

Schrödinger eigenfunctions sharing the same modulus and applications to the control of quantum systems

Kévin Le Balc'h

INRIA Paris, Sorbonne Université, Laboratoire Jacques-Louis Lions

Joint work with Ugo Boscain (CNRS, LJLL, Sorbonne Université) and Mario Sigalotti (Inria, LJLL, Sorbonne Université)

X Partial differential equations, optimal design and numerics, Benasque

August 27th 2024

Table of Contents

¹ [Bilinear quantum control systems](#page-1-0)

[Eigenfunctions sharing the same modulus](#page-8-0)

- [Definition](#page-9-0)
- **•** [Examples](#page-10-0)
- **[General results](#page-14-0)**
- [The one-dimensional case](#page-15-0)

The bilinear Schrödinger equation

The bilinear Schrödinger equation is

 $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $i\partial_t \psi = (-\Delta_g + V)\psi + \sum_{i=1}^m u_i(t)Q_i(x)\psi$ in $(0, +\infty) \times M$, Boundary conditions $\qquad \qquad \text{on } (0, +\infty) \times \partial M,$ $\psi(0, \cdot) = \psi_0$ in *M*. (S)

where $\psi(t)\in\mathcal{H}:=L^2(M;\mathbb{C})$ state, $u(t)=(u_1(t),\ldots,u_m(t))\in\mathbb{R}^m$ the control.

- (M*,* g) smooth compact manifold, possibly with boundary.
- $\Delta_{\mathcal{g}} = \mathsf{div}_{\omega_{\mathcal{g}}} \circ \nabla_{\mathcal{g}}$ the Laplace-Beltrami operator on $(\mathcal{M}, \mathcal{g}).$
- $V \in L^{\infty}(M;\mathbb{R})$ electric potential.
- $Q = (Q_1, \ldots, Q_m) \in L^{\infty}(M; \mathbb{R})^m$ potentials of interactions.

The bilinear Schrödinger equation can be written as

 $\sqrt{ }$ J \mathcal{L} $i\partial_t \psi = H_0 \psi + \langle u(t), \mathsf{Q} \rangle_{\mathbb{R}^m} \psi$ in $(0, +\infty) \times M$ *,* Boundary conditions on $(0, +\infty) \times \partial M$, $\psi(0, \cdot) = \psi_0$ in *M*. (S)

Well-posedness and obstruction to exact controllability

$$
\begin{cases}\n\begin{aligned}\n\frac{\mathrm{i}\partial_t \psi = H_0 \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\
\text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\
\psi(0, \cdot) = \psi_0 & \text{in } M.\n\end{aligned}\n\end{cases} \tag{S}
$$

For every $\mathcal{T} > 0$, $\psi_0 \in L^2(M)$ and $u \in L^2(0,\, T; \mathbb{R}^d)$, there exists a unique mild solution $\psi = \psi(\cdot; \psi_0, \mu) \in C([0, T]; L^2(M))$ of [\(S\)](#page-2-0), i.e.,

$$
\psi(t)=e^{-itH_0}\psi_0+\int_0^t e^{-i(t-s)H_0}\langle u(s),Q(x)\rangle\psi(s)ds,\qquad \forall t\in[0,T].
$$

If $\psi_0 \in \mathcal{S} = \{ \psi \in L^2(M) \mid ||\psi||_{L^2(M)} = 1 \}$, then $\psi(t) \in \mathcal{S}$.

For $\psi_0 \in L^2(M)$, the **reachable space** is

$$
\mathcal{R}(\psi_0) := \{ \psi(t; \psi_0, u) \mid t \geq 0, \ u \in L^2(0, t; \mathbb{R}^d) \}.
$$

Theorem (Ball, Marsden, Slemrod (1982), Turinici (2000)) For every $\psi_0 \in \text{Dom}(H_0) \cap S$, $\overline{(\mathcal{R}(\psi_0))^c} = \text{Dom}(H_0) \cap S$. This means that the interior of $\mathcal{R}(\psi_0)$ in $\text{Dom}(H_0) \cap \mathcal{S}$ for the topology of $\text{Dom}(H_0)$ is empty.

