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Step 2.  Solve the PDE with estimated dynamics

 b̂(st), ̂σ(st) ℒb̂, ̂σ
̂V(s) = 0

• Cumulative error (Step 1 + Step 2)

• Computationally expensive to solve the inverse problem

-  

- Especially when  is large or number of data are large

∑
i,j

L (pb̂, ̂σ(s
j
iΔt, Δt), sj

(i+1)Δt)
Δt

Question: Why not solving an inverse problem?
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e.g. ,   ,  ·st = Ast st ∈ ℝ2 A = [1, 0
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̂A =
1,

2π
Δt

−
2π
Δt
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• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the 
inverse problem

• An efficient method is problem dependent.       

ℱ • Keep the PDE form to estimate 

- Model error small, then  is close to 

- Well-developed PDE analysis tool

- Keep the continuous-time structure

V(s)

̂V(s)
V(s)

Pros

Model-based PDE formulation

Cons

Can we skip the inverse problem and directly estimate ?V(s)
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βVπ(s) = rπ(s) + bπ(s) ⋅ ∇Vπ(s) +
1
2

Σπ(s) : ∇2Vπ(s), Σ = σσ⊤

Only discrete-time information is given

Policy Evaluation —— A PDE view

The underlying dynamics is unknown

ℒb,σV(s) = 0

Estimate a function  related to the underlying dynamicsV(s)
Goal: 
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    Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .



15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [
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Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

st+Δt ∼ ρb,σ(s′￼, Δt |st)

• The dynamics information is hidden in the expectation
‣ The BE is the same for different dynamics (b(s), σ(s))

• Only depends on the current state and next state 
‣ Easy to plug in data directly

Two important features about BE 

 satisfies the discretized Bellman Equation (BE):Ṽ(s)
    Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .
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V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

Ṽθ(s) = Φ(s)⊤θ

⟨Ṽθ(s) = γ𝔼[Ṽθ(sΔt) |s0 = s] − r̃(s), Φ(s)⟩
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Least Square Temporal Difference

V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

Ṽθ(s) = Φ(s)⊤θ

LSTD in linear space

b̃ =
J

∑
j=1

m−1

∑
i=0

Φ(sj
iΔt)r(sj

iΔt)

Ã =
1

Δt

J

∑
j=1

m−1

∑
i=0

Φ(sj
iΔt)(Φ(sj

iΔt)
⊤ − γΦ(sj

(i+1)Δt)
⊤)

Ãθ = b̃

⟨Ṽθ(s) = γ𝔼[Ṽθ(sΔt) |s0 = s] − r̃(s), Φ(s)⟩
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Model-free RL method

• Hard to find an appropriate functional space 
  for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the 
inverse problem

• The method is problem dependent.       

ℱ(θ)

Model-based Model-free
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Model-free RL method

• Hard to find an appropriate functional space 
  for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the 
inverse problem

• The method is problem dependent.       

ℱ(θ)

Model-based Model-free

• No need to solve 
for the dynamics

• The algorithm is the 
same for different 
dynamics

Is it the optimal tool for continuous-time RL?
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One example
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Underlying dynamics:  ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

One example
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Approximate the value function linearly by finite bases:  
 

 { 1

2π
,

1

π
cos(ns1),

1

π
sin(ns1)}

N

n=1

Discrete-time trajectory data: {sj
0, sj

Δt, ⋯, sj
IΔt}

J
j=1

Underlying dynamics:  ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

Select N large 
enough s.t.  is 
in the finite space

V(s)

One example
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The performance of the RL algorithm

Underlying dynamics:  
d
dt

st = 0.05st
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The performance of the RL algorithm

Underlying dynamics:  
d
dt

st = 0.05st

, , Δt = 5 β = 0.1(γ = 0.6) V(s) = cos3(s)

# of data: 40
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-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD
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The performance of the RL algorithm

Underlying dynamics:  
d
dt

st = 0.05st

, , Δt = 0.5 β = 0.1(γ = 0.95) V(s) = cos3(10s)

# of data: 400
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Exact value function
BE with dataLeast square TD
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The performance of the RL algorithm

Underlying dynamics:  
d
dt

st = 0.05st

, , Δt = 0.5 β = 0.1(γ = 0.95) V(s) = cos3(10s)

