Robust training of neural ordinary differential equations

Daniel Ferndndez Martinez
Benasque, 26 August, 2024

Universidad Auténoma de Madrid

Supervised Learning setting

Setting: Data (x,y) ~

~ is (in general) an unknown probability distribution

Goal: Given a sample data x € R? predict y € RP

e Choose a model F

Model
Feature (input) 9 Label (output)

x € R? F F(x) € R

Supervised Learning setting

Setting: Data (x,y) ~

~ is (in general) an unknown probability distribution

Goal: Given a sample data x € R? predict y € RP

e Choose a model F

) Model
Feature (input) 9 Label (output)
x € R? F F(x) € R
Some typical model choices:
B Linear regression e
—>»
M Neural network —>

B Neural ODE

Neural ordinary differential equations

A neural ODE (NODE) [Chen, 2018] in its most general form, where xo € R
is the input (features), u = [w, b] € R™ is the control (parameters) and £
some neural network architecture, is given by

x(t) = f(t,x(t),u), te(0,T]

x(0) = xo ()

Neural ordinary differential equations

A neural ODE (NODE) [Chen, 2018] in its most general form, where xo € R
is the input (features), u = [w, b] € R™ is the control (parameters) and £
some neural network architecture, is given by

x(t) = f(t,x(t),u), te(0,T]

x(0) = xo ()

Tl

XD = 5O 4 pf (e, xD u)

X(O) = X0

Neural ordinary differential equations

A neural ODE (NODE) [Chen, 2018] in its most general form, where xo € R
is the input (features), u = [w, b] € R™ is the control (parameters) and £

some neural network architecture, is given by

x(t) = f(t,x(t),u), te(0,T] (1)
x(0) = xo

Tl

XD = 5O 4 pf (e, xD u)

X(O) = X0
The “N” in NODEs:
) Output:
o Inside: f(x,u) = o(w - x+b) F(x0) = P o ®r(x)
e Outside: f(x,u) = wo(x)+ b o P(x0) = x(t; x0) flow map
o Bottleneck: e P=Mx+ N, M,N linear

f(x,u) = weo(wy - x + b)

Optimising the model

e Loss function J(u; x,y) as a measure of error between predicted and
actual values for each control/parameter u.
e Goal: Find
muin [E(Xﬁy)NWJ(u; X,y)}

But « is unknown... find instead

N
mln E U X:,y:

Optimising the model

e Loss function J(u; x,y) as a measure of error between predicted and
actual values for each control/parameter u.
e Goal: Find
muin []E(Xﬁy)NWJ(u; X,y)}

But « is unknown... find instead

N
m|n g (u; xi, i)

Training (optimisation
Training data g (op) “Optimal”

{(xi, yi) 1 CRY x R parameters (control)
ueR%

Optimising the model

e Loss function J(u; x,y) as a measure of error between predicted and
actual values for each control/parameter u.
e Goal: Find
muin []E(Xﬁy)NWJ(u; X,y)}

But « is unknown... find instead

N
mln E U X:,y:

Training (optimisation)

Training data “Optimal”
{(xi, yi) 1 CRY x R parameters (control)
ueR%

e Optimisation through Gradient Descent (GD):
g = gk v, 6]

e Variants of GD used in practice: SGD, Adam, - - -

e Robustness: the ability to withstand or overcome adverse conditions or
rigorous testing.

e Data (x, y) is supposed to follow a probability distribution ~

e Classical training might not give good results for perturbed input data

e Robustness: the ability to withstand or overcome adverse conditions or
rigorous testing.

e Data (x, y) is supposed to follow a probability distribution ~

e Classical training might not give good results for perturbed input data

Robustness

e Robustness: the ability to withstand or overcome adverse conditions or
rigorous testing.

e Data (x, y) is supposed to follow a probability distribution ~

e Classical training might not give good results for perturbed input data

stop interference limit 70

Robustness

e Robustness: the ability to withstand or overcome adverse conditions or
rigorous testing.

e Data (x, y) is supposed to follow a probability distribution ~
e Classical training might not give good results for perturbed input data

Applications in
B Autonomous driving
B Malware/spam detection

B Malfunctions (aeronautics,
medicine)

stop interference limit 70

Input perturbation in classification problems:

e Budget/force e > 0, perturbation s(¢) € R?
e Perturbed input x + s(e)

Input perturbation in classification problems:
e Budget/force e > 0, perturbation s(¢) € R?

e Perturbed input x + s(e)

B Random perturbation s ~ € - N(0, /d)
B Adversarial attack s € B.(0) C R?

Input perturbation in classification problems:

e Budget/force e > 0, perturbation s(¢) € R?
e Perturbed input x + s(e)

B Random perturbation s ~ € - N(0, /d)
B Adversarial attack s € B.(0) C R?

