
A PDE-based model-free
algorithm for Continuous-time
Reinforcement Learning

Yuhua Zhu - University of California, Los Angeles

1

Aug 27, Benasque

X Partial differential equations, optimal design and numerics

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

 Trajectory data is available{sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

 Trajectory data is available{sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1

The goal is NOT to estimate the dynamics or predict the trajectory

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

 Trajectory data is available{sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1

The goal is NOT to estimate the dynamics or predict the trajectory

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

 Trajectory data is available{sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1

The goal is NOT to estimate the dynamics or predict the trajectory

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

Continuous-time

2

The PDE problem we are interested in

 dst = b(st) dt + σ(st) dBt

The drift and diffusion terms are unknown

 Trajectory data is available{sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1

The goal is NOT to estimate the dynamics or predict the trajectory

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

Discrete-time

Continuous-time

3

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 b̂(st), ̂σ(st)

Step 2. Solve the PDE with estimated dynamics

 b̂(st), ̂σ(st) ℒb̂, ̂σ
̂V(s) = 0

Question: Why not solving an inverse problem?

3

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 b̂(st), ̂σ(st)

Step 2. Solve the PDE with estimated dynamics

 b̂(st), ̂σ(st) ℒb̂, ̂σ
̂V(s) = 0

• Cumulative error (Step 1 + Step 2)

• Computationally expensive to solve the inverse problem

-

- Especially when is large or number of data are large

∑
i,j

L (pb̂, ̂σ(s
j
iΔt, Δt), sj

(i+1)Δt)
Δt

Question: Why not solving an inverse problem?

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

e.g. , , ·st = Ast st ∈ ℝ2 A = [1, 0
0, 1]

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

e.g. , , ·st = Ast st ∈ ℝ2 A = [1, 0
0, 1]

The best one can do s(i+1)Δt = pΔt(siΔt)

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

e.g. , , ·st = Ast st ∈ ℝ2 A = [1, 0
0, 1]

pΔt(s) = eΔtsThe best one can do s(i+1)Δt = pΔt(siΔt)

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

e.g. , , ·st = Ast st ∈ ℝ2 A = [1, 0
0, 1]

pΔt(s) = eΔts is linearb(s)The best one can do s(i+1)Δt = pΔt(siΔt)

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

4

Step 1. Solve an inverse problem

 {sj
0, sj

Δt, ⋯, sj
mΔt}

J
j=1 ∥(b̂, ̂σ) − (b, σ)∥ ≥ min

(b̂, ̂σ)∈ℱ
∥(b̂, ̂σ) − (b, σ)∥

• Hard to find a suitable functional space : cannot be too smallℱ ℱ or too large

e.g. , , ·st = Ast st ∈ ℝ2 A = [1, 0
0, 1]

pΔt(s) = eΔts

̂A =
1,

2π
Δt

−
2π
Δt

, 1

 is linearb(s)The best one can do s(i+1)Δt = pΔt(siΔt)

Mismatch

Mismatch between continuous-time dynamics and discrete-time data

5

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6
The continuous trajectory for s1

estimated traj
true traj

0 0.2 0.4 0.6 0.8 1
-5

0

5
The continuous trajectory for s2

estimated traj
true traj

Estimated trajectory is driven by ; true trajectory is driven by , ̂A A Δt = 0.1

t t

Mismatch between continuous-time dynamics and discrete-time data

5

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6
The continuous trajectory for s1

estimated traj
true traj

0 0.2 0.4 0.6 0.8 1
-5

0

5
The continuous trajectory for s2

estimated traj
true traj

Estimated trajectory is driven by ; true trajectory is driven by , ̂A A Δt = 0.1

t t

6

• Hard to find a suitable functional space
for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• An efficient method is problem dependent.

ℱ

Model-based PDE formulation

Cons

6

• Hard to find a suitable functional space
for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• An efficient method is problem dependent.

ℱ • Keep the PDE form to estimate

- Model error small, then is close to

- Well-developed PDE analysis tool

- Keep the continuous-time structure

V(s)

̂V(s)
V(s)

Pros

Model-based PDE formulation

Cons

6

• Hard to find a suitable functional space
for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• An efficient method is problem dependent.

ℱ • Keep the PDE form to estimate

- Model error small, then is close to

- Well-developed PDE analysis tool

- Keep the continuous-time structure

V(s)

̂V(s)
V(s)

Pros

Model-based PDE formulation

Cons

Can we skip the inverse problem and directly estimate ?V(s)

7

Problem Setting

Bellman equation ——Why it is not good

A PDE-based Bellman equation —— Why it is better

Schedule

Algorithm

8

Continuous-time RL

Discrete-time RL (Markov Decision Process)

8

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Continuous-time RL (Stochastic optimal control with unknown dynamics)

8

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Continuous-time RL (Stochastic optimal control with unknown dynamics)

Autonomous vehicle Robotics

8

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Continuous-time RL (Stochastic optimal control with unknown dynamics)

Autonomous vehicle Robotics Financial Market

8

Continuous-time RL

Discrete-time RL (Markov Decision Process)

Continuous-time RL (Stochastic optimal control with unknown dynamics)

Autonomous vehicle Robotics Financial Market Dynamic Treatment

9

Question: Why bother studying continuous-time RL?

