A PDE-based model-free
algorithm for Continuous-time
Reinforcement Learning

Yuhua Zhu - University of California, Los Angeles

Aug 27, Benasque
X Partial differential equations, optimal design and numerics

The PDE problem we are interested In

ds, = b(s,) dt + o(s,) dB,

The PDE problem we are interested In

ds, =| b(s,) dt +|o(s,)|dB,
N\ e

The drift and diffusion terms are unknown

The PDE problem we are interested In

ds, =| b(s,) dt +|o(s,)|dB,
N\ e

The drift and diffusion terms are unknown

: J J . Jd W :
Trajectory data {s’, s N S At}j=1 1s available

The PDE problem we are interested In

ds, =| b(s,) dt +|o(s,)|dB,
N\ e

The drift and diffusion terms are unknown

: J J . Jd W :
Trajectory data {s’, s N S At}j=1 1s available

The goal 1s NOT to estimate the dynamics or predict the trajectory

The PDE problem we are interested In

ds, =| b(s,) dt +|o(s,)|dB,
N\ e

The drift and diffusion terms are unknown

: J J . Jd W :
Trajectory data {s’, s N S At}j=1 1s available

The goal 1s NOT to estimate the dynamics or predict the trajectory

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

The PDE problem we are interested In

ds,

b(s,) dt +

N\

o(s,)\dB,

/

The drift and diffusion terms are unknown

Trajectory data {s/, sit, .

s Vi avai
, 80 At}j=1 is available

Continuous-time

The goal 1s NOT to estimate the dynamics or predict the trajectory

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

The PDE problem we are interested In

ds,

b(s,) dt +

N\

o(s,)\dB,

/

The drift and diffusion terms are unknown

Trajectory data {s/, sit, .

o J . : 4
, 80 At}j=1 is available

Continuous-time

Discrete-time

The goal 1s NOT to estimate the dynamics or predict the trajectory

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

Question: Why not solving an inverse problem?

Step 1. Solve an inverse problem

J o .0) 7 n
15p» Sar T O madj=1 b(s,), o(s;)

Step 2. Solve the PDE with estimated dynamics

b(s,), 6(s,) - Z5 V() =0

Question: Why not solving an inverse problem?

Step 1. Solve an inverse problem

J o VW 3 A
15p» Sar T O madj=1 b(s,), o(s;)

Step 2. Solve the PDE with estimated dynamics

b(s,), 6(s,) - Z.V(s)=0

e Cumulative error (Step 1 + Step 2)

e Computationally expensive to solve the inverse problem
. (< J
- Z L (p b Siar A1), S(i+1)At)
L]

- Especially when At is large or number of data are large

3

Mismatch between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

T Y - WD &
{50,800 80 by > |[(b,6) = (b,0)|| > min ||(b,6)— (b, 0)]
(b,0)EF

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

T Y - WD &
{50,800 80 by > |[(b,6) = (b,0)|| > min ||(b,6)— (b, 0)]
(b,0)EF

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

i (b,6)eF)

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

i (b,6)eF)

e Hard to find a suitable functional space & : & cannot be too small

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

" (b.6)EF)

e Hard to find a suitable functional space & : & cannot be too small or too large

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

" (b.6)EF)

e Hard to find a suitable functional space & : & cannot be too small or too large

1, O
e.g.§,=As,, 5, €R* A= [(), 1]

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

i (b,6)eF)

e Hard to find a suitable functional space & : & cannot be too small or too large

1, O
e.g.§,=As,, 5, €R* A= [(), 1]

The best one can do SGi+1)At = PASiag)

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

i (b,6)eF)

e Hard to find a suitable functional space & : & cannot be too small or too large

1, O
e.g.§,=As,, 5, €R* A= [(), 1]

A

The best one can do s, 1ya; = Pad(Sia) - pa(s) = es

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

" (b,6)eF)

e Hard to find a suitable functional space & : & cannot be too small or too large

1, O
e.g.§,=As,, 5, €R* A= [(), 1]

The best one can do S, 1)a; = PadSiaz) - pafs) = eBs + b(s)is linear

between continuous-time dynamics and discrete-time data

Step 1. Solve an inverse problem

(s 50 80 VL - 16, 8) = (b,0)|| = min_||(h,6) — (b, 0|

" (b,6)eF)

e Hard to find a suitable functional space & : & cannot be too small or too large

1, 0O
e.g.§,=As,, 5, €R* A= []

0, 1
The best one can do S, 1)a; = PadSiaz) - pafs) = eBs + b(s)is linear
2r
1, A
A =
2m
-]

Mismatch between continuous-time dynamics and discrete-time data

Estimated trajectory is driven by A: true trajectory is driven by A, Ar = 0.1

: . 1
The continuous trajectory for s The continuous trajectory for s
T T T 5 | | ! |

—estimated traj — estimated traj T

4_—true traj /\ /\ _ —true traj frﬂ
-

—T

0 0.2 0.4 0.6 0.8 1

Mismatch between continuous-time dynamics and discrete-time data

The difference between the true V(s) and estimated V(s)

I A, At = 0.1
9 °
| sz
10 - s
AMANNNE sRe

-\'\-\—‘Q:\\‘_A;‘\ \ . “““‘““ ‘ ‘
R
A NNINRRRRRRAN SR,

Model-based PDE formulation

Cons

e Hard to find a suitable functional space &#
for the dynamics

e Cumulative error (Step 1 + Step 1)

e Computationally expensive to solve the
inverse problem

¢ An efficient method 1s problem dependent.

