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Question: Why not solving an inverse problem?

Step 1. Solve an inverse problem

J o VW 3 A
15p» Sar T O madj=1 b(s,), o(s;)

Step 2. Solve the PDE with estimated dynamics

b(s,), 6(s,) - Z.V(s)=0

e Cumulative error (Step 1 + Step 2)

e Computationally expensive to solve the inverse problem
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- Especially when At is large or number of data are large
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Mismatch between continuous-time dynamics and discrete-time data

Estimated trajectory is driven by A: true trajectory is driven by A, Ar = 0.1

: . 1
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Mismatch between continuous-time dynamics and discrete-time data

The difference between the true V(s) and estimated V(s)

I A, At = 0.1
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Model-based PDE formulation
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m Coal:

Estimate a function V(s) related to the underlying dynamics

Z b,aV(S) =0
BVH(s) = 17(s) Hb7(s)|- VVA(s) + %m) V2VRs), S = oo
N %

The underlying dynamics 1s unknown

Only discrete-time information 1s given
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Model-free RL method — — Why not the optimal, either
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V(s)

Model-free RL method

e Plr(s)dt| s,

=S] — V(S)zl
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Model-free RL method

— S] —— V(s)=E li e PRly(s, JAL| s, ~: S]

e Plr(s)dt| s,

1=0

V(s) satisfies the discretized Bellman Equation (BE):

V(s) = #(s)+y

- [V(SHAI) |5, = S] y = e A, 7(s) = r(s)At.
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V(s) =L J e Plr(s,)dt| s

—_—

Model-free RL method

= S —) V(S) — | [Z e_'BAtir(SAti)Al‘ ‘ SO
=0

V(s) satisfies the discretized Bellman Equation (BE):

V(S) = 7(s) + yE [V(SH-AI) | S = S] Y = e_’ﬁAt, r(s) = r(s)At.
?

Seear ~ Ppo(S’s Atls)

Two important features about BE

e The dynamics information is hidden in the expectation
» The BE is the same for different dynamics (b(s), o(s))

e Only depends on the current state and next state

» Easy to plug in data directly
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Model-free RL method

Model-based Model-free

e Hard to find an appropriate functional space
F(0) for the dynamics

e Cumulative error (Step 1 + Step 1)

e Computationally expensive to solve the
inverse problem

¢ The method 1s problem dependent.
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Model-based Model-free

e Hard to find an appropriate functional space

F(0) for the dynamics
e No need to solve

e Cumulative error (Step 1 + Step 1) v/ for the dynamics
e Computationally expensive to solve the /
inverse problem | |
e The algorithm 1s the

same for different

¢ The method 1s problem dependent. — ,
dynamics

Is it the optimal tool for continuous-time RL?
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Underlying dynamics: Est = Js,, True value function: V(s) = cos’(ks)

Approximate the value function linearly by ﬁnl_te bases: Select N large
N| <+— |enough s.t. V(s) is
1 1 1 _ . .
{ : cos(ns,), sin(ns,) } in the finite space
V27 /7 7 3

n=

- 4 : A A AR Y
Discrete-time trajectory data: {sg, 8, » ***» 875 Jimg
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The performance of the RL algorithm
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Model-free RL algorithms
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Model-free RL algorithms

Cons

e [ti1s not a good approximation for the e Model-free
continuous-time value function under - One can skip the inverse problem and
certain circumstances directly compute V(s)

e Many well-developed RL algorithms

Given the same information, can we do better than BE?
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A PDE-based Model-free algorithm — — Why it is better
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Given the same trajectory data: Our algorithm v.s. LSTD

d
Underlying dynamics: Est = 0.05s,
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# of data: 40




Algorithm
Our algorithm

Vo(s) = @(s)'0 <—— AG =D V,(s) = ()70 <—— A0=h
~ J m—1 | | J m—1
b — Z r(S{At)(I)(S{At) b — Z JAR) lAt)(I)(SlAt
j=1 =0 j=1 =0
N 1 J m—1 ,\ T m—1 | 1 | |
A= ~ Z} 2 <(I)(SJ ) — eﬁAr(I)(S{lH) A)> O(s! )T A= Z (ﬂd)(sl!m) N <sgl+1) =S ) Vcb(sl!m)) O(s! )T
j=1 i= j=1 1i=0
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e [s it possible that it 1s the problem of LSTD? Is it possible that other RL algorithms work?
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Why LSTD is bad?