Small-time isomodulus approximate controllability

$$
\begin{cases}\n\begin{aligned}\n\frac{\mathrm{i}\partial_t \psi = H_0 \psi + \langle u(t), Q \rangle_{\mathbb{R}^m} \psi & \text{in } (0, +\infty) \times M, \\
\text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\
\psi(0, \cdot) = \psi_0 & \text{in } M.\n\end{aligned}\n\end{cases} \tag{S}
$$

Due to BMS obstruction, people rather study:

- Exact controllability in regular spaces (Beauchard, Laurent (2010) ...).
- Large time approximate controllability (Boscain, Caponigro, Chambrion, Sigalotti (2012) ...)
- Small-time approximate controllability (Beauchard, Pozolli (2024) ...).

The **small-time approximately reachable space** is

$$
\overline{\mathcal{R}_0(\psi_0)}:=\{\psi_1\in\mathcal{S} \ ;
$$

 $\forall \varepsilon, \tau >0, \ \exists \, \mathcal{T} \in (0,\tau], \ \ u \in L^2(0,\,T; \mathbb{R}^m), \ \ \|\psi(\,T; \psi_0, u) - \psi_1\|_{L^2(M)} < \varepsilon\}.$

Here, we focus on

Definition

[\(S\)](#page-2-0) is small-time isomodulus approximately controllable from $\psi_0 \in \mathcal{S}$ if

$$
\{e^{i\theta}\psi_0 \mid \theta \in L^2(M; \mathbb{T})\} \subset \overline{\mathcal{R}_0(\psi_0)}.
$$

Duca, Nersesyan's results

 $\sqrt{ }$ $\left\langle \right\rangle$ \mathbf{I} $i\partial_t \psi = (-\Delta_g + V)\psi + \sum_{i=1}^m u_i(t)Q_i(x)\psi$ in $(0, +\infty) \times M$, Boundary conditions $\qquad \qquad \text{on } (0, +\infty) \times \partial M,$ $\psi(0, \cdot) = \psi_0$ in *M*. (S)

Let $M = \mathbb{T}^d$ and assume

 $x \mapsto 1, x \mapsto \sin\langle x, k \rangle, x \mapsto \cos\langle x, k \rangle \in \text{span}\{Q_1, \ldots, Q_m\}, \quad \forall k \in \mathcal{K}.$

 $\textsf{where} \,\, \mathcal{K} = \{(1, 0, \ldots, 0), (0, 1, 0 \ldots, 0), \ldots, (0, \ldots, 0, 1, 0), (1, 1, \ldots, 1)\} \subset \mathbb{R}^d.$

Theorem (Duca, Nersesyan (2023))

[\(S\)](#page-2-0) is small-time isomodulus approximately controllable.

Theorem (Duca, Nersesyan (2023)) If $V = 0$ then $e^{\pm i\langle k,x\rangle} \in \overline{\mathcal{R}_0(e^{\pm i\langle l,x\rangle})}.$

- Technique inspired by Agrachev, Sarychev (2005) for NS equations.
- **•** Extension to NLS.

An abstract limit using Lie brackets

$$
\begin{cases}\ni\partial_t\psi(t) = H_0\psi(t) + \sum_{j=1}^m u_j(t)H_j\psi(t), & t \in (0, +\infty), \\
\psi(0) = \psi_0.\n\end{cases}
$$
\n(5)

First directions: $\lim_{\delta\to 0} \exp\left(-i\delta\left(H_0+\sum_{j=1}^m\frac{u_j}{\delta}H_j\right)\right)\psi_0=\exp\left(-i\sum_{j=1}^m u_jH_j\right)\psi_0.$

Theorem (Chambrion, Pozolli (2023)) Let S be a bounded self-adjoint operator satisfying

$$
[S, Hj] = 0, \quad j = 1, \dots, m,
$$
 (Commutation)
\n
$$
SDom(H0) \subset Dom(H0), \quad [S, [S, [S, H0]]] Dom(H0) = 0.
$$
 (Stability)

Then, for each $\psi_0 \in \mathcal{H}$ and $u = (u_1, \ldots, u_m) \in \mathbb{R}^m$, the following limit holds in \mathcal{H}

$$
\lim_{\delta \to 0} e^{-i\delta^{-1/2}S} \exp\left(-i\delta \left(H_0 + \sum_{j=1}^m \frac{u_j}{\delta} H_j\right)\right) e^{i\delta^{-1/2}S} \psi_0
$$
\n
$$
= \exp\left(\frac{i}{2}[S, [S, H_0]] - i \sum_{j=1}^m u_j H_j\right) \psi_0.
$$
 (Second Lie bracket direction)