Model-based PDE formulation

Cons

Pros

e Hard to find a suitable functional space # e Keep the PDE form to estimate V(s)

for the dynamics A
- Model error small, then V(s) is close to

e Cumulative error (Step 1 + Step 1) V(s)

e Computationally expensive to solve the - Well-developed PDE analysis tool

inverse problem
- Keep the continuous-time structure

¢ An efficient method 1s problem dependent.

Model-based PDE formulation

Cons

Pros

e Hard to find a suitable functional space # e Keep the PDE form to estimate V(s)

for the dynamics A
- Model error small, then V(s) is close to

e Cumulative error (Step 1 + Step 1) V(s)

e Computationally expensive to solve the - Well-developed PDE analysis tool

inverse problem
- Keep the continuous-time structure

¢ An efficient method 1s problem dependent.

6

Problem Setting

Continuous-time RL

Discrete-time RL (Markov Decision Process)

,..r.r-.’f‘
Sofart
» ol
4 - ————
',P V. S o
P #63 Alphiag € Sedol
-~ = U g™

ALPHAGDO

Continuous-time RL

Discrete-time RL (Markov Decision Process)

ALPHAGDO

Continuous-time RL (Stochastic optimal control with unknown dynamics)

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Autonomous vehicle Robotics

Continuous-time RL

Discrete-time RL (Markov Decision Process)

P
-\

B -
) e =
Py 6 Alphal eSedol
by L=z
> |
— e w

e

ALPHAGDO

Continuous-time RL (Stochastic optimal control with unknown dynamics)

o R . . .
Autonomous vehicle obotics Financial Market

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Autonomous vehicle Robotics

Financial Market Dynamic Treatment

Question: Why bother studying continuous-time RL?

Discrete-time data * why not treat it as a discrete-time RL?

Question: Why bother studying continuous-time RL?

Discrete-time data * why not treat it as a discrete-time RL?

e Model-free
- One can skip the inverse problem and
directly compute V(s)

e Many well-developed RL algorithms

Question: Why bother studying continuous-time RL?

Discrete-time data * why not treat it as a discrete-time RL?

Pros

e Model-free
- One can skip the inverse problem and
directly compute V(s)

e Many well-developed RL algorithms

Reinforcement Learning

Policy Evaluation

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ~ n(a| s)

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ~ n(a| s) *

V”(s): Measures how good the policy 7 is

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ~ n(a| s) *

V”(s): Measures how good the policy 7 is

Policy Improvement

Update the policy using gradient ascent

10

Reinforcement Learning

Policy Evaluation

Given a policy a ~ n(a| s) *

V”(s): Measures how good the policy 7 is

Policy Improvement

Update the policy using gradient ascent * M. =m+nV_Vh

10

Reinforcement Learning

Policy Evaluation

Given a policy a ~ n(a| s)

>

V”(s): Measures how good the policy 7 is

Policy Improvement

Update the policy using gradient ascent *

10

ﬂk+1 — ﬂ'k + ﬂVﬂVﬂk

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

So » dy ~ n(a|sp)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

50 » dp ~ 7Z'(CZ|SO) — 51,

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

So» ag ~ wlalsy) — s, ap~alals)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

S() ’ ao ~ ﬂ(CZlSO) - Sl’ 611 ~ JZ'(CZ‘Sl) SRR

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

11

Policy Evaluation

Given a policy a ~ z(a| s) *

V*(s): Measures how good the policy 7 is

Discrete-time RL (a.k.a. Markov Decision Process)

00
Sy » Ay ~ nwlalsy) — sy, a ~ n(als;) ST Vi(s) =L Z y'r(s;) | sog=s
1=0
r(ss)
r(s;) .
°0 ol S?3 E ”(.54)
Tl sy r(sp) r(s,) 5

11

Policy Evaluation

V*(s): Measures how good the policy 7 is

Given a policy a ~ z(a| s) *

Continuous-time RL

S()) a() ~ ﬂ'(a‘SO) - Sl’ Cll ~ 7Z'(CZ|S1) SRR

12

Policy Evaluation

Given a policy a ~ z(a| s) V”(s): Measures how good the policy 7 is
Continuous-time RL
S()) a() ~ 71'(61 ‘ S()) - Sl’ Cll ~ 72'(61 | Sl) SRR
A A I”(S3)
r(s;) .
S3 . :
0oy I B
: . 85 r(sp) : r(spy)
' : 4 P T
0 At 2Ar 3Ar 4Af B 0 Ar 2Ar 3Ar 4Ar K

12

Policy Evaluation

Given a policy a ~ z(a| s) V”(s): Measures how good the policy 7 is
Continuous-time RL
S()) a() ~ 71'(61 ‘ S()) - Sl’ Cll ~ 72'(61 | Sl) SRR
r(s;)
r(s;) .
S3 . .
0oy I B
: . 85 r(sp) : r(spy)
' : % P ¢
0 Ar 2Ar 3Ar 4As | 0 Ar 2Ar 3Ar 4Ar ¢

