

Schrödinger eigenfunctions sharing the same modulus and applications to the control of quantum systems

Kévin Le Balc'h

INRIA Paris, Sorbonne Université, Laboratoire Jacques-Louis Lions

Joint work with Ugo Boscain (CNRS, LJLL, Sorbonne Université) and Mario Sigalotti (Inria, LJLL, Sorbonne Université)

X Partial differential equations, optimal design and numerics, Benasque

August 27th 2024

Table of Contents

1 Bilinear quantum control systems

Eigenfunctions sharing the same modulus

- Definition
- Examples
- General results
- The one-dimensional case

3 Conclusion

The bilinear Schrödinger equation

The bilinear Schrödinger equation is

 $\begin{cases} i\partial_t \psi = (-\Delta_g + V)\psi + \sum_{i=1}^m u_i(t)Q_i(x)\psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$ (S)

where $\psi(t) \in \mathcal{H} := L^2(M; \mathbb{C})$ state, $u(t) = (u_1(t), \dots, u_m(t)) \in \mathbb{R}^m$ the control.

- (M, g) smooth compact manifold, possibly with boundary.
- $\Delta_g = \operatorname{div}_{\omega_g} \circ \nabla_g$ the Laplace-Beltrami operator on (M, g).
- $V \in L^{\infty}(M; \mathbb{R})$ electric potential.
- $Q = (Q_1, \ldots, Q_m) \in L^{\infty}(M; \mathbb{R})^m$ potentials of interactions.

The bilinear Schrödinger equation can be written as

$$\begin{cases} i\partial_t \psi = H_0 \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$$
(S)

Well-posedness and obstruction to exact controllability

$$\begin{cases} i\partial_t \psi = H_0 \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$$
(S)

For every T > 0, ψ₀ ∈ L²(M) and u ∈ L²(0, T; ℝ^d), there exists a unique mild solution ψ = ψ(·; ψ₀, u) ∈ C([0, T]; L²(M)) of (S), i.e.,

$$\psi(t) = e^{-itH_0}\psi_0 + \int_0^t e^{-i(t-s)H_0}\langle u(s), Q(x)\rangle\psi(s)ds, \quad \forall t \in [0, T].$$

• If
$$\psi_0 \in S = \{ \psi \in L^2(M) \mid \|\psi\|_{L^2(M)} = 1 \}$$
, then $\psi(t) \in S$.

For $\psi_0 \in L^2(M)$, the **reachable space** is

$$\mathcal{R}(\psi_0) := \{ \psi(t; \psi_0, u) \mid t \ge 0, \ u \in L^2(0, t; \mathbb{R}^d) \}.$$

Theorem (Ball, Marsden, Slemrod (1982), Turinici (2000)) For every $\psi_0 \in \text{Dom}(H_0) \cap S$, $\overline{(\mathcal{R}(\psi_0))^c} = \text{Dom}(H_0) \cap S$. This means that the interior of $\mathcal{R}(\psi_0)$ in $\text{Dom}(H_0) \cap S$ for the topology of $\text{Dom}(H_0)$ is empty.

Small-time isomodulus approximate controllability

$$\begin{cases} i\partial_t \psi = H_0 \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$$
(S)

Due to BMS obstruction, people rather study:

- Exact controllability in regular spaces (Beauchard, Laurent (2010) ...).
- $\bullet\,$ Large time approximate controllability (Boscain, Caponigro, Chambrion, Sigalotti (2012) $\dots\,$)
- Small-time approximate controllability (Beauchard, Pozolli (2024) ...).

The small-time approximately reachable space is

$$\begin{split} \overline{\mathcal{R}_0(\psi_0)} &:= \{\psi_1 \in \mathcal{S} \ ; \\ \forall \varepsilon, \tau > 0, \ \exists T \in (0, \tau], \ u \in L^2(0, T; \mathbb{R}^m), \ \|\psi(T; \psi_0, u) - \psi_1\|_{L^2(M)} < \varepsilon \} \end{split}$$

Here, we focus on

Definition

(S) is small-time isomodulus approximately controllable from $\psi_0 \in \mathcal{S}$ if

$$\{e^{i heta}\psi_0\mid heta\in L^2(M;\mathbb{T})\}\subset \overline{\mathcal{R}_0(\psi_0)}.$$

Duca, Nersesyan's results

 $\begin{cases} i\partial_t \psi = (-\Delta_g + V)\psi + \sum_{i=1}^m u_i(t)Q_i(x)\psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$ (S)

Let $M = \mathbb{T}^d$ and assume

 $x \mapsto 1, \ x \mapsto \sin\langle x, k \rangle, \ x \mapsto \cos\langle x, k \rangle \in \operatorname{span}\{Q_1, \dots, Q_m\}, \qquad \forall k \in \mathcal{K}.$

where $\mathcal{K} = \{(1, 0, \dots, 0), (0, 1, 0 \dots, 0), \dots, (0, \dots, 0, 1, 0), (1, 1, \dots, 1)\} \subset \mathbb{R}^d$.