Most of the U3¢ trajectory data

RL algorithms to aPProximate> BE: V(s) = H(s) + 7k [V(SHAI) |5, = S]

The solution to BE a NO'T good approximation for continuous-time RL

At =5,6=0.1, V(s) = cos’(s) At =0.5,6=0.1, V(s) = cos’(10s) At = 0.1, 5 =10, V(s) = cos’(s)
oot valte fari " | ‘ :géact value function ° :EE;éact value function |
—BE 4 10 R ” * ] 2 1.5"
0.5 | 1
Or . 0.5+
0.5 J J J L ‘y | % 0

N LU

-'2.5 : : 1 -2 1 ! |
-4 -2 0 2 4 -4 -2 0 2

20



1.5

0.5

-0.5 -

-1.5

Most of the U3¢ trajectory data

Why LSTD is bad?

>

RL algorithms to approximate

BE: V(s) = #(s) + 7

= [V(SHAt) |5, = S]

The solution to BE a NO'T good approximation for continuous-time RL

At =5,6=0.1, V(s) = cos’(s)

1.5

[
— Exact value function

-2.5

-2 0 2 4

—BE 1)
0.5
0
~0.5
B} -1
1.5

-2 -

At =0.5,8=0.1, V(s) = cos>(10s)

|

—BE

[
— Exact value function

|

|

-4

1.5

0.5

-0.5 -

-1.5+

At = 0.1, = 10, V(s) = cos’(s)

— Exact value function
—BE

e The RL algorithm is converging to BE solution, not the true value function
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Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.
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Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

¢ When 1s BE not a good approximation to the continuous-time RL?
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When is Bellman equation bad?

True value function: fSV(s) = r(s) + u(s) - VV(s) + %Z(S) - V2V(s)

BE: V(s) = r(s)At + e PA! [ V(sa,) | g = 5]

Theorem for RL approximation [Z-24]

Assume that [[7(s)|[ 1w, |Z, 57($)]| .« are bounded, then

] Al e + 12, <7l
IV(s) = V()| o S —— A= 7 AL+ o(A)

p

|
3,4,2 = u(s)-V+ EZ(S) . V2, where X = o0’
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Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

30



How does reward look like in RL applications?
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How does reward look like in RL applications?
-100

+1

achieve goal I
fail

31



Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

¢ What 1s the underlying equation behind our algorithm?

32
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-pa(s) represents the state at
t+ At given state at 7 1S §

A 1 R
pV(s) = r(s) + E(PN(S) —5) - VV(s)
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Bellman Equation i
V(s) = r(s)At + e P2 V(py(s))

A 1 R
pV(s) = r(s) + E(pAt(S) —5) - VV(s)
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What is the underlying equation behind our algorithm

Deterministic -p, (s) represents the state at . .
Dynamics 7+ At given state at ¢ is s pVis) = r(s) + E(pm(s) =) VV(s)

Bellman Equation i
V(s) = r(s)At + e P2 V(py(s))

e Stmilarity: two important features of BE

» Same formulation for different
dynamics (b(s), 6(s))

» Only depends on the current state and
next state

e Difference: No smoothness infomation in

continuous-time
33
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What is the underlying equation behind our algorithm

Deterministic -p, (s) represents the state at N -
Dynamics ¢+ At given state at £ is s pVs) = 1(s) +—=(Pads) = 8) - VVS)
Bellman Equation i Hamilton-Jacobi Equation
V(s) = r(s)At + e P2 V(p,y L)) BV(s) = r(s) + b(s) - VV(s)
e Similarity: two important features of BE e Similarity: PDE, containing
continuous-time information
» Same formulation for different
dynamics (b(s), o(s)) e Difference: Only continuous
» Only depends on the current state and information, has to estimate the
next state dynamics first

e Difference: No smoothness infomation in

continuous-time
33



Model-based PDE formulation Model-free RL algorithms

Pros Pros

e Keep the PDE form to estimate V(s) * Model-free

- Well-developed PDE analysis tool - One can skip the inverse problem and
directly compute V(s)