Discrete-time data why not treat it as a discrete-time RL?

9

Question: Why bother studying continuous-time RL?

• Model-free
- One can skip the inverse problem and

directly compute

• Many well-developed RL algorithms

V(s)

Pros

Discrete-time data why not treat it as a discrete-time RL?

9

Question: Why bother studying continuous-time RL?

• Model-free
- One can skip the inverse problem and

directly compute

• Many well-developed RL algorithms

V(s)

ProsCons

Discrete-time data why not treat it as a discrete-time RL?

10

Reinforcement Learning

Policy Evaluation

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ∼ π(a |s)

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

Update the policy using gradient ascent

Policy Improvement

10

Reinforcement Learning

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

Update the policy using gradient ascent

Policy Improvement

πk+1 = πk + η∇πVπk

This talk

10

Reinforcement Learning

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

Update the policy using gradient ascent

Policy Improvement

πk+1 = πk + η∇πVπk

11

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0)

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

s0 s1
s2

s3

s4

i0 1 2 3 4

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

s0 s1
s2

s3

s4

i0 1 2 3 4

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

11

Policy Evaluation

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Discrete-time RL (a.k.a. Markov Decision Process)

Vπ(s) = 𝔼 [
∞

∑
i=0

γir(si) |s0 = s]

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

12

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4

12

Policy Evaluation

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4t0 Δt 2Δt 3Δt 4Δt t0 Δt 2Δt 3Δt 4Δt

12

Policy Evaluation

The underlying dynamics: dst = bπ(st) dt + σπ(st) dBt

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4t0 Δt 2Δt 3Δt 4Δt t0 Δt 2Δt 3Δt 4Δt

12

Policy Evaluation

The underlying dynamics: dst = bπ(st) dt + σπ(st) dBt

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4t0 Δt 2Δt 3Δt 4Δt t0 Δt 2Δt 3Δt 4Δt

12

Policy Evaluation

The underlying dynamics: dst = bπ(st) dt + σπ(st) dBt

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4t0 Δt 2Δt 3Δt 4Δt t0 Δt 2Δt 3Δt 4Δt

12

Policy Evaluation

Vπ(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s]

The underlying dynamics: dst = bπ(st) dt + σπ(st) dBt

Given a policy a ∼ π(a |s) : Measures how good the policy isVπ(s) π

 ,s0 a0 ∼ π(a |s0) ,s1 a1 ∼ π(a |s1)

Continuous-time RL

s0 s1
s2

s3

s4

i0 1 2 3 4

r(s0)

r(s1)

r(s2)

r(s3)

r(s4)

i0 1 2 3 4t0 Δt 2Δt 3Δt 4Δt t0 Δt 2Δt 3Δt 4Δt

13

Policy Evaluation —— A PDE view

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

13

Policy Evaluation —— A PDE view

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

13

βVπ(s) = rπ(s) + bπ(s) ⋅ ∇Vπ(s) +
1
2

Σπ(s) : ∇2Vπ(s), Σ = σσ⊤

Policy Evaluation —— A PDE view

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

13

βVπ(s) = rπ(s) + bπ(s) ⋅ ∇Vπ(s) +
1
2

Σπ(s) : ∇2Vπ(s), Σ = σσ⊤

Policy Evaluation —— A PDE view

The underlying dynamics is unknown

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

13

βVπ(s) = rπ(s) + bπ(s) ⋅ ∇Vπ(s) +
1
2

Σπ(s) : ∇2Vπ(s), Σ = σσ⊤

Only discrete-time information is given

Policy Evaluation —— A PDE view

The underlying dynamics is unknown

ℒb,σV(s) = 0

Estimate a function related to the underlying dynamicsV(s)
Goal:

14

Continuos-time RL —— Setting

Model-free RL method —— Why not the optimal, either

A PDE-based Bellman equation —— Why it is better

Schedule

Algorithm

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]
 satisfies the discretized Bellman Equation (BE):Ṽ(s)

 Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

Two important features about BE

 satisfies the discretized Bellman Equation (BE):Ṽ(s)
 Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

• The dynamics information is hidden in the expectation
‣ The BE is the same for different dynamics (b(s), σ(s))

Two important features about BE

 satisfies the discretized Bellman Equation (BE):Ṽ(s)
 Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

st+Δt ∼ ρb,σ(s′￼, Δt |st)

• The dynamics information is hidden in the expectation
‣ The BE is the same for different dynamics (b(s), σ(s))

Two important features about BE

 satisfies the discretized Bellman Equation (BE):Ṽ(s)
 Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .

