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INTRODUCTION




NAVIER-STOKES-KORTEWEG SYSTEM

Compressible Navier-Stokes system

Orp + div(pu) =0 in (0,T) x €,
Or(pu) + div(pu ® u) — Au + VP = div(K) in (0,T) x Q
Where
o Au = div (2u(p)vsu) +V (u(p) div(u)) (Viscosity)

o P (Pressure)

e div(K) := pV (/-e(p) Ap+ %/{’(p)\VpF) (Capillarity)



COMPRESSIBLE NAVIER-STOKES SYSTEM

* Compressible Navier-Stokes system

The compressible Navier-Stokes system correspond to the case k = 0 (thus
div(K) = 0)



CAPILLARITY AS DISPERSIVE PERTURBATION: 1°t EURISTIC

Take p(p) := pwp, v(p) := vep and k(p) := K« /p and divide by p > 0

* Compressible Navier-Stokes system: hyperbolic-parabolic behavior

op+u-Vp=...
Ol — (s A + (s + )V div)u=...
* Navier-Stokes-Korteweg system: -parabolic behavior

{6)tu(y*A+(;L*+l/*)V div) u S oo0

— In fact with have hidden parabolic behavior!



STATE OF THE ARTS

* Cauchy problem

- Derivations of the System : Dunn and Serrin (1983), Brull and Méhats (2010)...
- Weak solutions: Bresch, Desjardins and Lin (2007), Antonelli and Spirito (2022)...

- Strong solution: Hattori and Li (1996), Danchin and Desjardins (2001), Haspot
(2013), Charve, Danchni and Xu (2018), Tendani-Soler (2021), Paicu and Wen (2022),
Bresch, Gisclon, Lacroix-Violet and Alexis Vasseur (2022)...

* Main classical hypothesis

For a reference density px € Ry, we suppose that

('I) 2u+v > 0and p > 0 near py (to get the dissipation for u)

(2) P’ > 0 near py (use to get the dissipation for p and u, through energy estimates)
* Dissipative properties

— Now under 1) and 2) by using : enregy estimates and/or Fourier analysis methods




THE MAIN RESULTS




For w C T9 we consider the following control system.

{athr div(pu) = v, 1, in (0,T) x T¢,
A(pu) + div(pu ® u) — A(p)u + V(P(p)) = div(K(p)) + vulw in (0,T) x T,
(1)

Let px > 0, Uy € RY 1, v, & and P such that

1. w(p+) >0, p(ps) >0 and 2u(p«) +v(px) >0
2. wand v are C% in an neighborhood of p,
3. P and  are C3 in an neighborhood p,



Theorem (T-S, 2023)

Assume Hypothesis 0.1. Let d € {1,2,3} and w be a non-empty open subset of T¢. Then, for any
T > 0, there is € > 0 such that for all (po, Uo) € H* x H' satisfying

||(P0 — Px,Uo — u*)”HZXHW £ @5

there exist a control (v, v,) € L?(0, T; H*) x L?(0, T; H') and a corresponding controlled
trajectory (p, u) solving (1) and satisfying

(P> U)o = (po> Uo) and (p,u)},_; = (px,Us) in T
Besides, the controlled trajectory (p, u) enjoys the following regularity
p € C([0,TI; H) N L*(0, T; H*) N H'(0, T; H'),
u e c([0, T; H'(T%) N L2(0, T: H*) N H'(0, T; L),
and the following positivity condition

inf p(t,x) > 0.
(t.x)el0,1x Td



WHAT IS NEW ?