The underlying dynamics: ds, = b”"(s,) dt + ¢”(s,) dB,

Policy Evaluation

Given a policy a ~ z(a| s) V”(s): Measures how good the policy 7 is
Continuous-time RL
S()) a() ~ 71'(61 ‘ S()) - Sl’ Cll ~ 7Z'(CZ|S1) SRR
r(s;)
r(s;) .
S5 .
: : : r(.S4)
r(sp) T (57)
4 ° ; . f f o .
0 At 2Ar 3Ar 4Ai 't 0 At 2At 3Ar 4Ar ¢

The underlying dynamics: ds, = b”"(s,) dt + ¢”(s,) dB,

Policy Evaluation

Given a policy a ~ z(a| s) V”(s): Measures how good the policy 7 is
Continuous-time RL
So > ady ~ w(alsy) — 8, a;~ xlals) S
(s1) r (?’3)

0 Ar 2Ar 3Ar 4A? t 0 Ar 2Ar 3Ar 4Af {

The underlying dynamics: ds, = b”"(s,) dt + ¢”(s,) dB,

Policy Evaluation

Given a policy a ~ z(a| s) V”(s): Measures how good the policy 7 is

Continuous-time RL

So > ady ~ w(alsy) — 8, a;~ xlals) SRR Vi(s) =L [[e Plr(s)dt| sy = S]

0 Ar 2Ar 3Ar 4A? t 0 Ar 2Ar 3Ar 4Af {

The underlying dynamics: ds, = b”"(s,) dt + ¢”(s,) dB,

Policy Evaluation — — A PDE view

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

13

Policy Evaluation — — A PDE view

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

13

Policy Evaluation — — A PDE view

m Coal:

Estimate a function V(s) related to the underlying dynamics

gb,GV(S) — O

v

BVH(s) = 17(s) + b(s) - VV(s) + %2%) V2VRs), T = o7

13

Policy Evaluation — — A PDE view

m Coal:

Estimate a function V(s) related to the underlying dynamics

Z b,aV(S) =0
BVH(s) = 17(s) Hb7(s)|- VVA(s) + %m) V2VRs), S = oo
N %

The underlying dynamics 1s unknown

13

T

Policy Evaluation — — A PDE view

m Coal:

Estimate a function V(s) related to the underlying dynamics

Z b,aV(S) =0
BVH(s) = 17(s) Hb7(s)|- VVA(s) + %m) V2VRs), S = oo
N %

The underlying dynamics 1s unknown

Only discrete-time information 1s given

13

T

Model-free RL method — — Why not the optimal, either

14

V(s)

Model-free RL method

e Plr(s)dt| s,

=S] — V(S)zl

15

1=0

e PRly(s, JAL| s, ~: S]

Model-free RL method

— S] —— V(s)=E li e PRly(s, JAL| s, ~: S]

e Plr(s)dt| s,

1=0

V(s) satisfies the discretized Bellman Equation (BE):

V(s) = #(s)+y

- [V(SHAI) |5, = S] y = e A, 7(s) = r(s)At.

15

Model-free RL method

)

- J e Plr(s)dt| s,

) =

|

V(s) satisfies the discretized Bellman Equation (BE):

o0

D e Prir(sy)AL s,
=0

V(S) = 7(s) + yE [V(SH-At) | St = S] Y = e_ﬁAt, r(s) = r(s)At.

Two important features about BE

15

:

Model-free RL method

= o0
V(S) u J e_ﬂtl"(St)dt | SO mi — V(S) = |- lz e_ﬁAtir(SAti)At ‘ SO ~: S]
0 i=0
V(s) satisfies the discretized Bellman Equation (BE):
e

V(S) = 7(s) + yE [V(SH-At) | St = S] Y = e_ﬂAt, r(s) = r(s)At.

Two important features about BE

e The dynamics information is hidden in the expectation
» The BE is the same for different dynamics (b(s), o(s))

15

Model-free RL method

= o0
V(S) u J e_ﬂtl"(St)dt | SO mi — V(S) = |- lz e_ﬁAtir(SAti)At ‘ SO ~: S]
0 i=0
V(s) satisfies the discretized Bellman Equation (BE):
e

V(S) = 7(s) + yE [V(SH-At) | St = S] Y = e_’ﬁAt, r(s) = r(s)At.
?

Seear ~ Ppo(S’s Atls)

Two important features about BE

e The dynamics information is hidden in the expectation
» The BE is the same for different dynamics (b(s), o(s))

15

V(s) =L J e Plr(s,)dt| s

—_—

Model-free RL method

= S —) V(S) — | [Z e_'BAtir(SAti)Al‘ ‘ SO
=0

V(s) satisfies the discretized Bellman Equation (BE):

V(S) = 7(s) + yE [V(SH-AI) | S = S] Y = e_’ﬁAt, r(s) = r(s)At.
?

Seear ~ Ppo(S’s Atls)

Two important features about BE

e The dynamics information is hidden in the expectation
» The BE is the same for different dynamics (b(s), o(s))

e Only depends on the current state and next state

» Easy to plug in data directly

15

:

Least Square Temporal Difference

16

Least Square Temporal Difference

V(s) = yE[V(sy,) | sog = 8| — F(s)

16

Least Square Temporal Difference

V(s) = yE[V(sy,) | sog = 8| — F(s)

l \79(5) = O(s)'0

16

Least Square Temporal Difference

V(s) = yE[V(sy,) | sog = 8| — F(s)

l \79(5) = O(s)'0

(Vo(s) = YE[V(s5) | 59 = 51 = 7(s), D(s))

16

Least Square Temporal Difference

V(s) = yE[V(sy,) | sog = 8| — F(s)

l \79(5) = O(s)'0

(Vo(s) = YE[Vi(sa) | 5o = 51 = 7(5), D(s))

J
PIPILICRICEMIETICY

16

Model-free RL method

Model-based Model-free

e Hard to find an appropriate functional space
F(0) for the dynamics

e Cumulative error (Step 1 + Step 1)

e Computationally expensive to solve the
inverse problem

¢ The method 1s problem dependent.