Application of the second Lie bracket direction

Theorem (Chambrion, Pozolli (2023) - Boscain, L.B., Sigalotti (2024))

For every $\psi_0\in L^2(M)$, $(u_1,\ldots,u_m)\in \mathbb{R}^m$, $\varphi\in C^\infty(M;\mathbb{R})$ such that $\varphi Dom(H_0)\subset Dom(H_0)$,

$$
\lim_{\delta \to 0} e^{-i\delta^{-1/2}\varphi} \exp\left(-i\delta \left(-\Delta_g + V + \sum_{j=1}^m \frac{u_j}{\delta} Q_j\right)\right) e^{i\delta^{-1/2}\varphi} \psi_0
$$

$$
= \exp\left(-i g (\nabla_g \varphi, \nabla_g \varphi) - i \sum_{j=1}^m u_j Q_j\right) \psi_0.
$$

 $\mathcal{H}_0 = \{\varphi \in \mathsf{span}\{\mathsf{Q}_1,\ldots,\mathsf{Q}_m\} \mid \varphi\mathrm{Dom} (H_0) \subset \mathrm{Dom} (H_0)\} \subset \mathsf{L}^2(M;\mathbb{C}),$ $\mathcal{H}_{N+1} = \{\varphi \in \mathcal{H}_N + \text{span}\{g(\nabla_g \psi, \nabla_g \psi) \mid \psi \in \mathcal{H}_N\} \mid \varphi \text{Dom}(H_0) \subset \text{Dom}(H_0)\}, \quad N \ge 0.$ $\mathcal{H}_{\infty} = \begin{bmatrix} \end{bmatrix} \mathcal{H}_N.$ $N>0$

Theorem (Chambrion, Pozolli (2023) - Boscain, L. B., Sigalotti (2024))

For every $\psi_0 \in L^2(M)$, we have $\{e^{i\phi}\psi_0 \mid \phi \in \mathcal{H}_\infty\} \subset \overline{\mathcal{R}_0(\psi_0)}$. If \mathcal{H}_{∞} is dense in $L^2(M;\mathbb{R})$ then, [\(S\)](#page-2-0) is small-time isomodulus approximately controllable.

Table of Contents

[Bilinear quantum control systems](#page-1-0)

² [Eigenfunctions sharing the same modulus](#page-8-0)

- **•** [Definition](#page-9-0)
- [Examples](#page-10-0)
- **[General results](#page-14-0)**
- **o** [The one-dimensional case](#page-15-0)

Eigenfunctions sharing the same modulus

- $H_0 = -\Delta_g + V$, $(H_0, \text{Dom}(H_0))$ self-adjoint on H with compact resolvant.
- **•** Basis of eigenfunctions $(\phi_k)_{k>1}$ associated with the eigenvalues $(\lambda_k)_{k>1}$.
- $E_{\lambda_k} = \text{Ker}(H_0 \lambda_k I)$ the eigenspace associated to λ_k .

Definition

 $\phi_k \in E_{\lambda_k}, \ \phi_\ell \in E_{\lambda_\ell}$ share the same modulus if $|\phi_k(x)| = |\phi_\ell(x)| \ \forall x \in M$.

Several notions:

- For $k \geq 1$, H_0 may admit eigenfunctions sharing the same modulus inside the energy level λ_k , that is, there may exist two C-linearly independent eigenfunctions in E_{λ_k} that share the same modulus;
- For $k,\ell \geq 1$, H_0 may admit <u>two eigenfunctions $\phi_k \in E_{\lambda_k}$ and $\phi_\ell \in E_{\lambda_\ell}$ sharing</u> the same modulus and corresponding to different energy levels λ_k and λ_k ;
- \bullet H₀ may admit eigenfunctions sharing the same modulus corresponding to all $\overline{\mathsf{energy}}$ levels, that is, there may exist a subsequence $(\phi_{k_j})_{j\geq 1}$ of an orthonormal basis of eigenfunctions $(\phi_k)_{k\geq 1}$ such that the functions ϕ_{k_j} all share the same modulus and such that $\{\lambda_k \mid k\geq 1\}=\{\lambda_{k_j} \mid j\geq 1\}.$

Question: Conditions on (M*,* g*,* V) **so that the Schrödinger eigenfunctions share the same modulus?**

Laplace eigenfunctions on the torus \mathbb{T}^d

Let $M=\mathbb{T}^d$, $V=0$, and $H_0=-\Delta$. The eigenvalues, eigenfunctions are given by

$$
\lambda_k = n_1^2 + \dots + n_d^2, \qquad (n_1, \dots, n_d) \in \mathbb{N}^d,
$$

$$
\Phi_k^{\pm}(x) = e^{\pm i \sum_{j=1}^d n_j x_j}, \qquad x = (x_1, \dots, x_d) \in \mathbb{T}^d.
$$

Proposition

The operator H_0 admits eigenfunctions sharing the same modulus inside each energy level $\lambda_k > 0$ and corresponding to all energy levels.

