Robust training of neural ordinary differential equations

Daniel Fernández Martínez Benasque, 26 August, 2024

Universidad Autónoma de Madrid

Supervised Learning setting

- **Setting**: Data $(x, y) \sim \gamma$
- ullet γ is (in general) an unknown probability distribution
- Goal: Given a sample data $x \in \mathbb{R}^d$ predict $y \in \mathbb{R}^D$
- Choose a model F

Supervised Learning setting

- **Setting**: Data $(x, y) \sim \gamma$
- $\bullet \ \gamma$ is (in general) an unknown probability distribution
- Goal: Given a sample data $x \in \mathbb{R}^d$ predict $y \in \mathbb{R}^D$
- Choose a model F

Neural ordinary differential equations

A **neural ODE** (NODE) [Chen, 2018] in its most general form, where $x_0 \in \mathbb{R}^d$ is the **input** (features), $u = [w, b] \in \mathbb{R}^{d_u}$ is the **control** (parameters) and f some **neural network architecture**, is given by

$$\begin{cases} \dot{x}(t) = f(t, x(t), u), & t \in (0, T] \\ x(0) = x_0 \end{cases}$$
 (1)

Neural ordinary differential equations

A **neural ODE** (NODE) [Chen, 2018] in its most general form, where $x_0 \in \mathbb{R}^d$ is the **input** (features), $u = [w, b] \in \mathbb{R}^{d_u}$ is the **control** (parameters) and f some **neural network architecture**, is given by

$$\begin{cases} \dot{x}(t) = f(t, x(t), u), \quad t \in (0, T] \\ x(0) = x_0 \end{cases} \tag{1}$$

$$\begin{cases} x^{(t+1)} = x^{(t)} + hf(t, x^{(t)}, u) \\ x^{(0)} = x_0 \end{cases}$$

Neural ordinary differential equations

A **neural ODE** (NODE) [Chen, 2018] in its most general form, where $x_0 \in \mathbb{R}^d$ is the **input** (features), $u = [w, b] \in \mathbb{R}^{d_u}$ is the **control** (parameters) and f some **neural network architecture**, is given by

$$\begin{cases} \dot{x}(t) = f(t, x(t), u), & t \in (0, T] \\ x(0) = x_0 \end{cases}$$
 (1)

$$\uparrow \downarrow$$

$$\begin{cases} x^{(t+1)} = x^{(t)} + hf(t, x^{(t)}, \mathbf{u}) \\ x^{(0)} = x_0 \end{cases}$$

The "N" in NODEs:

- Inside: $f(x, u) = \sigma(w \cdot x + b)$
- Outside: $f(x, u) = w\sigma(x) + b$
- Bottleneck:

$$f(x, u) = w_2 \sigma(w_1 \cdot x + b)$$

Output:

$$F(x_0) := P \circ \Phi_T(x_0)$$

- $\Phi_t(x_0) = x(t; x_0)$ flow map
- P = Mx + N, M, N linear

Optimising the model

- Loss function J(u; x, y) as a measure of error between predicted and actual values for each control/parameter u.
- Goal: Find

$$\min_{u} \left[\mathbb{E}_{(x,y) \sim \gamma} J(u; x, y) \right]$$

But γ is unknown... find instead

$$\min_{u} \frac{1}{N} \sum_{i=1}^{N} J(u; x_i, y_i)$$

Optimising the model

- Loss function J(u; x, y) as a measure of error between predicted and actual values for each control/parameter u.
- Goal: Find

$$\min_{u} \left[\mathbb{E}_{(x,y) \sim \gamma} J(u; x, y) \right]$$

But γ is unknown... find instead

$$\min_{u} \frac{1}{N} \sum_{i=1}^{N} J(u; x_i, y_i)$$

л

Optimising the model

- Loss function J(u; x, y) as a measure of error between predicted and actual values for each control/parameter u.
- Goal: Find

$$\min_{u} \left[\mathbb{E}_{(x,y) \sim \gamma} J(u; x, y) \right]$$

But γ is unknown... find instead

$$\min_{u} \frac{1}{N} \sum_{i=1}^{N} J(u; x_i, y_i)$$

Training data
$$\{(x_i, y_i)\}_{i=1}^N \subseteq \mathbb{R}^d \times \mathbb{R}^D$$
Training (optimisation)
$$\qquad \qquad \text{"Optimal"}$$

$$parameters (control)$$

$$u \in \mathbb{R}^{d_u}$$

• Optimisation through Gradient Descent (GD):

$$u^{k+1} = u^k - \eta \nabla_u J \left[u^k \right]$$

• Variants of GD used in practice: SGD, Adam, · · ·

4

- Robustness: the ability to withstand or overcome adverse conditions or rigorous testing.
- ullet Data (x,y) is supposed to follow a probability distribution γ
- Classical training might not give good results for perturbed input data