17

Model-free RL method

Model-based Model-free

e Hard to find an appropriate functional space

F(0) for the dynamics
e No need to solve

o Cumulative error (Step 1 + Step 1) — / for the dynamics
e Computationally expensive to solve the /
inverse problem

¢ The method 1s problem dependent.

17

Model-free RL method

Model-based Model-free

e Hard to find an appropriate functional space

F(0) for the dynamics
e No need to solve

e Cumulative error (Step 1 + Step 1) v/ for the dynamics
e Computationally expensive to solve the /
inverse problem | |
e The algorithm 1s the

same for different

¢ The method 1s problem dependent. — ,
dynamics

17

Model-free RL method

Model-based Model-free

e Hard to find an appropriate functional space

F(0) for the dynamics
e No need to solve

e Cumulative error (Step 1 + Step 1) v/ for the dynamics
e Computationally expensive to solve the /
inverse problem | |
e The algorithm 1s the

same for different

¢ The method 1s problem dependent. — ,
dynamics

Is it the optimal tool for continuous-time RL?

17

One example

18

One example

Underlying dynamics: Est = Js,, True value function: V(s) = cos’(ks)

18

One example

Underlying dynamics: Est = Js,, True value function: V(s) = cos’(ks)

Approximate the value function linearly by finite bases:

N
1 1 1
—, (nsy), In(7s))
{ —= \/;cos ns, 7z sin(71s, }nl

18

One example

Underlying dynamics: Est = Js,, True value function: V(s) = cos’(ks)

Approximate the value function linearly by finite bases:

- Select N large
N| <+— |enough s.t. V(s) is
1 1 1 _ . .
, cos(ns,), sin(ns,) in the finite space
V 2T \/7_1' T -

18

One example

Underlying dynamics: Est = Js,, True value function: V(s) = cos’(ks)

Approximate the value function linearly by ﬁnl_te bases: Select N large
N| <+— |enough s.t. V(s) is
1 1 1 _ . .
{ : cos(ns,), sin(ns,) } in the finite space
V27 /7 7 3

n=

- 4 : A A AR Y
Discrete-time trajectory data: {sg, 8, » ***» 875 Jimg

18

The performance of the RL algorithm

d
Underlying dynamics: Est = 0.05s,

19

The performance of the RL algorithm

d
Underlying dynamics: Est = 0.05s,

At =5,8=0.1(y = 0.6), V(s) = cos3(s)

1.5 w w |]
—Exact value function
— Least square TD

0.5"

-0.5

of data: 40

19

The performance of the RL algorithm

d
Underlying dynamics: Est = 0.05s,

At=5,8=0.1(y = 0.6), V(s) = cos’(s) At=0.5,8=0.1(y = 0.95), V(s) = cos>(10s)

2 I T T
1.5 w ‘ |] — Exact value function

—Exact value function — Leastsquare TD
— Least square TD
LA |
1+
O L
0.5~
1
O L
D
-0.5 -
3 -
-1
- -4 | l |
4 vy 2 0 2 4
of data: 40 # of data: 400

19

The performance of the RL algorithm

d
Underlying dynamics: Est = 0.05s,

At =5,=0.1(y = 0.6), V(s) = cos’(s) At =0.5,5=0.1(y = 0.95), V(s) = cos’(10s) At = 0.1, f = 10(y = 0.37), V(s) = cos’(s)

2 I I I 2
1.5 | | | il — Exact value function _
—Exact value function — Leastsquare TD — Exact value function
— Least square TD il | 1.5+ — Leastsquare TD | -
1 1 !
1+
O L
0.5 0.5
1 0
O 05
D
1 -
-0.5
i 1.5
-1) 1 1 1 _2 | | |
-4 44, 5 0 5 4 4 2 0 2 4
of data: 40 # of data: 400 # of data: 40

19

Model-free RL algorithms

Cons

e [ti1s not a good approximation for the e Model-free
continuous-time value function under - One can skip the inverse problem and
certain circumstances directly compute V(s)

e Many well-developed RL algorithms

20

Model-free RL algorithms

Cons

e [ti1s not a good approximation for the e Model-free
continuous-time value function under - One can skip the inverse problem and
certain circumstances directly compute V(s)

e Many well-developed RL algorithms

Given the same information, can we do better than BE?