* Controllability

— To the best of my knowledge this is the first results on the controllability of
Navier-Stokes-Korteweg system

* Main hypothesis

(1) 2u+v > 0and pu > 0 near ps
* Dissipative properties

— This work give a new way to capture the dissipation in the Navier-Stokes-Korteweg
system and the different physical regimes of coefficients

— We point out that the controllability properties of the Navier-Stokes-Korteweg
system are of parabolic type (O is reachable at any positive times)




STRATEGY




STRATEGY

The strategy is inspired from the work of Ervedoza, Glass and Guerrero in 2015 on the
controllability for compressible Navier-Stokes system
Step 1 A priori analysis of the controllability of the linearized system

Step 2 Controllability of the complex coefficients heat equation and estimates on
suitable weighted Sobolev spaces

Step 3 Recover the controllability for the linearized systems from the controlability to
the heat equation

Step 4 Estimates of the nonlinear terms and fixed point results



THE PROOF




STEP 1: LINEARIZED SYSTEM

a::ﬁ—l
Px

We are then led to study the following system

ara + div(u) = fa(a, u) + valw in (0,T) x T,
Ol — pix AU — (s + v%)V div(u) + psVa — ke V Aa = fu(a,u) + vyl, in (0,T) x T

where
Ko 1= puti(ps)s = py 1lpe)s vaoi=px (ps),  Pxi=P (ps)

{ fa(a,u) := —u-Va,

fu(a, u) := fi(a,u) +fi(a, u) + fi(a, u) + fi(a) + fa(a),
fi(a,u) ;== —(a+NMu - Vu,
fi(a,u) := div(2u(a)V>u)) + V(x(a) divu),
fi(a,u) == (8w)a,
fi(a) :=P'(a)Va,
£(a) = (a+ 1)v(ﬁ(a) Aa + Vi(a) - Va)



STEP 1: LINEARIZED SYSTEM, 15t ADJOINT AND CLOSED SUB-SYSTEM

* We aim to the null controllability of the following system

ora + div(u) = fa + vals in (0,T) x T¢,
AU — e AU — (i 4 1%)V div(u) + pxVa — sV AQ = fy +wlw  in (0,T) x T,
* The null controllability is equivalent to the observability of the adjoint system

—8o — px div(2) + kv A div(2) = 9o in (0,T) x T9,
—Z — Vo — pe NZ — (s +v4)V div(z) =g, in (0,T) x T9,

* The main idea to catch the parabolic behavior is to consider the observability of

—0t0 — PG+ kx AQ = G n (0,T) x T9,
—0q — Do — (Qux +vx) G = gq in (0,7) x T9,

where
q := div(z) and gq := div(g;)




STEP 1: ALGEBRAIC MANIPULATIONS

e We are looking for the observability of a system of the form

—U+AAU+BU=F

0 Kk 0 —px
A= B=
(1 —(2px + 1/*)> and <O 0 >

where



STEP 1: ALGEBRAIC MANIPULATIONS (THE DIAGONALIZED CASE)

e Assume in this subsection that A is diagonalizable. These eigenvalues are

C+ — (2M* +V*) -D o C— — (ZIJ«* "FV*)"I‘D

> 2 where D := / (2ux + Vi )2 — bk

e Note that

R(¢+) > 0.
e The matrix A ~ diag(¢+, ¢—). This can be done through a invertible matrix Q.
* We are looking for the observability of

-0yt — ¢ AYT =gy +aryt + gy in(0,T) x TY,
-0y~ — (- Ay = gy_ + a3y+ +ayy~ in (O, T) X Td,

()-(6) = () -26)

with




STEP 1: ALGEBRAIC MANIPULATIONS (THE DIAGONALIZED CASE)

* By duality we are looking for the following control problem:
Given (rf,ry) in H? x H2, find two control (v,+,v,—) in L2(H') x L>(H") such that the
solution (rt,r=) of

ot —Cy Ar=fo +onrt +asr 4 xoVv in (0,7) x T¢,
B~ —C_ A~ =f_ +@rt +@r +xov—  in (0,T) x T¢,

and belongs to [2(H?) x L2(H?) and satisfies

(r*,r*)‘t:0 =(rf,ry) and (r*,r*)hﬂ = (0,0) in T



STEP 2: CARLEMAN ESTIMATES

o (space wheight) Let ¢ be in C%(T9 R) such that

6 < <7and inf {|Vy|} >O0.
T9\wg

o (time wheight, Badra, Ervedoza and Guerrero in 2014) We choose Ty > 0 and
1 > T; > 0 small enough, so that

To+2T1 < T.
For any m > 2, we introduce a weight function 6, € C?([0, T)) such that

t m
1+ (1 = —) forall t € [0, To],
To

1 forallt € [To, T —2T4],
Om is increasing in [T —2T;, T — Tq],

1
— forallt e [T—Tq,T).
T—t 7= a5 )
e Then we consider the following weight function, given for s > 1and XA > 1, and for
any (t,x) € [0,T) x T¢ by

s A (%) = On(t)(Xe™ — AV where m = sX?e** > 0.