- Robustness: the ability to withstand or overcome adverse conditions or rigorous testing.
- Data (x, y) is supposed to follow a probability distribution γ
- Classical training might not give good results for perturbed input data

- Robustness: the ability to withstand or overcome adverse conditions or rigorous testing.
- Data (x, y) is supposed to follow a probability distribution γ
- Classical training might not give good results for perturbed input data

- Robustness: the ability to withstand or overcome adverse conditions or rigorous testing.
- Data (x, y) is supposed to follow a probability distribution γ
- Classical training might not give good results for perturbed input data

Applications in

- Autonomous driving
- Malware/spam detection
- Malfunctions (aeronautics, medicine)

stop interference

limit 70

Input perturbation in classification problems:

- Budget/force $\epsilon > 0$, perturbation $s(\epsilon) \in \mathbb{R}^d$
- Perturbed input $x + s(\epsilon)$

Input perturbation in classification problems:

- Budget/force $\epsilon > 0$, perturbation $s(\epsilon) \in \mathbb{R}^d$
- Perturbed input $x + s(\epsilon)$
- Random perturbation $s \sim \epsilon \cdot N(0, Id)$
- lacksquare Adversarial attack $s \in B_{\epsilon}(0) \subseteq \mathbb{R}^d$

Input perturbation in classification problems:

- Budget/force $\epsilon > 0$, perturbation $s(\epsilon) \in \mathbb{R}^d$
- Perturbed input $x + s(\epsilon)$
- Random perturbation $s \sim \epsilon \cdot N(0, Id)$
- Adversarial attack $s \in B_{\epsilon}(0) \subseteq \mathbb{R}^d$

Solution: For a given norm I in \mathbb{R}^d , deal with the **robust training** problem

$$\min_{u} \mathbb{E}_{(x,y) \sim \gamma} \left[\max_{|f(s) \le \epsilon} J(u; x + s, y) \right]$$

$$\uparrow \downarrow$$

$$\min_{u} \mathbb{E}_{(x,y) \sim \gamma} \left[\max_{|f(v) \le 1} J(u; x + \epsilon v, y) \right]$$

6

Input perturbation in classification problems:

- Budget/force $\epsilon >$ 0, perturbation $s(\epsilon) \in \mathbb{R}^d$
- Perturbed input $x + s(\epsilon)$
- Random perturbation $s \sim \epsilon \cdot N(0, Id)$
- lacksquare Adversarial attack $s \in B_{\epsilon}(0) \subseteq \mathbb{R}^d$

Solution: For a given norm I in \mathbb{R}^d , deal with the **robust training** problem

$$\min_{u} \mathbb{E}_{(x,y)\sim\gamma} \left[\max_{I(s)\leq\epsilon} J(u;x+s,y) \right]$$

$$\min_{u} \mathbb{E}_{(x,y)\sim\gamma} \left[\max_{I(v)\leq 1} J(u; x + \epsilon v, y) \right]$$

Solve the inner maximization problem

$$H(u;x,y) := \max_{I(v) \le 1} J(u;x+\epsilon v,y).$$

Solve the outer minimization problem

$$\min_{u} \mathbb{E}_{(x,y)\sim\gamma} H(u;x,y).$$

Inner maximization problem

Taylor expansion of J at x results in

$$\max_{J(v) \le 1} J(u; x + \epsilon v, y) = J(u; x, y) + \epsilon \max_{J(v) \le 1} \langle \nabla_x J(u; x, y), v \rangle + O(\epsilon^2)$$

Inner maximization problem

Taylor expansion of J at x results in

$$\max_{I(v) \le 1} J(u; x + \epsilon v, y) = J(u; x, y) + \epsilon \max_{I(v) \le 1} \langle \nabla_x J(u; x, y), v \rangle + O(\epsilon^2)$$