20

A PDE-based Model-free algorithm — — Why it is better

21

Given the same trajectory data: Our algorithm v.s. LSTD

d
Underlying dynamics: Est = 0.05s,

22

Given the same trajectory data: Our algorithm v.s. LSTD

At =5,6=0.1, V(s) = cos’(s)

— Exact value function
— Qur algorithm
—BE with data

of data: 40

d
Underlying dynamics: Est = 0.05s,

At =0.5,8=0.1, V(s) = cos>(10s)

2 1
— Exact value function
— Qur algorithm
10 ‘ —BE with data
O L
-
D
3 -
-4 l ! x
-4 -2 0 2 4

of data: 400

22

1.5

0.5"

-0.5 ¢

-1.5 |

At = 0.1, =10, V(s) = cos’(s)

— Exact value function
—Qur algorithm
—BE with data

-2 0 2

of data: 40

Given the same trajectory data: Our algorithm v.s. LSTD

At =5,6=0.1, V(s) = cos’(s)

— Exact value function
— Qur algorithm
—BE with data

of data: 40

d
Underlying dynamics: Est = 0.05s,

At =0.5,8=0.1, V(s) = cos>(10s)

2 1
—Exact value function
— Qur algorithm
10 ‘ —BE with data
O L
-
D
3 -
-4 l ! x
-4 -2 0 2 4

of data: 400

22

1.5

0.5"

-0.5 ¢

-1.5 |

At = 0.1, =10, V(s) = cos’(s)

— Exact value function
—Qur algorithm
—BE with data

-2 0 2

of data: 40

Algorithm
Our algorithm

Vo(s) = @(s)'0 <—— AG =D V,(s) = ()70 <—— A0=h
~ J m—1 | | J m—1
b — Z r(S{At)(I)(S{At) b — Z JAR) lAt)(I)(SlAt
j=1 =0 j=1 =0
N 1 J m—1 ,\ T m—1 | 1 | |
A= ~ Z} 2 <(I)(SJ) — eﬁAr(I)(S{lH) A)> O(s!)T A= Z (ﬂd)(sl!m) N <sgl+1) =S) Vcb(sl!m)) O(s!)T
j=1 i= j=1 1i=0

23

Why & When?

Why & When?

e [s it possible that it 1s the problem of LSTD? Is it possible that other RL algorithms work?

25

Why LSTD is bad?

Most of the
RL algorithms

20

Why LSTD is bad?

Most of the U3¢ trajectory data

RL algorithms tO approximaté

20

Why LSTD is bad?

Most of the U3¢ trajectory data

RL algorithms to aPProXirnate> BE: V(s) = H(s) + 7k [V(St+At) |5, = S]

20

Why LSTD is bad?

Most of the US€ trajectory data

RL algorithms to aPProximate> BE: V(s) = H(s) + 7k [V(St+At) |5, = S]

20

Why LSTD is bad?

Most of the U3¢ trajectory data

RL algorithms to aPProximate> BE: V(s) = H(s) + 7k [V(SHAI) |5, = S]

The solution to BE a NO'T good approximation for continuous-time RL

At =5,6=0.1, V(s) = cos’(s) At =0.5,6=0.1, V(s) = cos’(10s) At = 0.1, 5 =10, V(s) = cos’(s)
oot valte fari " | ‘ :géact value function ° :EE;éact value function |
—BE 4 10 R ” *] 2 1.5"
0.5 | 1
Or . 0.5+
0.5 J J J L ‘y | % 0

N LU

-'2.5 : : 1 -2 1 ! |
-4 -2 0 2 4 -4 -2 0 2

20

1.5

0.5

-0.5 -

-1.5

Most of the U3¢ trajectory data

Why LSTD is bad?

>

RL algorithms to approximate

BE: V(s) = #(s) + 7

= [V(SHAt) |5, = S]

The solution to BE a NO'T good approximation for continuous-time RL

At =5,6=0.1, V(s) = cos’(s)

1.5

[
— Exact value function

-2.5

-2 0 2 4

—BE 1)
0.5
0
~0.5
B} -1
1.5

-2 -

At =0.5,8=0.1, V(s) = cos>(10s)

|

—BE

[
— Exact value function

|

|

-4

1.5

0.5

-0.5 -

-1.5+

At = 0.1, = 10, V(s) = cos’(s)

— Exact value function
—BE

e The RL algorithm is converging to BE solution, not the true value function

20

Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

27

Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

¢ When 1s BE not a good approximation to the continuous-time RL?

28

When is Bellman equation bad?

True value function: fSV(s) = r(s) + u(s) - VV(s) + %Z(S) - V2V(s)

BE: V(s) = r(s)At + e PA! [V(sa,) | g = 5]

Theorem for RL approximation [Z-24]

Assume that [[7(s)|[1w, |Z, 57($)]| .« are bounded, then

] Al e + 12, <7l
IV(s) = V()| o S —— A= 7 AL+ o(A)

p

|
3,4,2 = u(s)-V+ EZ(S) . V2, where X = o0’

29

Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

30

How does reward look like in RL applications?

31

How does reward look like in RL applications?

achieve goal

31

How does reward look like in RL applications?
-100

+1

achieve goal I

fail

A -
e

31

How does reward look like in RL applications?
-100

+1

achieve goal I
fail

31

Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

¢ What 1s the underlying equation behind our algorithm?