- Keep the continuous-time structure - Many practical RL algorithms

Combine the advantages of PDE formulation with model-free algorithm
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PhiBE In general dynamics

PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At |O ] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : Vz‘A/l(S)
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PhiBE: BV,(s) = r(s) 4

1 N
—lsa. —Ss|shn =5 VVi(s) 1
At [At ‘O ] 1()

2At

[(sp, — $)(Sp, — s)! | So = S] : VZXA/I(S)

f

derived from the true

The form of the PDE + Contains discrete-time information

continuous-time physical

environment

T

similar to the Bellman equation
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Higher-order PhiBE In deterministic dynamics

I-th order PhIBE (deterministic dynamics)

i-th order PhiBE:  BV.(s) = r(s) + fi(s) - VV(s)

o 1 | &
with fi,(s) = A Z aj(l)(SjAt = 50) [So = 5
j=1
Here the coefficients (a(gi), bee, al.(i))T = (A~ 1p®,
where A,gj) =j*,b" = (0,1,0,---,0)"
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Higher-order PhiBE In deterministic dynamics

I-th order PhIBE (deterministic dynamics)

i-th order PhiBE:  BV.(s) = r(s) + fi(s) - VV(s)

o 1 | &
with fi,(s) = A Z aj(l)(SjAt = 50) [So = 5
j=1
Here the coefficients (a(gi), bee, al.(i))T = (A~ 1p®,
where A,gj) =j*,b" = (0,1,0,---,0)"

Different from known dynamics > discrete trajectory

classical numerical
schemes =hil=15  known discrete trajectory > dynamics
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Why & When?

e [s it possible that it 1s the problem of LSTD? Is 1t possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

e When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

¢ What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

37



Why & When?

Is 1t possible that 1t 1s the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

When 1s BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

When does our algorithm approximate work well?
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Theoretical Guarantees in general deterministic dynamics —5 = p(s)

I-th order PhiBE [Z-24]

Assume that ||V 7($)||; «, ||Z L//t(S)H 7~ are bounded.
In addition, ||V u(s)||; = <

: IV rll N Lhplly
[V(s) = Vi)l o S ——o L A
(B = IV (o)l

where ffﬂ = u(s) -V,

gi B di+1
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I-th order PhiBE [Z-24]

1V(s) = V()| o <

Assume that ||V 7(5)||; «, ||Z L//t(S)H 7~ are bounded.
In addition, ||V u(s)||; = <

VAl Ll e
L ul* 1L A

(B = IV )|l L»)?

1L pl

where SZﬂ = u(s) -V,

di+1

Ari+1 !

39

Theoretical Guarantees in general deterministic dynamics —=8, = H(s)

dt

The dynamics changes slowly,
the error is smaller

The advantage of error depending more
on the dynamics instead of reward:

e More flexibility of designing the
reward function

e Only need less data points to achieve
the same error



Theoretical Guarantees in stochastic dynamics

Weighted L? norm

Define
1Al = sz(S)p(S)ds,

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))l =0
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1Al = sz(S)p(S)ds,

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

Bellman Equation [Z-24]

Assume that [lu)ll,. IO, V4], for
k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)
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Theoretical Guarantees in stochastic dynamics

Weighted L° norm

Define

where p(s) 1s the stationary distribution of the SDE that satisfies

]
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

A1, = Jf *(s)p(s)ds,

Bellman Equation [Z-24]

Assume that [[u(®)ll,.  1ZS),»  [IV¥r(), for

k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)

PhiBE [Z-24]

Assume that A . (2(s)) > A .. > 0,

min

I VEU) || e0r || VEE(S)||; 0> for k = 0,-++,2i are bounded,
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V) = Vol < A
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Theoretical Guarantees in stochastic dynamics

Weighted L? norm

Define

1, = sz(s)p(s)ds,

where p(s) is the stationary distribution of the SDE that satisfies

1
V- lﬂ(s)p(s) + EV - (Z(S)p(s))] =0

Bellman Equation [Z-24]

Assume that [[u(®)ll,.  1ZS),»  [IV¥r(), for

k = 0,1,2 are bounded, then

1V(s) = Vo)l < %Ar + (A1)