Modified robust training problem

$$\min_{u} \mathbb{E}_{(x,y)\sim\gamma} \left[J(u;x,y) + \epsilon \max_{J(v)\leq 1} \langle \nabla_{x} J(u;x,y), v \rangle \right]$$

Inner maximization problem

Taylor expansion of J at x results in

$$\max_{I(v) \le 1} J(u; x + \epsilon v, y) = J(u; x, y) + \epsilon \max_{I(v) \le 1} \langle \nabla_x J(u; x, y), v \rangle + O(\epsilon^2)$$

Modified robust training problem

$$\min_{u} \mathbb{E}_{(x,y)\sim\gamma} \left[J(u;x,y) + \epsilon \max_{J(v)\leq 1} \langle \nabla_{x} J(u;x,y), v \rangle \right]$$

 ℓ^∞ norm (Fast Gradient Sign Method [Goodfellow, 2014]):

- $\|\nabla_x J(u; x, y)\|_1 = \max_{\|v\|_{\infty} \le 1} \langle \nabla_x J(u; x, y), v \rangle$
- $v = sign(\nabla_x J(u; x, y))$ maximizes $\langle \nabla_x J(u; x, y), v \rangle$

Classical training: Discretize ⇒ Optimize

Remember gradient descent $u^{k+1} = u^k - \delta \nabla_u J[u^k]$.

Gradient computation:

1) Discretize x(t)

$$x^{(l)} = ODESolver(t, x^{(0)}, \dots, x^{(l-1)}, u).$$

2) Apply chain rule (backpropagation)

$$\nabla_{u^{(l)}} J = \frac{\partial J}{\partial x^{(L)}} \frac{\partial x^{(L)}}{\partial x^{(L-1)}} \cdots \frac{\partial x^{(l)}}{\partial u^{(l)}}.$$

8

Classical training: Optimize ⇒ Discretize

From Pontryagin's Maximum Principle we can directly compute $\nabla_u J$. Suppose J can be written as

$$J(u; x_0, y) = \int_0^T L(x(t), u) dt + \Psi(\Phi_T(x_0), y)$$
 (2)

Classical training: Optimize ⇒ Discretize

From Pontryagin's Maximum Principle we can directly compute $\nabla_u J$. Suppose J can be written as

$$J(u; x_0, y) = \int_0^T L(x(t), u) dt + \Psi(\Phi_T(x_0), y)$$
 (2)

Gradient computation through the adjoint [Massaroli, 2020]

$$\nabla_u J = \int_0^T \langle p(t), D_u f(t, x(t), u) \rangle dt,$$

where p is the solution to

$$\begin{cases} \dot{p}(t) = -D_x f(t, x(t), u)^{\mathsf{T}} p(t) - \nabla_x L(t, x(t), u), \\ p(T) = \nabla_{x(T)} \Psi(x(T), y). \end{cases}$$

Adjoint method IS backpropagation!

Classical training: Optimize ⇒ Discretize

From Pontryagin's Maximum Principle we can directly compute $\nabla_u J$. Suppose J can be written as

$$J(u; x_0, y) = \int_0^T L(x(t), u) dt + \Psi(\Phi_T(x_0), y)$$
 (2)

Gradient computation through the adjoint [Massaroli, 2020]

$$abla_u J = \int_0^T \langle p(t), D_u f(t, x(t), u) \rangle dt,$$

where p is the solution to

$$\begin{cases} \dot{p}(t) = -D_x f(t, x(t), u)^{\mathsf{T}} p(t) - \nabla_x L(t, x(t), u), \\ p(T) = \nabla_{x(T)} \Psi(x(T), y). \end{cases}$$

Adjoint method IS backpropagation!

Case of time-dependent controls: Gateaux derivative

$$d_u J(u) \eta = \int_0^T \langle p(t), D_u f(u(t), x(t)) \eta(t) \rangle dt.$$

Linear sensitivity of loss

Linear sensitivity - initial data

For $u \in L^2((0,T),\mathbb{R}^{d_u})$ and $y \in \mathbb{R}^d$ fixed, linear sensitivity of $x_0 \to J(u;x_0,y)$ in the direction $v \in \mathbb{R}^d$ can be expressed as

$$\nabla_{x_0} J(x_0) v := \lim_{\epsilon \to 0} \frac{J(u; x_0 + \epsilon v) - J(x_0)}{\epsilon} = p(0) \cdot v$$

where p(t) is the solution to the adjoint equation.