32

What is the underlying equation behind our algorithm

33

What is the underlying equation behind our algorithm

-pa(s) represents the state at
t+ At given state at 7 1S §

A 1 R
pV(s) = r(s) + E(PN(S) —5) - VV(s)

33

What is the underlying equation behind our algorithm

-pa(s) represents the state at
t+ At given state at 7 1S §

Bellman Equation i
V(s) = r(s)At + e P2 V(py(s))

A 1 R
pV(s) = r(s) + E(pAt(S) —5) - VV(s)

33

What is the underlying equation behind our algorithm

Deterministic -p, (s) represents the state at . .
Dynamics 7+ At given state at ¢ is s pVis) = r(s) + E(pm(s) =) VV(s)

Bellman Equation i
V(s) = r(s)At + e P2 V(py(s))

e Stmilarity: two important features of BE

» Same formulation for different
dynamics (b(s), 6(s))

» Only depends on the current state and
next state

e Difference: No smoothness infomation in

continuous-time
33

What is the underlying equation behind our algorithm

Deterministic -p, (s) represents the state at . .
Dynamics = ¢+ Ar given state at £ is s pVs) = 1(s) +—=(Pads) = 8) - VVS)
Bellman Equation i Hamilton-Jacobi Equation
V(s) = r(s)At + e P2V(p, (5)) BV(s) = r(s) + b(s) - VV(s)

e Stmilarity: two important features of BE

» Same formulation for different
dynamics (b(s), 6(s))

» Only depends on the current state and
next state

e Difference: No smoothness infomation in

continuous-time
33

What is the underlying equation behind our algorithm

Deterministic -p, (s) represents the state at N -
Dynamics ¢+ At given state at £ is s pVs) = 1(s) +—=(Pads) = 8) - VVS)
Bellman Equation i Hamilton-Jacobi Equation
V(s) = r(s)At + e P2 V(p,y L)) BV(s) = r(s) + b(s) - VV(s)
e Similarity: two important features of BE e Similarity: PDE, containing
continuous-time information
» Same formulation for different
dynamics (b(s), o(s)) e Difference: Only continuous
» Only depends on the current state and information, has to estimate the
next state dynamics first

e Difference: No smoothness infomation in

continuous-time
33

Model-based PDE formulation Model-free RL algorithms

Pros Pros

e Keep the PDE form to estimate V(s) * Model-free

- Well-developed PDE analysis tool - One can skip the inverse problem and
directly compute V(s)

- Keep the continuous-time structure - Many practical RL algorithms

Combine the advantages of PDE formulation with model-free algorithm

34

PhiBE In general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At |O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : Vz‘A/l(S)

35

PhiBE Iin general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At ‘O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : VZXA/I(S)

35

PhiBE Iin general dynamics

PhiBE: BV,(s) = r(s) 4

1 A
“[sp, — S| Sg =] VVi(s)4

At

2At

[(sp, — $)(Sp, — s)! | So = S] : VZXA/I(S)

The form of the PDE

35

PhiBE In general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At |O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : Vz‘A/l(s)

The form of the PDE

f

derived from the true
continuous-time physical

environment

35

PhiBE In general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At |O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : Vz‘A/l(S)

f

The form of the PDE + Contains discrete-time information

derived from the true
continuous-time physical

environment

35

PhiBE In general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At |O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : Vz‘A/l(S)

f

derived from the true

The form of the PDE + Contains discrete-time information

continuous-time physical

environment

35

T

similar to the Bellman equation

PhiBE Iin general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At ‘O] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : VZXA/I(S)

f

derived from the true

The form of the PDE + Contains discrete-time information

continuous-time physical

environment

T

similar to the Bellman equation

35

Higher-order PhiBE In deterministic dynamics

I-th order PhIBE (deterministic dynamics)

i-th order PhiBE: BV.(s) = r(s) + fi(s) - VV(s)

o 1 | &
with fi,(s) = A Z aj(l)(SjAt = 50) [So = 5
j=1
Here the coefficients (a(gi), bee, al.(i))T = (A~ 1p®,
where A,gj) =j*,b" = (0,1,0,---,0)"

36

Higher-order PhiBE In deterministic dynamics

I-th order PhIBE (deterministic dynamics)

i-th order PhiBE: BV.(s) = r(s) + fi(s) - VV(s)

o 1 | &
with fi,(s) = A Z aj(l)(SjAt = 50) [So = 5
j=1
Here the coefficients (a(gi), bee, al.(i))T = (A~ 1p®,
where A,gj) =j*,b" = (0,1,0,---,0)"

Different from

classical numerical
schemes

36

Higher-order PhiBE In deterministic dynamics

I-th order PhIBE (deterministic dynamics)

i-th order PhiBE: BV.(s) = r(s) + fi(s) - VV(s)

o 1 | &
with fi,(s) = A Z aj(l)(SjAt = 50) [So = 5
j=1
Here the coefficients (a(gi), bee, al.(i))T = (A~ 1p®,
where A,gj) =j*,b" = (0,1,0,---,0)"

Different from known dynamics > discrete trajectory

classical numerical
schemes =hil=15 known discrete trajectory > dynamics

36

Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

¢ What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

37

Why & When?

Is 1t possible that 1t 1s the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

When 1s BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

When does our algorithm approximate work well?

38

Theoretical Guarantees in general deterministic dynamics —5 = p(s)

I-th order PhiBE [Z-24]

Assume that ||V 7($)||; «, ||Z L//t(S)H 7~ are bounded.
In addition, ||V u(s)||; = <

: IV rll N Lhplly
[V(s) = Vi)l o S ——o L A
(B = IV (o)l

where ffﬂ = u(s) -V,

gi B di+1

39

Theoretical Guarantees in general deterministic dynamics

I-th order PhIBE [Z-24]

Assume that ||V 7($)||; «, ||Z L/A(S)H 7~ are bounded.
In addition, ||V u(s)||; = <

: IV rll N Lhplly
[V(s) = Vi)l o S ——o L A
(B = IV (o)l

where Sfﬂ = u(s) -V,

gi B di+1

39

I-th order PhiBE [Z-24]

1V(s) = V()| o <

Assume that ||V 7(5)||; «, ||Z L//t(S)H 7~ are bounded.
In addition, ||V u(s)||; = <

VAl Ll e
L ul* 1L A

(B = IV)|l L»)?

