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INTRODUCTION



NAVIER-STOKES-KORTEWEG SYSTEM

Compressible Navier-Stokes system

{
∂tρ+ div(ρu) = 0 in (0, T)× Ω,

∂t(ρu) + div(ρu⊗ u)−Au+∇P = div(K) in (0, T)× Ω

Where

• Au := div
(
2µ(ρ)∇Su

)
+∇ (ν(ρ) div (u)) (Viscosity)

• P (Pressure)

• div(K) := ρ∇
(
κ(ρ)△ρ+

1
2
κ′(ρ)|∇ρ|2

)
(Capillarity)
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COMPRESSIBLE NAVIER-STOKES SYSTEM

* Compressible Navier-Stokes system

The compressible Navier-Stokes system correspond to the case κ = 0 (thus
div(K) = 0)
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CAPILLARITY AS DISPERSIVE PERTURBATION: 1st EURISTIC

Take µ(ρ) := µ⋆ρ, ν(ρ) := ν⋆ρ and κ(ρ) := κ⋆/ρ and divide by ρ > 0

⋆ Compressible Navier-Stokes system: hyperbolic-parabolic behavior{
∂tρ+ u · ∇ρ = . . .

∂tu− (µ⋆△+ (µ⋆ + ν⋆)∇ div) u = . . .

⋆ Navier-Stokes-Korteweg system: dispersive-parabolic behavior

{
∂tρ+ u · ∇ρ = . . .

∂tu− (µ⋆△+ (µ⋆ + ν⋆)∇ div) u+κ⋆∇△ρ = . . .

→ In fact with have hidden parabolic behavior!
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STATE OF THE ARTS

* Cauchy problem

• Derivations of the System : Dunn and Serrin (1983), Brull and Méhats (2010)...
• Weak solutions: Bresch, Desjardins and Lin (2007), Antonelli and Spirito (2022)...
• Strong solution: Hattori and Li (1996), Danchin and Desjardins (2001), Haspot
(2013), Charve, Danchni and Xu (2018), Tendani-Soler (2021), Paicu and Wen (2022),
Bresch, Gisclon, Lacroix-Violet and Alexis Vasseur (2022)...

* Main classical hypothesis

For a reference density ρ⋆ ∈ R+ , we suppose that

(1) 2µ+ ν > 0 and µ > 0 near ρ⋆ (to get the dissipation for u)

(2) P′ > 0 near ρ⋆ (use to get the dissipation for ρ and u, through energy estimates)

* Dissipative properties

→ Now under 1) and 2) by using : enregy estimates and/or Fourier analysis methods
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THE MAIN RESULTS



For ω ⊂ Td , we consider the following control system.{
∂tρ+ div(ρu) = vρ1ω in (0, T)× Td,
∂t(ρu) + div(ρu⊗ u)−A(ρ)u+∇(P(ρ)) = div(K(ρ)) + vu1ω in (0, T)× Td,

(1)

Hypothesis

Let ρ⋆ > 0, u⋆ ∈ Rd , µ, ν , κ and P such that

1. κ(ρ⋆) > 0, µ(ρ⋆) > 0 and 2µ(ρ⋆) + ν(ρ⋆) > 0

2. µ and ν are C2 in an neighborhood of ρ⋆
3. P and κ are C3 in an neighborhood ρ⋆
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Theorem (T-S, 2023)

Assume Hypothesis 0.1. Let d ∈ {1, 2, 3} and ω be a non-empty open subset of Td . Then, for any
T > 0, there is ε > 0 such that for all (ρ0, u0) ∈ H2 × H1 satisfying

∥(ρ0 − ρ⋆, u0 − u⋆)∥H2×H1 ≤ ε,

there exist a control (vρ, vu) ∈ L2(0, T;H2) × L2(0, T;H1) and a corresponding controlled
trajectory (ρ, u) solving (1) and satisfying

(ρ, u)|t=0 = (ρ0, u0) and (ρ, u)|t=T = (ρ⋆, u⋆) in Td.

Besides, the controlled trajectory (ρ, u) enjoys the following regularity

ρ ∈ C([0, T];H2) ∩ L2(0, T;H3) ∩ H1(0, T;H1),

u ∈ C([0, T];H1(Td)) ∩ L2(0, T;H2) ∩ H1(0, T; L2),

and the following positivity condition

inf
(t,x)∈[0,T]×Td

ρ(t, x) > 0.
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WHAT IS NEW ?

* Controllability

→ To the best of my knowledge this is the first results on the controllability of
Navier-Stokes-Korteweg system

* Main hypothesis

(1) 2µ+ ν > 0 and µ > 0 near ρ⋆

* Dissipative properties

→ This work give a new way to capture the dissipation in the Navier-Stokes-Korteweg
system and the different physical regimes of coefficients
→ We point out that the controllability properties of the Navier-Stokes-Korteweg
system are of parabolic type (O is reachable at any positive times)
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STRATEGY



STRATEGY

The strategy is inspired from the work of Ervedoza, Glass and Guerrero in 2015 on the
controllability for compressible Navier-Stokes system

Step 1 A priori analysis of the controllability of the linearized system
Step 2 Controllability of the complex coefficients heat equation and estimates on

suitable weighted Sobolev spaces
Step 3 Recover the controllability for the linearized systems from the controlability to

the heat equation
Step 4 Estimates of the nonlinear terms and fixed point results

9



THE PROOF



STEP 1: LINEARIZED SYSTEM

a :=
ρ

ρ⋆
− 1.