Theorem (Duca, Nersesyan (2023))

(S) is small-time isomodulus approximately controllable.

Theorem (Duca, Nersesyan (2023)) If V = 0 then $e^{\pm i \langle k, x \rangle} \in \overline{\mathcal{R}_0(e^{\pm i \langle l, x \rangle})}$.

- Technique inspired by Agrachev, Sarychev (2005) for NS equations.
- Extension to NLS.

Kévin Le Balc'h

An abstract limit using Lie brackets

$$\begin{cases} i\partial_t \psi(t) = H_0 \psi(t) + \sum_{j=1}^m u_j(t) H_j \psi(t), & t \in (0, +\infty), \\ \psi(0) = \psi_0. \end{cases}$$
(S)

First directions: $\lim_{\delta \to 0} \exp\left(-i\delta\left(H_0 + \sum_{j=1}^m \frac{u_j}{\delta}H_j\right)\right)\psi_0 = \exp\left(-i\sum_{j=1}^m u_jH_j\right)\psi_0.$

Theorem (Chambrion, Pozolli (2023)) Let S be a bounded self-adjoint operator satisfying

$$\begin{split} & [S,H_j]=0, \quad j=1,\ldots,m, \\ & \text{SDom}(H_0)\subset \operatorname{Dom}(H_0), \quad [S,[S,[S,H_0]]]\operatorname{Dom}(H_0)=0. \end{split} \tag{Commutation}$$

Then, for each $\psi_0 \in \mathcal{H}$ and $u = (u_1, \dots, u_m) \in \mathbb{R}^m$, the following limit holds in \mathcal{H}

$$\lim_{\delta \to 0} e^{-i\delta^{-1/2}S} \exp\left(-i\delta\left(H_0 + \sum_{j=1}^m \frac{u_j}{\delta}H_j\right)\right) e^{i\delta^{-1/2}S}\psi_0$$

= $\exp\left(\frac{i}{2}[S, [S, H_0]] - i\sum_{j=1}^m u_jH_j\right)\psi_0.$ (Second Lie bracket direction)

Application of the second Lie bracket direction

Theorem (Chambrion, Pozolli (2023) - Boscain, L.B., Sigalotti (2024))

For every $\psi_0 \in L^2(M)$, $(u_1, \ldots, u_m) \in \mathbb{R}^m$, $\varphi \in C^{\infty}(M; \mathbb{R})$ such that $\varphi Dom(H_0) \subset Dom(H_0)$,

$$\lim_{\delta \to 0} e^{-i\delta^{-1/2}\varphi} \exp\left(-i\delta\left(-\Delta_g + V + \sum_{j=1}^m \frac{u_j}{\delta}Q_j\right)\right) e^{i\delta^{-1/2}\varphi}\psi_0$$
$$= \exp\left(-ig(\nabla_g\varphi, \nabla_g\varphi) - i\sum_{j=1}^m u_jQ_j\right)\psi_0.$$

 $\begin{aligned} \mathcal{H}_0 &= \{ \varphi \in \mathsf{span}\{Q_1, \dots, Q_m\} \mid \varphi \mathrm{Dom}(\mathcal{H}_0) \subset \mathrm{Dom}(\mathcal{H}_0) \} \subset L^2(\mathcal{M}; \mathbb{C}), \\ \mathcal{H}_{N+1} &= \{ \varphi \in \mathcal{H}_N + \mathsf{span}\{g(\nabla_g \psi, \nabla_g \psi) \mid \psi \in \mathcal{H}_N\} \mid \varphi \mathrm{Dom}(\mathcal{H}_0) \subset \mathrm{Dom}(\mathcal{H}_0) \}, \quad N \geq 0. \\ \mathcal{H}_\infty &= \bigcup_{N \geq 0} \mathcal{H}_N. \end{aligned}$

Theorem (Chambrion, Pozolli (2023) - Boscain, L. B., Sigalotti (2024))

For every $\psi_0 \in L^2(M)$, we have $\{e^{i\phi}\psi_0 \mid \phi \in \mathcal{H}_\infty\} \subset \mathcal{R}_0(\psi_0)$. If \mathcal{H}_∞ is dense in $L^2(M; \mathbb{R})$ then, (S) is small-time isomodulus approximately controllable.