15

Model-free RL method

V(s) = 𝔼 [∫
∞

0
e−βtr(st)dt |s0 = s] Ṽ(s) = 𝔼 [

∞

∑
i=0

e−βΔtir(sΔti)Δt |s0 = s]

st+Δt ∼ ρb,σ(s′￼, Δt |st)

• The dynamics information is hidden in the expectation
‣ The BE is the same for different dynamics (b(s), σ(s))

• Only depends on the current state and next state
‣ Easy to plug in data directly

Two important features about BE

 satisfies the discretized Bellman Equation (BE):Ṽ(s)
 Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s] γ = e−βΔt, r̃(s) = r(s)Δt .

16

Least Square Temporal Difference

16

Least Square Temporal Difference

V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

16

Least Square Temporal Difference

V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

Ṽθ(s) = Φ(s)⊤θ

16

Least Square Temporal Difference

V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

Ṽθ(s) = Φ(s)⊤θ

⟨Ṽθ(s) = γ𝔼[Ṽθ(sΔt) |s0 = s] − r̃(s), Φ(s)⟩

16

Least Square Temporal Difference

V(s) = γ𝔼[V(sΔt) |s0 = s] − r̃(s)

Ṽθ(s) = Φ(s)⊤θ

LSTD in linear space

b̃ =
J

∑
j=1

m−1

∑
i=0

Φ(sj
iΔt)r(sj

iΔt)

Ã =
1

Δt

J

∑
j=1

m−1

∑
i=0

Φ(sj
iΔt)(Φ(sj

iΔt)
⊤ − γΦ(sj

(i+1)Δt)
⊤)

Ãθ = b̃

⟨Ṽθ(s) = γ𝔼[Ṽθ(sΔt) |s0 = s] − r̃(s), Φ(s)⟩

17

Model-free RL method

• Hard to find an appropriate functional space
 for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• The method is problem dependent.

ℱ(θ)

Model-based Model-free

17

Model-free RL method

• Hard to find an appropriate functional space
 for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• The method is problem dependent.

ℱ(θ)

Model-based Model-free

• No need to solve
for the dynamics

17

Model-free RL method

• Hard to find an appropriate functional space
 for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• The method is problem dependent.

ℱ(θ)

Model-based Model-free

• No need to solve
for the dynamics

• The algorithm is the
same for different
dynamics

17

Model-free RL method

• Hard to find an appropriate functional space
 for the dynamics

• Cumulative error (Step 1 + Step 1)

• Computationally expensive to solve the
inverse problem

• The method is problem dependent.

ℱ(θ)

Model-based Model-free

• No need to solve
for the dynamics

• The algorithm is the
same for different
dynamics

Is it the optimal tool for continuous-time RL?

18

One example

18

Underlying dynamics: ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

One example

18

Approximate the value function linearly by finite bases:

 { 1

2π
,

1

π
cos(ns1),

1

π
sin(ns1)}

N

n=1

Underlying dynamics: ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

One example

18

Approximate the value function linearly by finite bases:

 { 1

2π
,

1

π
cos(ns1),

1

π
sin(ns1)}

N

n=1

Underlying dynamics: ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

Select N large
enough s.t. is
in the finite space

V(s)

One example

18

Approximate the value function linearly by finite bases:

 { 1

2π
,

1

π
cos(ns1),

1

π
sin(ns1)}

N

n=1

Discrete-time trajectory data: {sj
0, sj

Δt, ⋯, sj
IΔt}

J
j=1

Underlying dynamics: ,
d
dt

st = λst True value function: V(s) = cos3(ks)e.g.

Select N large
enough s.t. is
in the finite space

V(s)

One example

19

The performance of the RL algorithm

Underlying dynamics:
d
dt

st = 0.05st

19

The performance of the RL algorithm

Underlying dynamics:
d
dt

st = 0.05st

, , Δt = 5 β = 0.1(γ = 0.6) V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-1

-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD

19

The performance of the RL algorithm

Underlying dynamics:
d
dt

st = 0.05st

, , Δt = 0.5 β = 0.1(γ = 0.95) V(s) = cos3(10s)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
BE with dataLeast square TD

, , Δt = 5 β = 0.1(γ = 0.6) V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-1

-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD

19

The performance of the RL algorithm

Underlying dynamics:
d
dt

st = 0.05st

, , Δt = 0.5 β = 0.1(γ = 0.95) V(s) = cos3(10s)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
BE with dataLeast square TD

, , Δt = 5 β = 0.1(γ = 0.6) V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-1

-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD

, , Δt = 0.1 β = 10(γ = 0.37) V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
BE with dataLeast square TD

20

• Model-free
- One can skip the inverse problem and

directly compute

• Many well-developed RL algorithms

V(s)

ProsCons

Model-free RL algorithms

• It is not a good approximation for the
continuous-time value function under
certain circumstances

20

• Model-free
- One can skip the inverse problem and

directly compute

• Many well-developed RL algorithms

V(s)

ProsCons

Model-free RL algorithms

Given the same information, can we do better than BE?