We are then led to study the following system{
∂ta+ div(u) = fa(a, u) + va1ω in (0, T)× Td,
∂tu− µ⋆△u− (µ⋆ + ν⋆)∇ div(u) + p⋆∇a− κ⋆∇△a = fu(a, u) + vu1ω in (0, T)× Td,

where

κ⋆ := ρ⋆κ(ρ⋆), µ⋆ := ρ−1
⋆ µ(ρ⋆), ν⋆ := ρ−1

⋆ ν(ρ⋆), p⋆ := P
′
(ρ⋆){

fa(a, u) := −u · ∇a,
fu(a, u) := f1u(a, u) + f2u(a, u) + f3u(a, u) + f4u(a) + f5u(a),

f1u(a, u) := −(a+ 1)u · ∇u,
f2u(a, u) := div(2µ(a)∇Su)) +∇(ν(a) div u),
f3u(a, u) := (∂tu)a,
f4u(a) := P′(a)∇a,
f5u(a) := (a+ 1)∇

(
κ(a)△a+∇κ(a) · ∇a

)
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STEP 1: LINEARIZED SYSTEM, 1st ADJOINT AND CLOSED SUB-SYSTEM

⋆ We aim to the null controllability of the following system{
∂ta+ div(u) = fa + va1ω in (0, T)× Td,
∂tu− µ⋆△u− (µ⋆ + ν⋆)∇ div(u) + p⋆∇a− κ⋆∇△a = fu + vu1ω in (0, T)× Td,

⋆ The null controllability is equivalent to the observability of the adjoint system{
−∂tσ − p⋆ div(z) + κ⋆△ div(z) = gσ in (0, T)× Td,
−∂tz−∇σ − µ⋆△z− (µ⋆ + ν⋆)∇ div(z) = gz in (0, T)× Td,

⋆ The main idea to catch the parabolic behavior is to consider the observability of{
−∂tσ − p⋆q+ κ⋆△q = gσ in (0, T)× Td,
−∂tq−△σ − (2µ⋆ + ν⋆)△q = gq in (0, T)× Td,

where
q := div(z) and gq := div(gz)
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STEP 1: ALGEBRAIC MANIPULATIONS

• We are looking for the observability of a system of the form

−∂tU+ A△U+ BU = F

where

A =

(
0 κ⋆
−1 −(2µ⋆ + ν⋆)

)
and B =

(
0 −p⋆
0 0

)
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STEP 1: ALGEBRAIC MANIPULATIONS (THE DIAGONALIZED CASE)

• Assume in this subsection that A is diagonalizable. These eigenvalues are

ζ+ :=
(2µ⋆ + ν⋆)− D

2
and ζ− :=

(2µ⋆ + ν⋆) + D
2

where D :=
√

(2µ⋆ + ν⋆)2 − 4κ⋆

• Note that
ℜ(ζ±) > 0.

• The matrix A ∼ diag(ζ+, ζ−). This can be done through a invertible matrix Q.
⋆ We are looking for the observability of{

−∂ty+ − ζ+ △y+ = gy+ + α1y+ + α2y− in (0, T)× Td,
−∂ty− − ζ− △y− = gy− + α3y+ + α4y− in (0, T)× Td,

with (
gy+
gy−

)
:= Q

(
gσ
gq

)
and

(
y+
y−

)
:= Q

(
σ

q

)
.
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STEP 1: ALGEBRAIC MANIPULATIONS (THE DIAGONALIZED CASE)

⋆ By duality we are looking for the following control problem:
Given (r+0 , r

−
0 ) in H2 × H2 , find two control (vr+ , vr− ) in L2(H1)× L2(H1) such that the

solution (r+, r−) of{
∂tr+ − ζ+ △r = fr+ + α1r+ + α3r− + χ0vr+ in (0, T)× Td,
∂tr− − ζ− △r− = fr− + α2r+ + α4r− + χ0vr− in (0, T)× Td,

and belongs to L2(H3)× L2(H3) and satisfies

(r+, r−)|t=0 = (r+0 , r
−
0 ) and (r+, r−)|t=T = (0, 0) in Td.
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STEP 2: CARLEMAN ESTIMATES

• (space wheight) Let ψ be in C2(Td,R) such that

6 < ψ < 7 and inf
Td\ω0

{|∇ψ|} > 0.

• (time wheight, Badra, Ervedoza and Guerrero in 2014) We choose T0 > 0 and
1
4 ≥ T1 > 0 small enough, so that

T0 + 2T1 < T.

For any m ≥ 2, we introduce a weight function θm ∈ C2([0, T)) such that

θm(t) =



1+
(
1− t

T0

)m
for all t ∈ [0, T0],

1 for all t ∈ [T0, T− 2T1],
θm is increasing in [T− 2T1, T− T1],
1

T− t
for all t ∈ [T− T1, T).