Assume that A

PhiBE [Z-24]

(2(s)) > Ay > 0,

min

I VEU) || e0r || VEE(S)||; 0> for k = 0,-++,2i are bounded,

max > 110, % (5)lls < 2, then
’ l

. C, .
V) = Vol < A
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Theoretical Guarantees for the linear approximation

. 1
pV(s) = r(s) + A7

s, — 5|5 = 5] VV(s) +

41

2At

[(sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)



Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

2At
‘A/G(s) = 0" D(s)
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Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

DAt
VG(s) = T d(s)

[(Sa, — $)(Sp, — s)! | 5o = 5] : Vz‘A/G(S), D)

(,B‘A/G(s) = r(s) + L C[SA,— 8|Sy = 5] - V‘A/vG(S)+ :
Ar A / QAL
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Theoretical Guarantees for the linear approximation

,B‘A/(s) = r(s) + Ait “[sp, — 8|85 = 5] - VV(S) + [(Sp, — $)(Sp, — s)! | So = §] : Vz‘A/(S)

DAt
VG(s) = T d(s)

(,B‘A/G(s) = r(s) + i “[sp, — 8|59 = 5] - V‘A/G(S)+ : (S, — S)(Sp, — s)! | Sog = 5] : Vz‘A/G(S), D)

At 2At

Model-free algorithm 1s using data to approximate %

PhiBE under linear approximation [Z-24]

Under mild assumption on b(s), 2.($), r(s), and boundedness of
| Viog pllp« or [| @], A" < Cp,, then

. C | .
1VO(s) = V(s)l, < —=Ar 4+ C% min ||Vi(s) = V()| 1
TP V=0T ’
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Theoretical Guarantees for the linear approximation

[(sp, — $)(Sp, — S)T\SO s] : VZV(S)

PO) = rs) + s, = sl 5= 51 V00 +

VG(s) =

(,B‘A/G(s) = r(s) + L [sh,— S| sy = 5] - V‘A/YG(S)+ :
Ar 8 T DAt

2At

0'd(s)

[(Sp, — $)(Sp, — s)! | Sog = 5] : Vz\A/G(S), D)

Model-free algorithm 1s using data to approximate %

PhiBE under linear approximation [Z-24]

IV1og pll e or [|®|| 0, A" < Cas then

V,=0Td

Under mild assumption on b(s), 2(s), r(s), and boundedness of

196(s) = Vis)ll, < ;—Aﬂ +CO min [[V(s) = Vo)l

C, . CY decreases
as the dynamics
changes slowly

Open problem:
sample complexity
of the algorithm
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Conclusion

Is 1t possible that 1t 1s the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

When 1s BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

What 1s the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

When does our algorithm approximate work well?
- When the dynamics change slowly

42



PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: Est = /s,
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PhiBE In linear dynamics

Linear dynamics

_ At
s, = e’'s

>

When 4 > 0, the dynamics
change exponentially fast

Underlying dynamics: Est = /s,
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PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: Est = /s,

PhiBE for linear dynamics [Z-24]

>

- 1
[V(s) = V(I S 7 (Bl o + 1 A1lls - V()| ) At

A 1 |
[V(s) = VAS)]||;0 S 7 A s V|| AF

43
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s, = e’

When 4 > 0, the dynamics
change exponentially fast



PhiBE In linear dynamics

Linear dynamics

Underlying dynamics: ESZ = /s,

_ At
s, = e’

>

When 4 > 0, the dynamics
change exponentially fast

PhiBE for linear dynamics [Z-24]

- 1 e When |4l is smaller, the error
IV6) = Vllm S 5 (Bl + 141l - Vr9ll=) A NS
A 1 | | e When |A|Af < 1, higher
|1V(s) = V()| S ﬁ | A VHHSVrHAt’ order PhiBE is better
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LQR

00
V(s) = | e Pks*dt, §,=2As,
0

% . A t =1, 18 =1 :‘ 1St-0rdel| PhiBE v.s. RL 3 10 - At =1, ﬂ =1 :‘2nd-0rdel‘| PhiBE v.s. RL
§D N
=
E
T | 5 °
@]
=
O
a4

k O °

Reward changes faster
<

-10 -10
03 02 01 0 01 02 03 02 01 0 01 02
A A
Dynamics changes faster Dynamics changes faster
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PhiBE is better

