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Motivation

New machine learning tool in everyday life: ChatGPT.

Generative: learn to predict the next word/pixel.

“A dog doing math research”.1

1
Source: https://pixlr.com/image-generator/
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Motivation

New machine learning tool in everyday life: ChatGPT.

Pre-trained: trained on a massive corpus of text/images.

Evolution of number of words in training datasets.2

2
Source: https://www.lesswrong.com/posts/asqDCb9XzXnLjSfgL/trends-in-training-dataset-sizes
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Motivation

New machine learning tool in everyday life: ChatGPT.

Transformer: deep neural network architecture.

Original transformer architecture in [VSP+17].
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Modeling of transformers

Transformer Block 1

Transformer Block K
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Modeling of transformers

Self-attention layer

Normalization layer

Feed-forward layer
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Modeling of transformers

Self-attention layer
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The self-attention layer
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The self-attention layer
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The self-attention layer

Ci(Z ) = {j ∈ [n] : ⟨zi, zj⟩ = max
ℓ∈[n]

⟨zi, zℓ⟩}.

z+i = zi +
α

|Ci(Z )|
∑

j∈Ci(Z )

zj
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Pure-attention hardmax transformers

zk+1
i = zki +

α

1 + α

1

|Ci(Zk)|
∑

j∈Ci(Zk)

(
zkj − zki

)
, k ≥ 0.
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Interpretability through dynamics and control

▶ k → ∞ asymptotics: clustering first proved for similar
continuous transformer models in [GLPR23a], [GLPR23b].

▶ Q1: When and how do discrete dynamics exhibit clustering?

▶ Q2: Is clustering capturing the ‘context’ in a text?
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Asymptotic dynamics

Point zi is a leader if there exists a layer k ∈ N s.t. Ci(Zk) = {i}.
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Emergence and characterization of cluster points

Q1: When and how do discrete dynamics exhibit clustering?

Theorem (A. A, G. Fantuzzi, E. Zuazua 2024)

Assume z01 , . . . , z
0
n ∈ Rd are nonzero and dis-

tinct. There exist

(a) a convex polytope K, and

(b) a finite set S ⊂ ∂K
such that:

(i) zki → s ∈ S as k → ∞ for all i.

(ii) Every s ∈ S is a limit value of a leader
or a convex combination of them.

A. Alcalde (FAU DCN-AvH) 11 / 15



Emergence and characterization of cluster points

Q1: When and how do discrete dynamics exhibit clustering?

Theorem (A. A, G. Fantuzzi, E. Zuazua 2024)

Assume z01 , . . . , z
0
n ∈ Rd are nonzero and dis-

tinct. There exist

(a) a convex polytope K, and

(b) a finite set S ⊂ ∂K
such that:

(i) zki → s ∈ S as k → ∞ for all i.

(ii) Every s ∈ S is a limit value of a leader
or a convex combination of them.

A. Alcalde (FAU DCN-AvH) 11 / 15



Idea of the proof

Step 1: convergence to an equilibrium at
the boundary of a convex polytope K. Two
competing forces:

▶ Convex hull of tokens shrinks,

▶ Norm of tokens strictly grows when
not close to finite set S ⊂ ∂K.

Step 2: vertices of K = leaders.
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Role of clustering in sentiment analysis

Q2: What is the role of clustering in a real machine learning
application? Is it capturing ‘context’?

Task: Sentiment analysis of movie reviews.

   encoder transformer decoder sentimentreview
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Results
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Conclusions and perspectives

▶ We analyzed a transformer model, proving that it entails a
clustering effect.

▶ Related clustering to emergence of context in the ML
application of sentiment analysis.

▶ Open questions:
▶ Controlling the leaders by appropriately choosing the matrix

A ∈ Rd×d in

Ci(Z ) = {j ∈ [n] : ⟨Azi, zj⟩ = max
ℓ∈[n]

⟨Azi, zℓ⟩}.

▶ What does clustering imply for physical systems, what are the
leaders in, say, a flow past a cylinder?

Thank you for your

“zi +
α

|Ci(Z)|
∑

j∈Ci(Z )

zj”

arXiv:2407.01602
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