Solution: For a given norm / in RY,
deal with the robust training problem

max J(uix +s, y)}

Tl

muin E(xy)~ry [,E’?)ag(l J(uix + 5V7)/):|

muin Ey)~y |:

Input perturbation in classification problems:

e Budget/force e > 0, perturbation s(¢) € R?
e Perturbed input x + s(e)

B Random perturbation s ~ € - N(0, /d)
B Adversarial attack s € B.(0) C R?

Solution: For a given norm / in RY, . T
. L. 1) Solve the inner maximization
deal with the robust training problem

problem
Min Eie,y)ny LE‘S‘)"”SXE J(u; x + s,y)} H(u; x,y) == i J(u; x+ev,y).
Tl 2) Solve the outer minimization
problem
muin E(xy)~ry [Iw)asxl J(u; x + ev, }/)} muin E(x,y)~y H(u; %, y).

Inner maximization problem

Taylor expansion of J at x results in

J(u; = J(u; «J(uix,y), v) + O(€"
/?3)a§x1 (u;x +ev,y) (u X,y)+el?3)a§x1<v (u;x,y), v) + O(€)

Inner maximization problem

Taylor expansion of J at x results in
I[n)a<xl J(uix+ev,y)=J(u;x,y)+¢€ En)ax (Vd(u; x,), v) + O(e%)
Modified robust training problem

mlnE o)~y | J(U %, y) + E/?\j)a<X1<VXJ(U;X’y)’ v)

Inner maximization problem

Taylor expansion of J at x results in

J(u; = J(u; «J(uix,y), v) + O(€"
I?;\)agxl (u;x +ev,y) (u x,y)+el?3)a§><1<v (u;x,y), v) + O(€)

Modified robust training problem

min E(x,y)~ry [J(u;x,y) + € /[U)agxl<vXJ(U; x,y), V)

£%° norm (Fast Gradient Sign Method [Goodfellow, 2014]):

o [IVad(u; x, y)lli = maxyy) o <1{Vxd(ui X,), v)
o v — sign(VxJ(u;XJ/)) maximizes <V><J(U;X7y)7 V>

+.007 =

. T+
* sign(V.J (6, .) esign(V,.J(0, 2, y))
y ="“panda” “nematode” “gibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %

confidence confidence confidence

Classical training: Discretize —> Optimize

Remember gradient descent u**! = u* — 6V, J [u¥].
Gradient computation:
1) Discretize x(t)
x = ODESolver(t, X(O)7 e ,x(lfl), u).
2) Apply chain rule (backpropagation)

8J oxW ax)

V.nd = IxD ox(=1) gy

Classical training: Optimize —> Discretize

From Pontryagin's Maximum Principle we can directly compute V,J.
Suppose J can be written as

Heray)= / L(x(t), u) dt + U(7(x),) @

Classical training: Optimize —> Discretize

From Pontryagin's Maximum Principle we can directly compute V,J.
Suppose J can be written as

J(u; x0,y) = /0 L(x(t), u) dt + WV (P1(x0),y) 2

Gradient computation through the adjoint [Massaroli, 2020]

Vud = / t), Duf(t,x(t), u)) dt

where p is the solution to

p(t) = —Dxf(t,x(t),u)"p(t) — ViL(t,x(t), u),
P(T) = V)V (x(T),y).

Adjoint method IS backpropagation!

Classical training: Optimize —> Discretize

From Pontryagin's Maximum Principle we can directly compute V,J.
Suppose J can be written as

J(u; x0,y) = /0 L(x(t), u) dt + WV (P1(x0),y) 2

Gradient computation through the adjoint [Massaroli, 2020]

Vud = / t), Duf(t,x(t), u)) dt

where p is the solution to

p(t) = —Dxf(t,x(t),u)"p(t) — ViL(t,x(t), u),
P(T) = V)V (x(T),y).

Adjoint method IS backpropagation!
Case of time-dependent controls: Gateaux derivative

duJ(U)n:/o (p(t), Duf (u(t), x(t))n(t)) dt.

Linear sensitivity of loss

Linear sensitivity - initial data

For u € L?((0, T),R%) and y € R fixed, linear sensitivity of xo — J(u; X0,)
in the direction v € R? can be expressed as

VoJ(x0)v := lim J(uixo + ev) = J(xo)

e—0 €

=p(0)-v

where p(t) is the solution to the adjoint equation.

p(t) = =Dxf(x(t), u(t))Tp(t) — ViL(t, x(t),u), t€]0,T) 3)
p

(T) = Doy (xp)J(u; X0, ¥)

This result is derived from the linear sensitivity equation of x(t) in the direction
v € R
45,x(t) = Duf(x(t), u(t))dux(t), te€(0,T]
0vx(0) = v
Then penalty term then becomes

(Vs J(0),) = € max (p(0),v)

(4)

10

Penalty term

Augmented loss function

Let the control u € L*((0, T); R%) be fixed and let x(t) y p(t) be the
solutions of the state and adjoint equation respectively. For fixed € > 0 the

augmented loss function

dilu; xo; €] := J[u; x0] + elw)a§><1<p(0), v)

approximates the minimization problem with linear precision in e.