BE i1s better



LQR

o0
— —pt 1,2 e
V(s) = | e Pks*dt, §,=2As,
0
% o ‘A t =1,‘ﬂ —1 : 1st-order PhiBE v.s. RL i 10 A t=0.1, 3 =1: 1st-order PhiBE v.s. RL
O 4
-
<
Q
§e S
)
=
O
%
k 0

Reward changes faster
<

-10
03 -02 0.1 0 0.1 0.2 -0.3 -0.2 -0.1 0 0.1 0.2
A A
Dynamics changes faster Dynamics changes faster
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LQR

00
V(s) = | e Pks*dt, §,=2As,
0

% . A t =1J 18 =1‘: 1st-order PhiBE v.s. RL 3 10 At =1, ﬂ =0.1|: 1st-order PhIiBE v.s. RL
(S
AN
20
= 4
E 5
§e S
% 2
a4

0 0

k 0
- -2
O
g | -5 -
S -4
g v
S
2 -10 -10 -6
= %8 02 01 0 01 02 003 -002 -001 0 001 002 003
P
~ 2 A
Dynamics changes faster Dynamics changes faster
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More numerical experiments
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,8=0.1,4 = 0.05,V(s) = cos>(s)

1.5 w w — Exact value function
—1st order PhiBE with data
—2nd order PhiBE with data
11 —BE with data
0.5+
O L
-0.5 ¢
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-1.5 |
-4 2 0 2 4

# of data: 40
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,=0.1,1=0.05,V(s) = cos’(s) At=0.1,=10,1=2,V(s) = cos’(10s)

4
1.5 w w — Exact value function
— 1st order PhiBE with data ” ”
—2nd order PhiBE with data h
10 — BE with data ﬂ | |
2r " ﬂ
1
| { |
-2 -
_1 -
3 | |
1.5 x
-4 2 0 2 4 -4 | | |
4 -2 0 2 4
# of data: 40 # of data: 400
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: Est = A sin(s,)

At =5,=0.1,1=0.05,V(s) = cos’(s) Atr=0.1,=10,1=2,V(s) = cos’(10s) At =0.1,= 10,1 = 5,V(s) = cos>(s)

4 w | | 2 x x x
1.5 w w — Exact value function — Exact value function
— 1st order PhiBE with data 3l ” ” | — 1st order PhiBE with data
—2nd order PhiBE with data 1.5 —2nd order PhiBE with data '
1L — BE with data ﬂ ﬂ ﬂ —BE with data
| | | |
0.5-¢ 1 \ \ 0.5
| | V | s
-0.5
D¢ 1
_1 -
3 u “ 1.5
-1 5 4 é 6 é 4 4 1 | | '2 |
-4 -2 0 D 4 4 E 0 e
# of data: 40 # of data: 400 # of data: 40
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,

At =1, p=0.1, V(s) = cos’(s)

— Exact value function
—1st order PhiBE with data
—BE with data

# of data: 4 X 10°
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Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: ds, = 0.05s, + dB,

— — — 3
At=1, f=0.1, V(s) = cos’(s) At =0.1, #=0.1, V(s) = cos’(5s)
‘ — Exact value function ° ‘ — Exact value function
— Istorder PhiBE with data —1st order PhiBE with data

— BE with data /\ (\ /\BE with data

I ——
D —
N U —
N

> >
=

—

AN

IR
]

-2 0 2 4 -4 -2 0 2

. 5
# of data: 4 x 10° : # of data: 4 X 10
4



Decrease of error as # of data increases

d
Underlying dynamics: ESI = 0.05s,

109

pa—

——BE
——1st order PhiBE
—-2nd order PhiBE

Error
S

-2 . . L] . . L] . . L
10
10’ 102 10° 10*

# of data
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Decrease of error as # of data increases
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Ongoing work

Generalize to continuous-time RL
Nonlinear approximation

Time dependent dynamics

Finite Horizon problems

Multi-agent RL
Mean-field game
Application 1n robotics, autonomous driving and finance
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