• Then we consider the following weight function, given for s ≥ 1 and λ ≥ 1, and for
any (t, x) ∈ [0, T)× Td by

φs,λ(t, x) := θm(t)(λe12λ − eλψ(x)), where m = sλ2e2λ ≥ 0.
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STEP 2: CARLEMAN ESTIMATES

Similarly to the work of Ervedoza, Glass and Guerrero we obtain the following
Carleman estimates

Lemma (T.-S. 2015)

Let T > 0 and ζ a complex number satisfying ℜ(ζ) > 0. There exist three positive
constants C, s0 ≥ 1 and λ0 ≥ 1, large enough, such that for any smooth function w
on [0, T]× Td and for all s ≥ s0 , we have

s
3
2 ∥θ

3
2 we−sφ∥L2(L2) + s

1
2 ∥θ

1
2∇we−sφ∥L2(L2) + s∥w(0)e−sφ(0)∥L2

≤ C
(
∥(∂t + ζ△)we−sφ∥L2(L2) + s

3
2 ∥θ

3
2 χ0we−sφ∥L2(L2)

)
.
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STEP 2: CONTROL OF THE HEAT EQUATION

• (Heat equation coefficient) Let ζ ∈ C such that

ℜ(ζ) > 0.

• (control zone) In order to add a margin on the control zone ω, we introduce a
non-negative smooth cut-off function χ0 such that there exist two proper open
subsets ω0 and ω1 of Td such that

ω0 ⊂ supp(χ0) ⊂ ω1 ⋐ ω and χ0 = 1 on ω0.

• (control problem) We consider the following controllability problem:
Given r0 and f, find a control function vr such that the solution r of{

∂tr− ζ△r = f+ vrχ0 in (0, T)× Td,
r|t=0 = r0 in Td,

satisfies
r|t=T = 0 in Td. (2)
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STEP 2: CONTROLLABILITY OF THE HEAT EQUATION

Theorem

Let T > 0. There exist constants C > 0 and s0 ≥ 1 such that for all s ≥ s0 , for all
f ∈ L2(0, T; L2(Td)) satisfying

∥θ−
3
2 fesφ∥L2(L2) < +∞ (3)

and r0 ∈ L2(Td), there exists a solution (r, vr) of the control problem which
furthermore satisfies the following estimate:

s
3
2 ∥resφ∥L2(L2) + ∥θ−

3
2 χ0vresφ∥L2(L2)+s

1
2 ∥θ−1∇resφ∥L2(L2)

≤ C
(
∥θ−

3
2 fesφ∥L2(L2) + s

1
2 ∥r0esφ(0)∥L2

)
.

Moreover, the solution (r, vr) can be obtained through a linear operator in (r0, f).
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STEP 3: OBSERVABILITY OF (σ, z)

• We aim to obtain the following observability inequality

∥σe−s0Φ∥L2(L2) + ∥σ(0)e−s0Φ(0)∥L2 + ∥qe−
4s0Φ
3 ∥L2(L2) + ∥q(0)e−

4s0Φ(0)
3 ∥L2

≲ ∥(gσ , gq)e−
3s0Φ
4 ∥L2(L2)×L2(L2) + ∥χ(σ, q)e−

3s0Φ
4 ∥L2(L2)×L2(L2),

where (σ, z) is a solution of the following adjoint system{
−∂tσ − p⋆q+ κ⋆△q = gσ in (0, T)× Td,
−∂tq−△σ − (2µ⋆ + ν⋆)△q = gq in (0, T)× Td,

(4)

with (gσ , gq) ∈ L2(L2)× L2(L2).
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STEP 3: OBSERVABILITY OF (σ, z)

• Recall that

∥(y+, y−)e−s0Φ∥L2(H−1) + ∥(y+(0), y−(0))e−s0Φ(0)∥H−2

= sup
∥(fr+ ,fr− )es0Φ∥L2(L2)≤1

∥(r+0 ,r
−
0 )es0Φ(0)∥L2≤1

{⟨(fr+ , fr− ), (y+, y−)⟩L2(L2) + ⟨(r+0 , r
−
0 ), (y+(0), y−(0))⟩L2}.

• By duality, we have

⟨(fr+ , fr− ), (y+, y−)⟩L2(L2)) + ⟨(r+0 , r
−
0 ), (y+(0), y−(0))⟩L2

= ⟨(gy+ , gy− ), (r+, r−)⟩L2(L2) + ℜ(⟨(y+, y−), χ0(vr+ , vr− )⟩L2(L2).

∥(y+, y−)e−s0Φ∥L2(L2) + ∥(y+(0), y−(0))e−s0Φ(0)∥L2

≲ ∥(gy+ , gy− )e−
3s0Φ
4 ∥L2(L2) + ∥χ0(y+, y−)e−

3s0Φ
4 ∥L2(L2).

• We simply remind that solutions (y+, y−) correspond to solutions (σ, q) through the
transform (

σ

q

)
:= Q−1

(
y+
y−

)
and

(
gσ
gq

)
:= Q−1

(
gy+
gy−

)
,
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MERCI!

Thanks !
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