The spherical harmonics

Let $M=\mathbb{S}^2,~V=0$, and $H_0=-\Delta_g.$ The eigenvalues, eigenfunctions are given by $\lambda_k = l(l+1), \qquad l \in \mathbb{N},$ $Y_l^m(\alpha, \beta) = \sqrt{\frac{2l+1}{4\pi}}$ 4*π* $\frac{(l-m)!}{(l+m)!}P^m_l(\cos(\alpha))e^{im\beta}, \qquad m\in\{-l,\ldots,l\},$

where P^m_l is the Legendre polynomial, (α,β) are the spherical coordinates on \mathbb{S}^2 .

Proposition

For every $l \in \mathbb{N}$, $m \in \{-l, ..., l\}$, Y_l^m and Y_l^{-m} share the same modulus. Then, for each $l > 1$, H_0 admits eigenfunctions sharing the same modulus inside the energy level $l(l + 1)$.

Proof:
$$
P_l^{-m} = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m
$$
 then $Y_l^{-m}(\alpha, \beta) = (-1)^m e^{-2im\beta} Y_l^m(\alpha, \beta)$.

Question: for $k, l \ge 0, k \ne l$, do there exist $\phi_k \in E_{k(k+1)}$ and $\phi_l \in E_{l(l+1)}$ sharing the same modulus?

The disk with Dirichlet boundary conditions Let $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$, $V = 0$, $H_0 = -\Delta$. The eigenvalues, eigenfunctions are given by

$$
\lambda_{0,k} = j_{0,k}^2, \qquad \lambda_{n,k} = j_{n,k}^2 \qquad \forall n, k \ge 1,
$$

$$
u_{0,k}(r,\theta) = \sqrt{\frac{1}{\pi}} \frac{1}{|J_0'(j_{0,k})|} J_0(j_{0,k}r)
$$

$$
u_{n,k}(r,\theta)=\sqrt{\frac{2}{\pi}}\frac{1}{|J'_n(j_{n,k})|}J_n(j_{n,k}r)\cos(n\theta)\text{ and } \sqrt{\frac{2}{\pi}}\frac{1}{|J'_n(j_{n,k})|}J_n(j_{n,k}r)\sin(n\theta),
$$

 $j_{n,k}$ k-th zero of the Bessel function J_n .

Proposition

Let n, $m \geq 0$ be such that $n \neq m$ and $k, l \geq 1$. Assume that $\phi_{n,k}$ and $\phi_{m,l}$ are eigenfunctions corresponding to $j_{m,l}^2$ and $j_{n,k}^2$, respectively. Then $\phi_{n,k}$ and $\phi_{m,l}$ do not share the same modulus.

On the other hand, for $n > 1$ and $k > 1$, there exist two \mathbb{C} -linearly independent eigenfunctions corresponding to the eigenvalue $j_{n,k}^2$ that share the same modulus.

Proof: Siegel's result tells us that J_n and J_m for $n \neq m$ have no common zeros.

Harmonic oscillator in R

Let $M = \mathbb{R}$, $V(x) = |x|^2$, $H_0 = -\partial_x^2 + |x|^2$. The eigenvalues, eigenfunctions are given by

$$
\lambda_k = 2k+1 \qquad \forall k \geq 0,
$$

$$
\Phi_k(x)=\frac{1}{\sqrt{2^k k!\sqrt{\pi}}}\left(x-\frac{d}{dx}\right)^k e^{-\frac{x^2}{2}}=H_k(x)e^{-x^2/2}, \qquad x\in\mathbb{R}, \quad k\in\mathbb{N},
$$

 H_k is the Hermite polynomial of degree k.

Proposition

Let $d = 1$. For every $k_1, k_2 \in \mathbb{N}$, $k_1 \neq k_2$, H_0 does not admit two eigenfunctions corresponding to the energy levels $2k_1 + 1$ and $2k_2 + 1$ that share the same modulus.