• It is not a good approximation for the
continuous-time value function under
certain circumstances

21

Continuos-time RL —— Setting

Bellman equation ——Why it is not good

A PDE-based Model-free algorithm —— Why it is better

Schedule

Algorithm

22

Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:
d
dt

st = 0.05st

22

Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:
d
dt

st = 0.05st

, , Δt = 5 β = 0.1 V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5 Exact value function
Our algorithm
BE with data

, , Δt = 0.1 β = 10 V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
Our algorithm
BE with data

, , Δt = 0.5 β = 0.1 V(s) = cos3(10s)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
Our algorithm
BE with data

22

Given the same trajectory data: Our algorithm v.s. LSTD

Underlying dynamics:
d
dt

st = 0.05st

, , Δt = 5 β = 0.1 V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5 Exact value function
Our algorithm
BE with data

, , Δt = 0.1 β = 10 V(s) = cos3(s)

of data: 40

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
Our algorithm
BE with data

, , Δt = 0.5 β = 0.1 V(s) = cos3(10s)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
Our algorithm
BE with data

With the same computational cost!

23

Algorithm

LSTD

 <—— Ṽθ(s) = Φ(s)⊤θ Ãθ = b̃

b̃ =
J

∑
j=1

m−1

∑
i=0

r(sj
iΔt)Φ(sj

iΔt)

Ã =
1

Δt

J

∑
j=1

m−1

∑
i=0

(Φ(sj
iΔt) − eβΔtΦ(sj

(i+1)Δt)) Φ(sj
iΔt)

⊤

 <—— ̂Vθ(s) = Φ(s)⊤θ ̂Aθ = b̂

b̂ =
J

∑
j=1

m−1

∑
i=0

r(sj
iΔt)Φ(sj

iΔt)

̂A =
J

∑
j=1

m−1

∑
i=0

(βΦ(sj
iΔt) −

1
Δt (sj

(i+1)Δt − sj
iΔt) ⋅ ∇Φ(sj

iΔt)) Φ(sj
iΔt)

⊤

Our algorithm

24

Why & When?

Why & When?

25

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?

26

Why LSTD is bad?
Most of the
RL algorithms

26

Why LSTD is bad?
Most of the
RL algorithms

use trajectory data
to approximate

26

Why LSTD is bad?
Most of the
RL algorithms

BE: Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data

to approximate

26

Why LSTD is bad?

The solution to BE a NOT good approximation for continuous-time RL

Most of the
RL algorithms

BE: Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data

to approximate

, , Δt = 5 β = 0.1 V(s) = cos3(s) , , Δt = 0.5 β = 0.1 V(s) = cos3(10s) , , Δt = 0.1 β = 10 V(s) = cos3(s)

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
BE with dataLeast square TD

-4 -2 0 2 4
-1

-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
BE with dataLeast square TD

26

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
BE

-4 -2 0 2 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Exact value function
BE

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5
Exact value function
BE

Why LSTD is bad?

The solution to BE a NOT good approximation for continuous-time RL

Most of the
RL algorithms

BE: Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data

to approximate

, , Δt = 5 β = 0.1 V(s) = cos3(s) , , Δt = 0.5 β = 0.1 V(s) = cos3(10s) , , Δt = 0.1 β = 10 V(s) = cos3(s)

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2
Exact value function
BE with dataLeast square TD

-4 -2 0 2 4
-1

-0.5

0

0.5

1

1.5
Exact value function
BE with dataLeast square TD

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
BE with dataLeast square TD

26

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
BE

-4 -2 0 2 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Exact value function
BE

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5
Exact value function
BE

Why LSTD is bad?

The solution to BE a NOT good approximation for continuous-time RL

Most of the
RL algorithms

BE: Ṽ(s) = r̃(s) + γ𝔼 [Ṽ(st+Δt) |st = s]
use trajectory data

to approximate

• The RL algorithm is converging to BE solution, not the true value function

Why & When?

27

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?

Why & When?

28

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?