1L pl

where SZﬂ = u(s) -V,

di+1

Ari+1 !

39

Theoretical Guarantees in general deterministic dynamics —=8, = H(s)

dt

The dynamics changes slowly,
the error is smaller

The advantage of error depending more
on the dynamics instead of reward:

e More flexibility of designing the
reward function

e Only need less data points to achieve
the same error

Theoretical Guarantees in stochastic dynamics

Weighted L? norm

Define
1Al = sz(S)p(S)ds,

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))l =0

40

Theoretical Guarantees in stochastic dynamics

Weighted L% norm

Define
1Al = sz(S)p(S)ds,

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

Bellman Equation [Z-24]

Assume that [lu)ll,. IO, V4], for
k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)

40

Theoretical Guarantees in stochastic dynamics

Weighted L° norm

Define

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

A1, = Jf *(s)p(s)ds,

Bellman Equation [Z-24]

Assume that [[u(®)ll,. 1ZS),» [IV¥r(), for

k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)

PhiBE [Z-24]

Assume that A . (2(s)) > A .. > 0,

min

I VEU) || e0r || VEE(S)||; 0> for k = 0,-++,2i are bounded,

max > 110, Z(5)ll < 2y, then
’ l

. G, |
V) = Vol < A

40

Theoretical Guarantees in stochastic dynamics

Weighted L? norm

Define

1, = sz(s)p(s)ds,

where p(s) is the stationary distribution of the SDE that satisfies

1
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

Bellman Equation [Z-24]

Assume that [[u(®)ll,. 1ZS),» [IV¥r(), for

k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)

Assume that A

PhiBE [Z-24]

(2(s)) > Ay > 0,

min

I VEU) || e0r || VEE(S)||; 0> for k = 0,-++,2i are bounded,

max > 110, % (5)lls < 2, then
’ l

. C, .
V) = Vol < A

40

Theoretical Guarantees for the linear approximation

. 1
pV(s) = r(s) + A7

s, — 5|5 = 5] VV(s) +

41

2At

[(sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

2At
‘A/G(s) = 0" D(s)

41

Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

DAt
VG(s) = T d(s)

[(Sa, — $)(Sp, — s)! | 5o = 5] : Vz‘A/G(S), D)

(,B‘A/G(s) = r(s) + L C[SA,— 8|Sy = 5] - V‘A/vG(S)+ :
Ar A / QAL

41

Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

DAt
VG(s) = T d(s)

(,B‘A/G(s) = r(s) + i “[sp, — 8|59 = 5] - V‘A/G(S)+ : (S, — S)(Sp, — s)! | Sog = 5] : Vz‘A/G(S), D)

At 2At

Model-free algorithm 1s using data to approximate %

PhiBE under linear approximation [Z-24]

Under mild assumption on b(s), 2.($), r(s), and boundedness of
| Viog pllp« or [| @], A" < Cp,, then

. C | .
1VO(s) = V(s)l, < —=Ar 4+ C% min ||Vi(s) = V()| 1
TP V=0T ’

41

Theoretical Guarantees for the linear approximation

[(sp, — $)(Sp, — S)T\SO s] : VZV(S)

PO) = rs) + s, = sl 5= 51 V00 +

VG(s) =

(,B‘A/G(s) = r(s) + L [sh,— S| sy = 5] - V‘A/YG(S)+ :
Ar 8 T DAt

2At

0'd(s)

[(Sp, — $)(Sp, — s)! | Sog = 5] : Vz\A/G(S), D)

Model-free algorithm 1s using data to approximate %

PhiBE under linear approximation [Z-24]

IV1og pll e or [|®|| 0, A" < Cas then

V,=0Td

Under mild assumption on b(s), 2(s), r(s), and boundedness of

196(s) = Vis)ll, < ;—Aﬂ +CO min [[V(s) = Vo)l

C, . CY decreases
as the dynamics
changes slowly

Open problem:
sample complexity
of the algorithm

41

Conclusion

Is 1t possible that 1t 1s the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

When 1s BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

When does our algorithm approximate work well?
- When the dynamics change slowly

42

PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: Est = /s,

43

PhiBE In linear dynamics

Linear dynamics

_ At
s, = e’'s

>

When 4 > 0, the dynamics
change exponentially fast

Underlying dynamics: Est = /s,

43

PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: Est = /s,

PhiBE for linear dynamics [Z-24]

>

- 1
[V(s) = V(I S 7 (Bl o + 1 A1lls - V()|) At

A 1 |
[V(s) = VAS)]||;0 S 7 A s V|| AF

43

_ At
s, = e’

When 4 > 0, the dynamics
change exponentially fast

PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: ESZ = /s,

_ At
s, = e’

>

When 4 > 0, the dynamics
change exponentially fast

PhiBE for linear dynamics [Z-24]