Proof: Degree's argument.

Genericity results

 \bullet H₀ = $-\Delta_{\sigma}$ + V, (H₀, Dom(H₀)) self-adjoint on H with compact resolvant.

Lemma

If λ_k and λ_ℓ are simple and distinct eigenvalues of H_0 with corresponding eigenfunctions ϕ_k and ϕ_ℓ , then ϕ_k and ϕ_ℓ cannot share the same modulus.

Corollary

Let M be a compact connected C^{∞} manifold M without boundary of dimension larger than or equal to 2. Then, generically with respect to the Riemanniann metric g, no pair of C-linearly independent eigenfunctions of the Laplace–Beltrami operator $-\Delta_{g}$ share the same modulus.

Same result when considering the genericity with respect to the potential V (with no restriction on the dimension of M).

Ingredient: The spectrum of the Schrödinger operator is known to be generically simple with respect to g (Uhlenbeck (1976), Tanikawa (1979)) or V (Mason, Sigalotti (2010)).

Main result in 1-D

Theorem (Boscain, L.B., Sigalotti (2024))

If M is one-dimensional and the Schrödinger operator H_0 admits two $\mathbb C$ -linearly independent eigenfunctions *φ*^k and *φ`* sharing the same modulus, then necessarily M is a closed curve and ϕ_k , ϕ_ℓ are nowhere vanishing on M. If, moreover, the two eigenfunctions correspond to distinct eigenvalues, then V is constant.

Proof: Four possibilities for M

- \bullet *M* is isometric to the line \mathbb{R} .
- *M* is isometric to the half-line $[0, +\infty)$,
- M is isometric to a compact interval $[0, L]$ for some $L > 0$,
- M is a closed curve isometric to the quotient R*/*LZ for some L *>* 0.

Then ϕ_k and ϕ_ℓ share the same modulus $\rho := |\phi_k| = |\phi_\ell| \in C(M, [0, +\infty))$. Set $M_o = \{x \in M \mid \rho(x) \neq 0\}$ and let $\theta_k, \theta_\ell : M_o \to \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ be such that

$$
\phi_k(x) = \rho(x)e^{i\theta_k(x)}, \quad \phi_\ell(x) = \rho(x)e^{i\theta_\ell(x)}, \qquad x \in M_\rho.
$$
 (Polar form)

Write the equations for $\phi_{\bm k},\,\phi_{\bm l},\,\theta_{\bm k}$ and $\theta_{\bm l}.$ "Solve" them in 1-D.

Table of Contents

[Bilinear quantum control systems](#page-1-0)

[Eigenfunctions sharing the same modulus](#page-8-0)

- **·** [Definition](#page-9-0)
- **•** [Examples](#page-10-0)
- **[General results](#page-14-0)**
- [The one-dimensional case](#page-15-0)

Sum up, perspectives

$$
\begin{cases}\ni\partial_t\psi = -\Delta_g\psi + V\psi + \langle u(t), Q\rangle_{\mathbb{R}^m}\psi & \text{in } (0, +\infty) \times M, \\
\text{Boundary conditions} & \text{on } (0, +\infty) \times \partial M, \\
\psi(0, \cdot) = \psi_0 & \text{in } M.\n\end{cases} (S)
$$

- \bullet Saturation property on Q, then small-time isomodulus approximate $\text{controllability of (S), i.e. } \{e^{i\theta}\psi_0 \mid \theta \in L^2(\mathcal{M};\mathbb{T})\} \subset \overline{\mathcal{R}_0(\psi_0)}$ $\text{controllability of (S), i.e. } \{e^{i\theta}\psi_0 \mid \theta \in L^2(\mathcal{M};\mathbb{T})\} \subset \overline{\mathcal{R}_0(\psi_0)}$ $\text{controllability of (S), i.e. } \{e^{i\theta}\psi_0 \mid \theta \in L^2(\mathcal{M};\mathbb{T})\} \subset \overline{\mathcal{R}_0(\psi_0)}$ (Duca, Nersesyan (2023)).
- ⇒ **Main question**: Conditions on (M*,* g*,* V) so that the Schrödinger eigenfunctions share the same modulus?
- Explicit examples included the torus, the sphere, the disk...
- Generically, the spectrum is simple so the answer is negative.
- Full treatment of the one-dimensional case.
- Examples of quantum graphs that exhibit more complex structures.