Assume that are bounded, then

∥r(s)∥L∞, ∥ℒμ,Σr(s)∥L∞

∥V(s) − Ṽ(s)∥L∞ ≲
β∥r∥L∞ + ∥ℒμ,Σr∥L∞

β
Δt + o(Δt)

Theorem for RL approximation [Z-24]

ℒμ,Σ = μ(s) ⋅ ∇ +
1
2

Σ(s) : ∇2, where Σ = σσ⊤

29

When is Bellman equation bad?

True value function: βV(s) = r(s) + μ(s) ⋅ ∇V(s) +
1
2

Σ(s) : ∇2V(s)

BE: Ṽ(s) = r(s)Δt + e−βΔt𝔼[V(sΔt) |s0 = s]

Why & When?

30

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?

31

How does reward look like in RL applications?

31

+100

-1

achieve goal

How does reward look like in RL applications?

31

+100

-1

achieve goal

+1

-100

fail

How does reward look like in RL applications?

31

+100

-1

achieve goal

+1

-100

fail

How does reward look like in RL applications?

The reward often varies a lot!

Why & When?

32

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?

• When does our algorithm approximate work well?

33

What is the underlying equation behind our algorithm

Deterministic
Dynamics

33

What is the underlying equation behind our algorithm

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

- represents the state at
 given state at is

pΔt(s)
t + Δt t s

Deterministic
Dynamics

33

What is the underlying equation behind our algorithm

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

- represents the state at
 given state at is

pΔt(s)
t + Δt t s

Deterministic
Dynamics

33

What is the underlying equation behind our algorithm

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

- represents the state at
 given state at is

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in
continuous-time

‣ Same formulation for different
dynamics
‣Only depends on the current state and

next state

(b(s), σ(s))

Deterministic
Dynamics

33

What is the underlying equation behind our algorithm

Hamilton-Jacobi Equation
 βV(s) = r(s) + b(s) ⋅ ∇V(s)

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

- represents the state at
 given state at is

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in
continuous-time

‣ Same formulation for different
dynamics
‣Only depends on the current state and

next state

(b(s), σ(s))

Deterministic
Dynamics

33

What is the underlying equation behind our algorithm

• Similarity: PDE, containing
continuous-time information

• Difference: Only continuous
information, has to estimate the
dynamics first

Hamilton-Jacobi Equation
 βV(s) = r(s) + b(s) ⋅ ∇V(s)

Bellman Equation
Ṽ(s) = r(s)Δt + e−βΔtṼ(pΔt(s))

 β ̂V(s) = r(s) +
1

Δt
(pΔt(s) − s) ⋅ ∇ ̂V(s)

- represents the state at
 given state at is

pΔt(s)
t + Δt t s

• Similarity: two important features of BE

• Difference: No smoothness infomation in
continuous-time

‣ Same formulation for different
dynamics
‣Only depends on the current state and

next state

(b(s), σ(s))

Deterministic
Dynamics

34

• Model-free

- One can skip the inverse problem and
directly compute

- Many practical RL algorithms

V(s)

Pros

• Keep the PDE form to estimate

- Well-developed PDE analysis tool

- Keep the continuous-time structure

V(s)

Pros

Model-based PDE formulation Model-free RL algorithms

Combine the advantages of PDE formulation with model-free algorithm

35

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

The form of the PDE

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

The form of the PDE

derived from the true
continuous-time physical

environment

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

The form of the PDE + Contains discrete-time information

derived from the true
continuous-time physical

environment

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

The form of the PDE + Contains discrete-time information

derived from the true
continuous-time physical

environment

similar to the Bellman equation

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

35

PhiBE, short for physics-informed Bellman equation

The form of the PDE + Contains discrete-time information

derived from the true
continuous-time physical

environment

similar to the Bellman equation

PhiBE, incorporating discrete-time information into continuous-time PDE

PhiBE in general dynamics

PhiBE: β ̂V1(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V1(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V1(s)

36

Higher-order PhiBE in deterministic dynamics

i-th order PhiBE: β ̂Vi(s) = r(s) + ̂μi(s) ⋅ ∇ ̂Vi(s)

with ̂μi(s) =
1

Δt

i

∑
j=1

a(i)
j (sjΔt − s0) |s0 = s

Here the coefficients ,
where ,

(a(i)
0 , ⋯, a(i)

i)⊤ = (A(i))−1b(i)

A(i)
kj = jk b(i)

k = (0,1,0,⋯,0)⊤

i-th order PhiBE (deterministic dynamics)

36

Higher-order PhiBE in deterministic dynamics

Different from
classical numerical

schemes

i-th order PhiBE: β ̂Vi(s) = r(s) + ̂μi(s) ⋅ ∇ ̂Vi(s)

with ̂μi(s) =
1

Δt

i

∑
j=1

a(i)
j (sjΔt − s0) |s0 = s

Here the coefficients ,
where ,

(a(i)
0 , ⋯, a(i)

i)⊤ = (A(i))−1b(i)

