ⇒ can apply Carleman estimate with σ < 0.

Theorem. The following estimate holds:

C ′λ

∫
(0,T)×[Γ∩Bε(x0)]

[
1

dq1 (Nσu)2 + 1
dq0 (Dσu)2] + ∫

(0,T)×Bε(x0)
e−2λF

(
∂tu + ∆u + σ

d2 u
)2

≥ Cλ

2∑
j=1

∫
(0,T)×Bε(x0)

e−2λF
(
|∇u|2 + λ2

d2 u2
)

.

Leads to unique continuation property.
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The End

Thank You

Thank you for your attention!

A. Enciso, A. Shao, B. Vergara, Controllability of parabolic equations with inverse square infinite potential wells
via global Carleman estimates, arXiv: 2112.04457

A. Shao, B. Vergara, Approximate boundary controllability for parabolic equations with inverse square infinite
potential wells, arXiv: 2311.01628
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