$$\begin{cases} \dot{p}(t) = -D_{x}f(x(t), u(t))^{\mathsf{T}}p(t) - \nabla_{x}L(t, x(t), u), & t \in [0, T) \\ p(T) = D_{\Phi_{T}(x_{0})}J(u; x_{0}, y) \end{cases}$$
(3)

This result is derived from the linear sensitivity equation of x(t) in the direction $v \in \mathbb{R}^d$:

$$\begin{cases} \frac{d}{dt}\delta_{v}x(t) = D_{x}f(x(t), u(t))\delta_{v}x(t), & t \in (0, T] \\ \delta_{v}x(0) = v \end{cases}$$
(4)

Then penalty term then becomes

$$\epsilon \langle \nabla_{x_0} J(x_0), v \rangle = \epsilon \max_{I(v) \le 1} \langle p(0), v \rangle$$

Augmented loss function

Let the control $u \in L^2((0,T);\mathbb{R}^{d_u})$ be fixed and let x(t) y p(t) be the solutions of the state and adjoint equation respectively. For fixed $\epsilon>0$ the augmented loss function

$$J_{l}[u; x_{0}; \epsilon] := J[u; x_{0}] + \epsilon \max_{l(v) \leq 1} \langle p(0), v \rangle$$

approximates the minimization problem with linear precision in $\epsilon.$

If I is the norm ℓ^r for $r \in [1, \infty]$, the augmented loss function can be written as

$$J_r[u; x_0; \epsilon] := J[u; x_0] + \epsilon ||p(0)||_{r'}$$

where r and r' are Hölder conjugates, i.e. 1/r + 1/r' = 1.

Proof is based on Hölder inequality.

Computation of the penalty term gradient

Gradient of quadratic penalty term [Wöhrer, Zuazua]

Let the control u be fixed and consider a loss function J having only terminal cost Ψ . We consider the quadratic penalty term with

$$S[u] := \|p_u(0)\|_2^2 \tag{5}$$

where p is solution of (3) with controls u and q solution of (6).

$$d_{u}S(u)\eta := -\int_{0}^{T} q(t) \cdot D_{xx}f(x(t), u(t))^{\mathsf{T}} [\delta_{\eta}x(t), p(t)]$$

$$-\int_{0}^{T} q(t) \cdot D_{ux}f(x(t), u(t))^{\mathsf{T}} [\eta(t), p(t)] dt$$

$$\begin{cases} \dot{q}(t) = D_{x}f(x(t), u(t))q(t), & t \in (0, T) \\ q(0) = -p_{u}(0) \end{cases}$$
(6)

Numerical aspects

Piecewise constant controls

$$u(t) = u_i, t \in [t_i, t_{i+1}]$$
 (7)

with $t_0 := 0$ y $t_m := T$, then

$$\frac{d}{du_i}J(u) = \int_{t_i}^{t_{i+1}} \rho(t)D_{u_i}f(x(t), u(t)) dt$$
 (8)

where p is the solution to the adjoint equation.

- In the numerical experiments we use piecewise constant controls consisting of 10 pieces (stacked NODEs)
- Code developed from https://github.com/twoehrer/robust_nODE

- ullet We perform robust trainings with differents values ϵ given to penalty term
- \bullet We compare the performance in perturbed testing set

Evaluation set	Classical training	0.1-robust	0.2-robust	0.3-robust
Test	0.042488	0.041761	0.075317	0.092077
0.1-FGSM-attack test	0.064908	0.063728	0.085838	0.207678
0.1-perturbed test	0.046271	0.041761	0.080335	0.182127
0.2-perturbed test	0.075131	0.087367	0.080335	0.190990
0.3-perturbed test	0.0105135	0.0102906	0.092077	0.199580

Conclusions

Conclusions:

- Adversarial attacks are a threat to Machine Learning models
- NODEs let us treat problems about neural networks from a continuous point of view
- Main takeaway: memory efficient methods for computing gradient of loss function

Conclusions

Conclusions:

- Adversarial attacks are a threat to Machine Learning models
- NODEs let us treat problems about neural networks from a continuous point of view
- Main takeaway: memory efficient methods for computing gradient of loss function

Future directions:

- Generalize gradient computation of the penalty term to a more general norm
- Choice of $\epsilon > 0$ for robust training
- Consider other types of perturbation
- Enable robust training only in some part of the training process and then switch to classical training

Thank you for your attention!