A(i)
kj = jk b(i)

k = (0,1,0,⋯,0)⊤

i-th order PhiBE (deterministic dynamics)

36

Higher-order PhiBE in deterministic dynamics

Different from
classical numerical

schemes

i-th order PhiBE: β ̂Vi(s) = r(s) + ̂μi(s) ⋅ ∇ ̂Vi(s)

with ̂μi(s) =
1

Δt

i

∑
j=1

a(i)
j (sjΔt − s0) |s0 = s

Here the coefficients ,
where ,

(a(i)
0 , ⋯, a(i)

i)⊤ = (A(i))−1b(i)

A(i)
kj = jk b(i)

k = (0,1,0,⋯,0)⊤

i-th order PhiBE (deterministic dynamics)

 known dynamics ——> discrete trajectory

known discrete trajectory ——> dynamics

Numerical schemes

PhiBE

Why & When?

37

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?

Why & When?

38

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?

39

Theoretical Guarantees in general deterministic dynamics

Assume that , are bounded.
In addition,

∥∇r(s)∥L∞ ∥ℒi
μμ(s)∥L∞

∥∇μ(s)∥L∞ < β

∥V(s) − ̂Vi(s)∥L∞ ≤
∥∇r∥L∞∥ℒi

μμ∥L∞

(β − ∥∇μ(s)∥L∞)2
Δti

i-th order PhiBE [Z-24]

where ,ℒμ = μ(s) ⋅ ∇

∥ℒi
μμ∥L∞ =

di+1

dti+1
st

L∞

d
dt

st = μ(st)

39

Theoretical Guarantees in general deterministic dynamics

Assume that , are bounded.
In addition,

∥∇r(s)∥L∞ ∥ℒi
μμ(s)∥L∞

∥∇μ(s)∥L∞ < β

∥V(s) − ̂Vi(s)∥L∞ ≤
∥∇r∥L∞∥ℒi

μμ∥L∞

(β − ∥∇μ(s)∥L∞)2
Δti

i-th order PhiBE [Z-24]

where ,ℒμ = μ(s) ⋅ ∇

∥ℒi
μμ∥L∞ =

di+1

dti+1
st

L∞

d
dt

st = μ(st)

The dynamics changes slowly,
the error is smaller

39

Theoretical Guarantees in general deterministic dynamics

Assume that , are bounded.
In addition,

∥∇r(s)∥L∞ ∥ℒi
μμ(s)∥L∞

∥∇μ(s)∥L∞ < β

∥V(s) − ̂Vi(s)∥L∞ ≤
∥∇r∥L∞∥ℒi

μμ∥L∞

(β − ∥∇μ(s)∥L∞)2
Δti

i-th order PhiBE [Z-24]

where ,ℒμ = μ(s) ⋅ ∇

∥ℒi
μμ∥L∞ =

di+1

dti+1
st

L∞

d
dt

st = μ(st)

The dynamics changes slowly,
the error is smaller

The advantage of error depending more
on the dynamics instead of reward:

• More flexibility of designing the
reward function

• Only need less data points to achieve
the same error

40

Theoretical Guarantees in stochastic dynamics

Define

,

where is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted normL2

40

Theoretical Guarantees in stochastic dynamics

Assume that for
 are bounded, then

∥μ(s)∥ρ, ∥Σ(s)∥ρ, ∥∇kr(s)∥ρ
k = 0,1,2

∥V(s) − Ṽ(s)∥ρ ≤
C1

β
Δt + o(Δt)

Bellman Equation [Z-24]

Define

,

where is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted normL2

40

Theoretical Guarantees in stochastic dynamics

Assume that for
 are bounded, then

∥μ(s)∥ρ, ∥Σ(s)∥ρ, ∥∇kr(s)∥ρ
k = 0,1,2

∥V(s) − Ṽ(s)∥ρ ≤
C1

β
Δt + o(Δt)

Bellman Equation [Z-24]

Assume that ,

 for are bounded,

, then

λmin(Σ(s)) ≥ λmin > 0

∥∇kμ(s)∥L∞, ∥∇kΣ(s)∥L∞, k = 0,⋯,2i

max
k,l ∑

i

∥∂si
Σkl(s)∥L∞ ≤ 2λmin

∥V(s) − ̂Vi(s)∥ρ ≤
C2

β2
Δti

PhiBE [Z-24]

Define

,

where is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted normL2

40

Theoretical Guarantees in stochastic dynamics

Assume that for
 are bounded, then

∥μ(s)∥ρ, ∥Σ(s)∥ρ, ∥∇kr(s)∥ρ
k = 0,1,2

∥V(s) − Ṽ(s)∥ρ ≤
C1

β
Δt + o(Δt)