Table of Contents

Bilinear quantum control systems

2 Eigenfunctions sharing the same modulus

- Definition
- Examples
- General results
- The one-dimensional case

Eigenfunctions sharing the same modulus

- $H_0 = -\Delta_g + V$, $(H_0, Dom(H_0))$ self-adjoint on \mathcal{H} with compact resolvant.
- Basis of eigenfunctions $(\phi_k)_{k\geq 1}$ associated with the eigenvalues $(\lambda_k)_{k\geq 1}$.
- $E_{\lambda_k} = \operatorname{Ker}(H_0 \lambda_k I)$ the eigenspace associated to λ_k .

Definition

 $\phi_k \in E_{\lambda_k}$, $\phi_\ell \in E_{\lambda_\ell}$ share the same modulus if $|\phi_k(x)| = |\phi_\ell(x)| \ \forall x \in M$.

Several notions:

- For k ≥ 1, H₀ may admit <u>eigenfunctions sharing the same modulus inside the</u> <u>energy level</u> λ_k, that is, there may exist two C-linearly independent eigenfunctions in E_{λ_k} that share the same modulus;
- For k, ℓ ≥ 1, H₀ may admit two eigenfunctions φ_k ∈ E_{λk} and φ_ℓ ∈ E_{λℓ} sharing the same modulus and corresponding to different energy levels λ_k and λ_ℓ;
- H_0 may admit eigenfunctions sharing the same modulus corresponding to all energy levels, that is, there may exist a subsequence $(\phi_{k_j})_{j\geq 1}$ of an orthonormal basis of eigenfunctions $(\phi_k)_{k\geq 1}$ such that the functions ϕ_{k_j} all share the same modulus and such that $\{\lambda_k \mid k \geq 1\} = \{\lambda_{k_j} \mid j \geq 1\}$.

Question: Conditions on (M, g, V) so that the Schrödinger eigenfunctions share the same modulus?

Laplace eigenfunctions on the torus \mathbb{T}^d

Let $M = \mathbb{T}^d$, V = 0, and $H_0 = -\Delta$. The eigenvalues, eigenfunctions are given by

$$\lambda_k = n_1^2 + \dots + n_d^2, \qquad (n_1, \dots, n_d) \in \mathbb{N}^d,$$
$$\Phi_k^{\pm}(x) = e^{\pm i \sum_{j=1}^d n_j x_j}, \qquad x = (x_1, \dots, x_d) \in \mathbb{T}^d.$$

Proposition

The operator H_0 admits eigenfunctions sharing the same modulus inside each energy level $\lambda_k > 0$ and corresponding to all energy levels.

The spherical harmonics

Let $M = \mathbb{S}^2$, V = 0, and $H_0 = -\Delta_g$. The eigenvalues, eigenfunctions are given by $\lambda_k = l(l+1), \qquad l \in \mathbb{N},$ $Y_l^m(\alpha, \beta) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos(\alpha)) e^{im\beta}, \qquad m \in \{-l, \dots, l\},$

where P_I^m is the Legendre polynomial, (α, β) are the spherical coordinates on \mathbb{S}^2 .

Proposition

For every $l \in \mathbb{N}$, $m \in \{-1, ..., l\}$, Y_l^m and Y_l^{-m} share the same modulus. Then, for each $l \ge 1$, H_0 admits eigenfunctions sharing the same modulus inside the energy level l(l+1).

Proof:
$$P_l^{-m} = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m$$
 then $Y_l^{-m}(\alpha,\beta) = (-1)^m e^{-2im\beta} Y_l^m(\alpha,\beta)$.

Question: for $k, l \ge 0$, $k \ne l$, do there exist $\phi_k \in E_{k(k+1)}$ and $\phi_l \in E_{l(l+1)}$ sharing the same modulus?

The disk with Dirichlet boundary conditions Let $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}, V = 0, H_0 = -\Delta$. The eigenvalues, eigenfunctions are given by

$$\lambda_{0,k} = j_{0,k}^{2}, \qquad \lambda_{n,k} = j_{n,k}^{2} \qquad \forall n, k \ge 1,$$
$$u_{0,k}(r,\theta) = \sqrt{\frac{1}{\pi}} \frac{1}{|J_{0}'(j_{0,k})|} J_{0}(j_{0,k}r)$$

$$u_{n,k}(r,\theta) = \sqrt{\frac{2}{\pi}} \frac{1}{|J'_n(j_{n,k}r)|} J_n(j_{n,k}r) \cos(n\theta) \text{ and } \sqrt{\frac{2}{\pi}} \frac{1}{|J'_n(j_{n,k}r)|} J_n(j_{n,k}r) \sin(n\theta),$$

 $j_{n,k}$ k-th zero of the Bessel function J_n .

Proposition

Let $n, m \ge 0$ be such that $n \ne m$ and $k, l \ge 1$. Assume that $\phi_{n,k}$ and $\phi_{m,l}$ are eigenfunctions corresponding to $j_{m,l}^2$ and $j_{n,k}^2$, respectively. Then $\phi_{n,k}$ and $\phi_{m,l}$ do not share the same modulus.