# of data: 400
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2
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, , Δt = 5 β = 0.1(γ = 0.6) V(s) = cos3(s)

# of data: 40
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, , Δt = 0.1 β = 10(γ = 0.37) V(s) = cos3(s)

# of data: 40
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• Model-free
- One can skip the inverse problem and 

directly compute 

• Many well-developed RL algorithms

V(s)

ProsCons

Model-free RL algorithms

• It is not a good approximation for the 
continuous-time value function under 
certain circumstances
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• Model-free
- One can skip the inverse problem and 

directly compute 

• Many well-developed RL algorithms

V(s)

ProsCons

Model-free RL algorithms

Given the same information, can we do better than BE?

• It is not a good approximation for the 
continuous-time value function under 
certain circumstances
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Continuos-time RL —— Setting

   
Bellman equation ——Why it is not good

   
A PDE-based Model-free algorithm —— Why it is better

Schedule

   
Algorithm
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Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:  
d
dt

st = 0.05st
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Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:  
d
dt

st = 0.05st

, , Δt = 5 β = 0.1 V(s) = cos3(s)

# of data: 40
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, , Δt = 0.1 β = 10 V(s) = cos3(s)

# of data: 40

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
Our algorithm
BE with data

, , Δt = 0.5 β = 0.1 V(s) = cos3(10s)

# of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
Our algorithm
BE with data



22

Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:  
d
dt

st = 0.05st

, , Δt = 5 β = 0.1 V(s) = cos3(s)

# of data: 40
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, , Δt = 0.1 β = 10 V(s) = cos3(s)

# of data: 40
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Exact value function
Our algorithm
BE with data

, , Δt = 0.5 β = 0.1 V(s) = cos3(10s)

# of data: 400
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0

1

2
Exact value function
Our algorithm
BE with data

With the same computational cost!
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Algorithm

LSTD

   <——  Ṽθ(s) = Φ(s)⊤θ Ãθ = b̃

b̃ =
J

∑
j=1

m−1

∑
i=0

r(sj
iΔt)Φ(sj

iΔt)

Ã =
1

Δt

J

∑
j=1

m−1

∑
i=0

(Φ(sj
iΔt) − eβΔtΦ(sj

(i+1)Δt)) Φ(sj
iΔt)

⊤

   <——  ̂Vθ(s) = Φ(s)⊤θ ̂Aθ = b̂

b̂ =
J

∑
j=1

m−1

∑
i=0

r(sj
iΔt)Φ(sj

iΔt)

̂A =
J

∑
j=1

m−1

∑
i=0

(βΦ(sj
iΔt) −

1
Δt (sj

(i+1)Δt − sj
iΔt) ⋅ ∇Φ(sj

iΔt)) Φ(sj
iΔt)

⊤

Our algorithm
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Why & When?



Why & When?
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?
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Why LSTD is bad?
Most of the 
RL algorithms
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Why LSTD is bad?
Most of the 
RL algorithms

BE:     Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data 

to approximate
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Why LSTD is bad?

The solution to BE a NOT good approximation for continuous-time RL

Most of the 
RL algorithms

BE:     Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data 

to approximate



, , Δt = 5 β = 0.1 V(s) = cos3(s) , , Δt = 0.5 β = 0.1 V(s) = cos3(10s) , , Δt = 0.1 β = 10 V(s) = cos3(s)
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Why LSTD is bad?

The solution to BE a NOT good approximation for continuous-time RL

Most of the 
RL algorithms

BE:     Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data 

to approximate

• The RL algorithm is converging to BE solution, not the true value function
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?



Assume that  are bounded, then 

 

∥r(s)∥L∞, ∥ℒμ,Σr(s)∥L∞

∥V(s) − Ṽ(s)∥L∞ ≲
β∥r∥L∞ + ∥ℒμ,Σr∥L∞

β
Δt + o(Δt)

Theorem for RL approximation [Z-24]

ℒμ,Σ = μ(s) ⋅ ∇ +
1
2

Σ(s) : ∇2, where Σ = σσ⊤

29

When is Bellman equation bad?