STEP 2: CARLEMAN ESTIMATES

Similarly to the work of Ervedoza, Glass and Guerrero we obtain the following
Carleman estimates

Lemma (T.-S. 2015)

Let T > 0 and ¢ a complex number satisfying %(¢) > 0. There exist three positive
constants C, sop > 1and Ao > 1, large enough, such that for any smooth function w
on [0,T] x T¢ and for all s > so, we have

3,03 1,1
521162 we™ || 212y + 521102 Vwe ™| 2,2y + S||w(0)e ¥ 2

— 3 3
<cC (H(at +CA)Wwe™? | a2y + 52 ||97X0W9_W||L2(L2)> :



STEP 2: CONTROL OF THE HEAT EQUATION

o (Heat equation coefficient) Let ¢ € C such that
R(¢) > 0.

o (control zone) In order to add a margin on the control zone w, we introduce a
non-negative smooth cut-off function x( such that there exist two proper open
subsets wg and wy of T9 such that

wo C supp(xo) C w1 €w and xp = 10N wp.

o (control problem) We consider the following controllability problem:
Given ry and f, find a control function v, such that the solution r of

Ar—CAr=Ff+vrxo in (0,T) x T9,
My = 0 in TY,

satisfies
o, =0in T, (2)




STEP 2: CONTROLLABILITY OF THE HEAT EQUATION

Let T > 0. There exist constants C > 0 and sq > 1 such that for all s > s, for all
f € L2(0, T; L2(T%)) satisfying

=

3
1073 e 122y < +oo €

and ry € L2(T%), there exists a solution (r, v¢) of the control problem which
furthermore satisfies the following estimate:

3 3 1
S2 ||res<p||L2(L2) aF ||9_7X0Vresw HLZ(L2)+57 ||97WV7‘€S¢”L2(L2)
3 1
< C (1167376 ll2z) + 52 Iroe™ V2 ) -

Moreover, the solution (r, vr) can be obtained through a linear operator in (ro, f).



STEP 3: OBSERVABILITY OF (0, 2)

e We aim to obtain the following observability inequality

_ _ _ 4sp® _ 459 ®(0)
|oe SOd’HU(U) +1lo(0)e™0O)| ;2 + [lge™ 22y + la(0)e™ 3 [l2

_ 30 _ 3
S (9o 9a)e™ 7 llp2ywizzy + 1Ix(e; @)e™ 4 22y w22y

where (o,z) is a solution of the following adjoint system

—0t0 — Py + ks NG = Go in (0,T) x T¢, )
—0q — Ao — Qux +vx) Ag=gq in(0,T) x T,

with (9o, 9g) € L2(L2) x LX(L2).



STEP 3: OBSERVABILITY OF (0, 2)

e Recall that
I,y 7)e ™% 2gr=1y + 1 (0), ¥~ (0))e=0®@,,
= S U F= ) 0y Ny + (510 ), (77 (0), 7 (0))) 12}

Gyt of,— Je0® I\Lz 12)=1

(g o5 )es0® | 5 <1
e By duality, we have
(e F=) 5y Niz@ey) + (5, 10), (77 (0),y7(0))) 2

= <(gy4r ) Gy~ ), (f+, r7)>L2(L2) + ‘SR(<(y+v Y7 ) X0 (Vi Ve ))Lz(Lz)'

I, y7)e™*0 22y + 1(vT(0), ™ (0))e 0| 2
30 L e
S gy+>gy-)e 4 Hlizzy + Ixo (T y7)e™ 7 ey

e We simply remind that solutions (y™,y~) correspond to solutions (o, q) through the

transform
7) .= yt and 9o .= Q' Sl g
q y 9q 9y—




Thanks!
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