On the other hand, for $n \ge 1$ and $k \ge 1$, there exist two \mathbb{C} -linearly independent eigenfunctions corresponding to the eigenvalue $j_{n,k}^2$ that share the same modulus.

Proof: Siegel's result tells us that J_n and J_m for $n \neq m$ have no common zeros.

Harmonic oscillator in $\mathbb R$

Let $M = \mathbb{R}$, $V(x) = |x|^2$, $H_0 = -\partial_x^2 + |x|^2$. The eigenvalues, eigenfunctions are given by

$$\lambda_k = 2k + 1 \qquad \forall k \ge 0,$$

$$\Phi_k(x) = \frac{1}{\sqrt{2^k k! \sqrt{\pi}}} \left(x - \frac{d}{dx} \right)^k e^{-\frac{x^2}{2}} = H_k(x) e^{-x^2/2}, \qquad x \in \mathbb{R}, \quad k \in \mathbb{N},$$

 H_k is the Hermite polynomial of degree k.

Proposition

Let d = 1. For every $k_1, k_2 \in \mathbb{N}$, $k_1 \neq k_2$, H_0 does not admit two eigenfunctions corresponding to the energy levels $2k_1 + 1$ and $2k_2 + 1$ that share the same modulus.

Proof: Degree's argument.

Genericity results

• $H_0 = -\Delta_g + V$, $(H_0, Dom(H_0))$ self-adjoint on \mathcal{H} with compact resolvant.

Lemma

If λ_k and λ_ℓ are simple and distinct eigenvalues of H_0 with corresponding eigenfunctions ϕ_k and ϕ_ℓ , then ϕ_k and ϕ_ℓ cannot share the same modulus.

Corollary

Let M be a compact connected C^{∞} manifold M without boundary of dimension larger than or equal to 2. Then, generically with respect to the Riemanniann metric g, no pair of \mathbb{C} -linearly independent eigenfunctions of the Laplace–Beltrami operator $-\Delta_g$ share the same modulus.

Same result when considering the genericity with respect to the potential V (with no restriction on the dimension of M).

Ingredient: The spectrum of the Schrödinger operator is known to be generically simple with respect to g (Uhlenbeck (1976), Tanikawa (1979)) or V (Mason, Sigalotti (2010)).

Kévin Le Balc'h

Main result in 1-D

Theorem (Boscain, L.B., Sigalotti (2024))

If *M* is one-dimensional and the Schrödinger operator H_0 admits two \mathbb{C} -linearly independent eigenfunctions ϕ_k and ϕ_ℓ sharing the same modulus, then necessarily *M* is a closed curve and ϕ_k , ϕ_ℓ are nowhere vanishing on *M*. If, moreover, the two eigenfunctions correspond to distinct eigenvalues, then *V* is constant.

Proof: Four possibilities for M

- M is isometric to the line \mathbb{R} ,
- *M* is isometric to the half-line $[0, +\infty)$,
- M is isometric to a compact interval [0, L] for some L > 0,
- *M* is a closed curve isometric to the quotient $\mathbb{R}/L\mathbb{Z}$ for some L > 0.

Then ϕ_k and ϕ_ℓ share the same modulus $\rho := |\phi_k| = |\phi_\ell| \in C(M, [0, +\infty))$. Set $M_\rho = \{x \in M \mid \rho(x) \neq 0\}$ and let $\theta_k, \theta_\ell : M_\rho \to \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ be such that

$$\phi_k(x) =
ho(x)e^{i heta_k(x)}, \quad \phi_\ell(x) =
ho(x)e^{i heta_\ell(x)}, \qquad x \in M_
ho.$$
 (Polar form)

Write the equations for ϕ_k , ϕ_l , θ_k and θ_l . "Solve" them in 1-D.

Table of Contents

Bilinear quantum control systems

Eigenfunctions sharing the same modulus

- Definition
- Examples
- General results
- The one-dimensional case

Sum up, perspectives

$$\begin{cases} i\partial_t \psi = -\Delta_g \psi + V \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\ \text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\ \psi(0, \cdot) = \psi_0 & \text{in } M. \end{cases}$$

- Saturation property on Q, then small-time isomodulus approximate controllability of (S), i.e. {e^{iθ}ψ₀ | θ ∈ L²(M; T)} ⊂ R₀(ψ₀) (Duca, Nersesyan (2023)).
- ⇒ Main question: Conditions on (M, g, V) so that the Schrödinger eigenfunctions share the same modulus?
- Explicit examples included the torus, the sphere, the disk...
- Generically, the spectrum is simple so the answer is negative.
- Full treatment of the one-dimensional case.
- Examples of quantum graphs that exhibit more complex structures.