- 1 e When |4l is smaller, the error
IV6) = Vllm S 5 (Bl + 141l - Vr9ll=) A NS
A 1 | | e When |A|Af < 1, higher
|1V(s) = V()| S ﬁ | A VHHSVrHAt’ order PhiBE is better

43

LQR

00
V(s) = | e Pks*dt, §,=2As,
0

% . A t =1, 18 =1 :‘ 1St-0rdel| PhiBE v.s. RL 3 10 - At =1, ﬂ =1 :‘2nd-0rdel‘| PhiBE v.s. RL
§D N
=
E
T | 5 °
@]
=
O
a4

k O °

Reward changes faster
<

-10 -10
03 02 01 0 01 02 03 02 01 0 01 02
A A
Dynamics changes faster Dynamics changes faster

44

PhiBE is better

BE i1s better

LQR

o0
— —pt 1,2 e
V(s) = | e Pks*dt, §,=2As,
0
% o ‘A t =1,‘ﬂ —1 : 1st-order PhiBE v.s. RL i 10 A t=0.1, 3 =1: 1st-order PhiBE v.s. RL
O 4
-
<
Q
§e S
)
=
O
%
k 0

Reward changes faster
<

-10
03 -02 0.1 0 0.1 0.2 -0.3 -0.2 -0.1 0 0.1 0.2
A A
Dynamics changes faster Dynamics changes faster

45

PhiBE is better

BE i1s better

LQR

00
V(s) = | e Pks*dt, §,=2As,
0

% . A t =1J 18 =1‘: 1st-order PhiBE v.s. RL 3 10 At =1, ﬂ =0.1|: 1st-order PhIiBE v.s. RL
(S
AN
20
= 4
E 5
§e S
% 2
a4

0 0

k 0
- -2
O
g | -5 -
S -4
g v
S
2 -10 -10 -6
= %8 02 01 0 01 02 003 -002 -001 0 001 002 003
P
~ 2 A
Dynamics changes faster Dynamics changes faster

46

PhiBE is better

BE i1s better

More numerical experiments

47

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,8=0.1,4 = 0.05,V(s) = cos>(s)

1.5 w w — Exact value function
—1st order PhiBE with data
—2nd order PhiBE with data
11 —BE with data
0.5+
O L
-0.5 ¢
1+
-1.5 |
-4 2 0 2 4

of data: 40

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,=0.1,1=0.05,V(s) = cos’(s) At=0.1,=10,1=2,V(s) = cos’(10s)

4
1.5 w w — Exact value function
— 1st order PhiBE with data ” ”
—2nd order PhiBE with data h
10 — BE with data ﬂ | |
2r " ﬂ
1
| { |
-2 -
_1 -
3 | |
1.5 x
-4 2 0 2 4 -4 | | |
4 -2 0 2 4
of data: 40 # of data: 400

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,=0.1,1=0.05,V(s) = cos’(s) Atr=0.1,=10,1=2,V(s) = cos’(10s) At =0.1,= 10,1 = 5,V(s) = cos>(s)

4 w | | 2 x x x
1.5 w w — Exact value function — Exact value function
— 1st order PhiBE with data 3l ” ” | — 1st order PhiBE with data
—2nd order PhiBE with data 1.5 —2nd order PhiBE with data '
1L — BE with data ﬂ ﬂ ﬂ —BE with data
| | | |
0.5-¢ 1 \ \ 0.5
| | V | s
-0.5
D¢ 1
_1 -
3 u “ 1.5
-1 5 4 é 6 é 4 4 1 | | '2 |
-4 -2 0 D 4 4 E 0 e
of data: 40 # of data: 400 # of data: 40

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,

49

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,

At =1, p=0.1, V(s) = cos’(s)

— Exact value function
—1st order PhiBE with data
—BE with data

of data: 4 X 10°
49

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,

— — — 3
At=1, f=0.1, V(s) = cos’(s) At =0.1, #=0.1, V(s) = cos’(5s)
‘ — Exact value function ° ‘ — Exact value function
— Istorder PhiBE with data —1st order PhiBE with data

— BE with data /\ (\ /\BE with data

I ——
D —
N U —
N

> >
=

—

AN

IR
]

-2 0 2 4 -4 -2 0 2

. 5
of data: 4 x 10° : # of data: 4 X 10
4

Decrease of error as # of data increases

d
Underlying dynamics: ESI = 0.05s,

109

pa—

——BE
——1st order PhiBE
—-2nd order PhiBE

Error
S

-2 . . L] . . L] . . L
10
10’ 102 10° 10*

of data

50

Decrease of error as # of data increases

d
Underlying dynamics: —s, = 0.03s,

dt

——BE
——1st order PhiBE
—-2nd order PhiBE

1072

of data

Error

Underlying dynamics: ds, = 0.03s, + dB,

10"

——1st order PhiBE |
——2nd order PhiBE ||

—BE

10
10* 10°

of data

Conclusion

Continuous-time
RL

Conclusion

h

Continuous-time
RI, < PDE

Conclusion

, Continuous-time
RL » RI. < PDE

h

Reference

Yuhua Zhu, 2024, PhiBE: A PDE-based Bellman Equation for Continuous-Time Policy Evaluation

52

Ongoing work

Generalize to continuous-time RL
Nonlinear approximation

Time dependent dynamics

Finite Horizon problems

Multi-agent RL
Mean-field game
Application 1n robotics, autonomous driving and finance

53