True value function:   βV(s) = r(s) + μ(s) ⋅ ∇V(s) +
1
2

Σ(s) : ∇2V(s)

BE:   Ṽ(s) = r(s)Δt + e−βΔt𝔼[V(sΔt) |s0 = s]
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?
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How does reward look like in RL applications?
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+100

-1

achieve goal

+1

-100

fail

How does reward look like in RL applications?

The reward often varies a lot!
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?
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What is the underlying equation behind our algorithm

Deterministic 
Dynamics
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What is the underlying equation behind our algorithm

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

-  represents the state at 
 given state at  is 

pΔt(s)
t + Δt t s

Deterministic 
Dynamics



33

What is the underlying equation behind our algorithm

Bellman Equation
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Bellman Equation
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 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

-  represents the state at 
 given state at  is 

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in 
continuous-time

‣ Same formulation for different 
dynamics 
‣Only depends on the current state and 

next state 

(b(s), σ(s))

Deterministic 
Dynamics
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What is the underlying equation behind our algorithm

Hamilton-Jacobi Equation
 βV(s) = r(s) + b(s) ⋅ ∇V(s)

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

-  represents the state at 
 given state at  is 

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in 
continuous-time

‣ Same formulation for different 
dynamics 
‣Only depends on the current state and 

next state 

(b(s), σ(s))

Deterministic 
Dynamics
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What is the underlying equation behind our algorithm

• Similarity: PDE, containing 
continuous-time information

• Difference: Only continuous 
information, has to estimate the 
dynamics first

Hamilton-Jacobi Equation
 βV(s) = r(s) + b(s) ⋅ ∇V(s)

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

-  represents the state at 
 given state at  is 

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in 
continuous-time

‣ Same formulation for different 
dynamics 
‣Only depends on the current state and 

next state 

(b(s), σ(s))

Deterministic 
Dynamics
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• Model-free

- One can skip the inverse problem and 
directly compute 

- Many practical RL algorithms

V(s)

Pros

• Keep the PDE form to estimate 

- Well-developed PDE analysis tool

- Keep the continuous-time structure

V(s)

Pros

Model-based PDE formulation Model-free RL algorithms

Combine the advantages of PDE formulation with model-free algorithm
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PhiBE in general dynamics

PhiBE:    β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)
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PhiBE, short for physics-informed Bellman equation
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PhiBE, short for physics-informed Bellman equation

The form of the PDE + Contains discrete-time information

derived from the true 
continuous-time physical 

environment

similar to the Bellman equation

PhiBE in general dynamics
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PhiBE, short for physics-informed Bellman equation

The form of the PDE + Contains discrete-time information

derived from the true 
continuous-time physical 

environment

similar to the Bellman equation

PhiBE, incorporating discrete-time information into continuous-time PDE

PhiBE in general dynamics

PhiBE:    β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)
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Higher-order PhiBE in deterministic dynamics

i-th order PhiBE:    β ̂Vi(s) = r(s) + ̂μi(s) ⋅ ∇ ̂Vi(s)

with   ̂μi(s) =
1

Δt

i

∑
j=1

a(i)
j (sjΔt − s0) |s0 = s

Here the coefficients ,   
where , 

(a(i)
0 , ⋯, a(i)

i )⊤ = (A(i))−1b(i)

A(i)
kj = jk b(i)

k = (0,1,0,⋯,0)⊤

i-th order PhiBE (deterministic dynamics)
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Higher-order PhiBE in deterministic dynamics

Different from 
classical numerical 

schemes     

i-th order PhiBE:    β ̂Vi(s) = r(s) + ̂μi(s) ⋅ ∇ ̂Vi(s)

with   ̂μi(s) =
1

Δt

i

∑
j=1

a(i)
j (sjΔt − s0) |s0 = s

Here the coefficients ,   
where , 

(a(i)
0 , ⋯, a(i)

i )⊤ = (A(i))−1b(i)

A(i)
kj = jk b(i)

k = (0,1,0,⋯,0)⊤

i-th order PhiBE (deterministic dynamics)

  known dynamics  ——>     discrete trajectory

known discrete trajectory  ——>   dynamics  

Numerical schemes

PhiBE
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?



Why & When?