Bellman Equation [Z-24]

Assume that ,

 for are bounded,

, then

λmin(Σ(s)) ≥ λmin > 0

∥∇kμ(s)∥L∞, ∥∇kΣ(s)∥L∞, k = 0,⋯,2i

max
k,l ∑

i

∥∂si
Σkl(s)∥L∞ ≤ 2λmin

∥V(s) − ̂Vi(s)∥ρ ≤
C2

β2
Δti

PhiBE [Z-24]

Define

,

where is the stationary distribution of the SDE that satisfies

∥f∥ρ = ∫ f2(s)ρ(s)ds

ρ(s)

∇ ⋅ [μ(s)ρ(s) +
1
2

∇ ⋅ (Σ(s)ρ(s))] = 0

Weighted normL2

When the dynamics changes slowly or the
magnitude of the noise is large, 1st order

PhiBE is better than BE.

41

Theoretical Guarantees for the linear approximation

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

41

Theoretical Guarantees for the linear approximation

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

̂VG(s) = θ⊤Φ(s)

41

Theoretical Guarantees for the linear approximation

⟨β ̂VG(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂VG(s)+
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂VG(s), Φ⟩

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

̂VG(s) = θ⊤Φ(s)

41

Theoretical Guarantees for the linear approximation

⟨β ̂VG(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂VG(s)+
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂VG(s), Φ⟩

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

̂VG(s) = θ⊤Φ(s)

Model-free algorithm is using data to approximate ̂VG

PhiBE under linear approximation [Z-24]

Under mild assumption on , and boundedness of
 or , , then

b(s), Σ(s), r(s)
∥∇log ρ∥L∞ ∥Φ∥L∞ Δti ≤ CΔt

∥ ̂VG
i (s) − V(s)∥ρ ≤

C2

β2
Δti + CG min

̂VP=θ⊤Φ
∥Vi(s) − ̂VP(s)∥H1

ρ

 decreases
as the dynamics
changes slowly

C2 . CG

41

Theoretical Guarantees for the linear approximation

⟨β ̂VG(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂VG(s)+
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂VG(s), Φ⟩

β ̂V(s) = r(s) +
1
Δt

𝔼[sΔt − s |s0 = s] ⋅ ∇ ̂V(s) +
1

2Δt
𝔼[(sΔt − s)(sΔt − s)⊤ |s0 = s] : ∇2 ̂V(s)

̂VG(s) = θ⊤Φ(s)

Model-free algorithm is using data to approximate ̂VG

PhiBE under linear approximation [Z-24]

Under mild assumption on , and boundedness of
 or , , then

b(s), Σ(s), r(s)
∥∇log ρ∥L∞ ∥Φ∥L∞ Δti ≤ CΔt

∥ ̂VG
i (s) − V(s)∥ρ ≤

C2

β2
Δti + CG min

̂VP=θ⊤Φ
∥Vi(s) − ̂VP(s)∥H1

ρ

 decreases
as the dynamics
changes slowly

C2 . CG

Open problem:
sample complexity
of the algorithm

Conclusion

42

• Is it possible that it is the problem of LSTD? Is it possible that other RL algorithms work?
- As long as the algorithm is derived from BE, it won’t work under these circumstances.

• When is BE not a good approximation to the continuous-time RL?
- When the reward function has a large variation

• What is the underlying equation behind our algorithm?
- PhiBE & High-order PhiBE

• When does our algorithm approximate work well?
- When the dynamics change slowly

43

PhiBE in linear dynamics

Underlying dynamics:
d
dt

st = λst

Linear dynamics

43

PhiBE in linear dynamics

Underlying dynamics:
d
dt

st = λst

Linear dynamics
st = eλts0

When , the dynamics
change exponentially fast

λ > 0

43

PhiBE in linear dynamics

Underlying dynamics:
d
dt

st = λst

Linear dynamics

 ∥V(s) − ̂Vi(s)∥L∞ ≲
1
β2

|λ |i+1∥s∇r∥Δti

PhiBE for linear dynamics [Z-24]

 ∥V(s) − Ṽ(s)∥L∞ ≲
1
β (β∥r(s)∥L∞ + |λ |∥s ⋅ ∇r(s)∥L∞) Δt

st = eλts0

When , the dynamics
change exponentially fast

λ > 0

43

PhiBE in linear dynamics

Underlying dynamics:
d
dt

st = λst

Linear dynamics

 ∥V(s) − ̂Vi(s)∥L∞ ≲
1
β2

|λ |i+1∥s∇r∥Δti

PhiBE for linear dynamics [Z-24]