If I is the norm £" for r € [1, 0], the augmented loss function can be written

as
Jr[u; xo0; €] := J[u; xo] + €||p(0)|

where r and r’ are Holder conjugates, i.e. 1/r+1/r = 1.

Proof is based on Holder inequality.

11

Computation of the penalty term gradient

Gradient of quadratic penalty term [Wohrer, Zuazua]
Let the control u be fixed and consider a loss function J having only terminal
cost W. We consider the quadratic penalty term with

S[u] := [|pu(0) |12 ()

where p is solution of (3) with controls u and g solution of (6).
T
duS(u)n = —/O q(t) - Ducf (x(t), u(t))T [x(2), p(t)]
*/0 q(t) - Duxf (x(t), u(t))"[n(t), p(t)] dt

a(t) = Def(x(t), u(t))q(t), te€ (0, T)
4(0) = —pu(0)

12

Numerical aspects

Piecewise constant controls

u(t) = u;, t € [ti, tita] (7)

with to := 0y ty := T, then

20 = [DA (x(0), (o) o @)

where p is the solution to the adjoint equation.

e In the numerical experiments we use piecewise constant controls consisting
of 10 pieces (stacked NODEs)

e Code developed from https://github.com /twoehrer/robust_.nODE

13

Experiments

Training set Testing set

-1

14

Experiments

1.000 20 1.000
0.857 0.857
0.714 0.714
0.571 0571 &
< H
0.429 0420F
-05 g
0.286 0.286
-1.0
0143 _1s 0143
-2.0 0.000 =20 0.000
-20 -15 -1.0 -05 0.0 -20 -15 -1.0 -05 00 05 10 15 20
X x
e=0.2 =103
1.000 1.000
0.857 0.857
0.714 0.714
0.571 g 0571 g
£ 00 § 2 H
04295 04293
-05 -0.5 g
0.286 0.286
-1.0 -1.0
“15 0143 _1s 0143
-2.0 0.000 0.000

-20
-20 -15 -10 05 00 05 10 15 20 =20 -15 -1.0 =05 00 05 10 15 20

X X 15

e We perform robust trainings with differents values € given to penalty term

e \We compare the performance in perturbed testing set

Evaluation set H Classical training | 0.1-robust | 0.2-robust | 0.3-robust

Test 0.042488 0.041761 0.075317 0.092077
0.1-FGSM-attack test 0.064908 0.063728 0.085838 0.207678
0.1-perturbed test 0.046271 0.041761 0.080335 0.182127
0.2-perturbed test 0.075131 0.087367 0.080335 0.190990
0.3-perturbed test 0.0105135 0.0102906 | 0.092077 0.199580

16

Experiments

Training set Testing set

-1

|
w
|
]
|
=
=]
=
A
w
|
w
I
[N]
|
[N
=]
o
)
w

17

Experiments

-20
20 -15 -1.0 -05 00
x

% 00

-05

-10

-15

-20
-20 -15 -10 05 00 05 10 15 20
x

1.000

0857

0714

0571

0429

prediction prob.

0286
0143

0.000

1.000
0857

0714

0571 8
€

04295

0286

0143

0.000

x

-20
-20 -15 -1.0 -05 00 05 5 20
x

e=20.3

-20
=20 -15 -1.0 =05 00 05 10 15 20
x

1.000

0857

0714

0571

0.429

prediction prob.

0286

0143

0.000

1.000

0857

0714

0571

0429

prediction prob.

0286

0143

0.000

18

Conclusions

Conclusions:

e Adversarial attacks are a threat
to Machine Learning models

e NODEs let us treat problems
about neural networks from a
continuous point of view

e Main takeaway: memory
efficient methods for computing
gradient of loss function

19

Conclusions

Future directions:

. e Generalize gradient computation
Conclusions:

of the penalty term to a more

e Adversarial attacks are a threat
general norm

to Machine Learning models
e Choice of € > 0 for robust
e NODEs let us treat problems .
training
about neural networks from a

continuous point of view > (CnEr G §pes 6l

. perturbation
e Main takeaway: memory

efficient methods for computing e Enable robust training only in

e of less el some part of the training process
and then switch to classical

training

19

Thank you for your attention!

20