38

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?
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Theoretical Guarantees in general deterministic dynamics

Assume that ,  are bounded.
In addition, 

 

∥∇r(s)∥L∞ ∥ℒi
μμ(s)∥L∞

∥∇μ(s)∥L∞ < β

∥V(s) − ̂Vi(s)∥L∞ ≤
∥∇r∥L∞∥ℒi

μμ∥L∞

(β − ∥∇μ(s)∥L∞)2
Δti

i-th order PhiBE [Z-24]

where ,ℒμ = μ(s) ⋅ ∇

∥ℒi
μμ∥L∞ =

di+1

dti+1
st

L∞

d
dt

st = μ(st)
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di+1

dti+1
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d
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st = μ(st)

The dynamics changes slowly, 
the error is smaller

The advantage of error depending more 
on the dynamics instead of reward:

• More flexibility of designing the 
reward function

• Only need less data points to achieve 
the same error 
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Theoretical Guarantees in stochastic dynamics

Define 

, 

where  is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted  normL2
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∥V(s) − Ṽ(s)∥ρ ≤
C1

β
Δt + o(Δt)

Bellman Equation [Z-24]

Define 

, 

where  is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted  normL2



40

Theoretical Guarantees in stochastic dynamics

Assume that  for 
 are bounded, then 

 

∥μ(s)∥ρ, ∥Σ(s)∥ρ, ∥∇kr(s)∥ρ
k = 0,1,2

∥V(s) − Ṽ(s)∥ρ ≤
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When the dynamics changes slowly or the 
magnitude of the noise is large, 1st order 

PhiBE is better than BE. 
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Theoretical Guarantees for the linear approximation

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)
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Model-free algorithm is using data to approximate ̂VG

PhiBE under linear approximation [Z-24]

Under mild assumption on , and boundedness of 
 or , ,  then

 

b(s), Σ(s), r(s)
∥∇log ρ∥L∞ ∥Φ∥L∞ Δti ≤ CΔt

∥ ̂VG
i (s) − V(s)∥ρ ≤

C2

β2
Δti + CG min

̂VP=θ⊤Φ
∥Vi(s) − ̂VP(s)∥H1

ρ

 decreases 
as the dynamics 
changes slowly

C2 . CG



41

Theoretical Guarantees for the linear approximation

⟨β ̂VG(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂VG(s)+
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂VG(s), Φ⟩

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

̂VG(s) = θ⊤Φ(s)

Model-free algorithm is using data to approximate ̂VG

PhiBE under linear approximation [Z-24]

Under mild assumption on , and boundedness of 
 or , ,  then

 

b(s), Σ(s), r(s)
∥∇log ρ∥L∞ ∥Φ∥L∞ Δti ≤ CΔt

∥ ̂VG
i (s) − V(s)∥ρ ≤

C2

β2
Δti + CG min

̂VP=θ⊤Φ
∥Vi(s) − ̂VP(s)∥H1

ρ

 decreases 
as the dynamics 
changes slowly

C2 . CG

Open problem: 
sample complexity 
of the algorithm
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• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?
- When the dynamics change slowly
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Underlying dynamics:  
d
dt

st = λst

Linear dynamics

 ∥V(s) − ̂Vi(s)∥L∞ ≲
1
β2

|λ |i+1∥s∇r∥Δti

PhiBE for linear dynamics [Z-24]

 ∥V(s) − Ṽ(s)∥L∞ ≲
1
β (β∥r(s)∥L∞ + |λ |∥s ⋅ ∇r(s)∥L∞) Δt

• When | | is smaller, the error 
is smaller

• When , higher 
order PhiBE is better 

λ

|λ |Δt < 1

st = eλts0

When , the dynamics 
change exponentially fast

λ > 0
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Continuos-time RL —— Setting

   
Bellman equation ——Why it is not good

   
A PDE-based Bellman equation —— Why it is better

Schedule

   
More numerical experiments
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Decrease of error as # of data increases
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Future work
• Multi-agent RL
• Mean-field game
• Application in robotics, autonomous driving and finance
• …

Ongoing work
• Generalize to continuous-time RL
• Nonlinear approximation
• Time dependent dynamics
• Finite Horizon problems