 ∥V(s) − Ṽ(s)∥L∞ ≲
1
β (β∥r(s)∥L∞ + |λ |∥s ⋅ ∇r(s)∥L∞) Δt

• When | | is smaller, the error
is smaller

• When , higher
order PhiBE is better

λ

|λ |Δt < 1

st = eλts0

When , the dynamics
change exponentially fast

λ > 0

44

λ λ

k k

R
ew

ar
d

ch
an

ge
s f

as
te

r
R

ew
ar

d
ch

an
ge

s f
as

te
r

Dynamics changes faster Dynamics changes faster

LQR

V(s) = ∫
∞

0
e−βt ks2

t dt, ·st = λst

Ph
iB

E
is

 b
et

te
r

B
E

is
 b

et
te

r

45

λ λ

k k

R
ew

ar
d

ch
an

ge
s f

as
te

r
R

ew
ar

d
ch

an
ge

s f
as

te
r

Dynamics changes faster Dynamics changes faster

LQR

V(s) = ∫
∞

0
e−βt ks2

t dt, ·st = λst

Ph
iB

E
is

 b
et

te
r

B
E

is
 b

et
te

r

45

46

λ λ

k k

R
ew

ar
d

ch
an

ge
s f

as
te

r
R

ew
ar

d
ch

an
ge

s f
as

te
r

Dynamics changes faster Dynamics changes faster

LQR

V(s) = ∫
∞

0
e−βt ks2

t dt, ·st = λst

Ph
iB

E
is

 b
et

te
r

B
E

is
 b

et
te

r

46

47

Continuos-time RL —— Setting

Bellman equation ——Why it is not good

A PDE-based Bellman equation —— Why it is better

Schedule

More numerical experiments

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics:
d
dt

st = λ sin(st)

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics:
d
dt

st = λ sin(st)

of data: 40

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5 Exact value function
1st order PhiBE with data
2nd order PhiBE with data
BE with data

Δt = 5,β = 0.1,λ = 0.05,V(s) = cos3(s)

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics:
d
dt

st = λ sin(st)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

Δt = 0.1,β = 10,λ = 2,V(s) = cos3(10s)

of data: 40

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5 Exact value function
1st order PhiBE with data
2nd order PhiBE with data
BE with data

Δt = 5,β = 0.1,λ = 0.05,V(s) = cos3(s)

48

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics:
d
dt

st = λ sin(st)

of data: 400

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

Δt = 0.1,β = 10,λ = 2,V(s) = cos3(10s)

of data: 40

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5 Exact value function
1st order PhiBE with data
2nd order PhiBE with data
BE with data

Δt = 5,β = 0.1,λ = 0.05,V(s) = cos3(s)

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Exact value function
1st order PhiBE with data
2nd order PhiBE with data
BE with data

Δt = 0.1,β = 10,λ = 5,V(s) = cos3(s)

of data: 40

49

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: dst = 0.05st + dBt

49

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: dst = 0.05st + dBt

, Δt = 1 β = 0.1, V(s) = cos3(s)

of data: 4 × 103

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5 Exact value function
1st order PhiBE with data
BE with data

49

Given the same trajectory data: PhiBE v.s. BE

Underlying dynamics: dst = 0.05st + dBt

, Δt = 0.1 β = 0.1, V(s) = cos3(5s)

of data: 4 × 105

-4 -2 0 2 4
-5

0

5
Exact value function
1st order PhiBE with data
BE with data

, Δt = 1 β = 0.1, V(s) = cos3(s)

of data: 4 × 103

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5 Exact value function
1st order PhiBE with data
BE with data

50

Decrease of error as # of data increases

101 102 103 10410-2

10-1

100

BE
1st order PhiBE
2nd order PhiBE

Underlying dynamics:
d
dt

st = 0.05st

of data

Er
ro

r

50

Decrease of error as # of data increases

101 102 103 10410-2

10-1

100

BE
1st order PhiBE
2nd order PhiBE

Underlying dynamics:
d
dt

st = 0.05st

of data

Er
ro

r

104 106 10810-3

10-2

10-1

100

101
1st order PhiBE
2nd order PhiBE
BE

Underlying dynamics: dst = 0.05st + dBt

of data

Er
ro

r

Conclusion

51

Continuous-time
RL

Conclusion

51

Continuous-time
RL PDE

Accurate

Conclusion

51

Continuous-time
RL PDE

Accurate

RL

Approximation

52

Yuhua Zhu, 2024, PhiBE: A PDE-based Bellman Equation for Continuous-Time Policy Evaluation

Reference

53

Future work
• Multi-agent RL
• Mean-field game
• Application in robotics, autonomous driving and finance
• …

Ongoing work
• Generalize to continuous-time RL
• Nonlinear approximation
• Time dependent dynamics
• Finite Horizon problems

