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Why Nonlocal?

Figure: Star Trek: Picard, Episode 2 (“Maps and Legends”), aired at January 30th, 2020
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Supply chains: semiconductor
manufacturing systems

Governing equations

Consider the IBVP on (0, T ) × (0, 1)

∂tq(t, x) + V
(∫ 1

0 q(t, y) dy
)

∂xq(t, x) = 0
q(0, x) = q0(x)

V
(∫ 1

0 q(t, y) dy
)

q(t, 0) = y(t).

• q0 initial density • y boundary datum
• V : R → R processing speed
• ∫ 1

0 q(t, y) dy “work in progress”.
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Figure: Semiconductor manufacturing system, © KISTLER
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Traffic flow

Governing equations

For (t, x) ∈ (0, T ) × (0, 1) and η ∈ R>0
the look ahead parameter, consider

∂tq(t, x) = −∂x

(
V (W [q](t, x)) q(t, x)

)
W [q](t, x) = 1

η

∫ x+η

x
γ
(

x−y
η

)
q(t, y) dy.

• q traffic density • V velocity and • γ a
weight

Figure: Traffic at Interstate 80, Berkeley, CA, © Wikipedia
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Figure: Local vs. nonlocal behavior in the case of a congestion ahead
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Chemical ripening processes

Governing equations

Consider on (0, T ) × Rn
>0

∂tq(t, x) = − div
(
R(t, x, W [q](t))q(t, x)

)
+ h(t, x) − g(t, x)q(t, x)

q(0, x) = q0(x)
W [q](t) :=

∫∫
Rn

>0
γ(y)q(t, y) dy.

• q particle shape distribution • x shape
parameters • h source term • g shape
dependent outflow rate • q0 initial particle shape
distribution • R growth rate

Figure: Pigments
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Crowd dynamics, pedestrian flow
and opinion formation

Governing equations

Consider for the i ∈ {1, . . . , n} population
on (0, T ) × Rn

∂tq
i(t, x) = − div

(
qi(t, x)V i[q](t, x)

)

V i[q](t, x) = vi


n∑

k=1
qi ∗ γi(t, x)

vi(x).

• vi nonlocal velocity • vi general
direction • γi nonlocal weight
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Figure: A swarm of geese, © Wikipedia, and a crowd heading to an exit (right), © Hermes
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Problem formulation for scalar
nonlocal balance laws

Nonlocal balance laws
Consider for (t, x) ∈ (0, T ) × R

qt(t, x) + ∂x

(
V
(
t, x, W

[
q, γ, a, b

]
(t, x)

)
q(t, x)

)
= h(t, x)

q(0, x) = q0(x)

supplemented by the nonlocal term W , averaging the “density” in space

W [q, γ, a, b]
(
t, x

)
:=

∫ b(x)
a(x) γ(t, x, y)q(t, y) dy.

• V velocity
• a, b boundaries of the nonlocal term
• γ nonlocal weight
• q0 initial datum
• h space-time dependent source term
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Main existence theorem

Remark

• No fully local behavior anymore, i.e., solution has to be known between a(x) and b(x)
for each x ∈ R to advance in time

• Still finite propagation of mass, but infinite speed of “information”
• None of the usual existence and uniqueness results (Kružkov, etc.) applicable

Theorem (Existence and uniqueness for sufficiently small time)

Suppose

• q0 ∈ L1(R) ∩ L∞(R) • h ∈ L∞((0, T ); L∞(R)) • a, b ∈ C1(R) with a′, b′ ∈ L∞(R)
• γ sufficiently smooth • V (locally) Lipschitz,

there is T ∗ ∈ (0, T ] so that a unique weak solution

q ∈ C([0, T ∗]; Lp(R)) ∩ L∞((0, T ∗); L∞(R))

exists (p ∈ [1, ∞)).
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Comments

Remark (Entropy condition)

No entropy condition required for uniqueness!

Lemma (Higher regularity)

Let q0, V, γ, a, b be smooth, the solution q will be smooth as long as it exists.

Sketch of the proof

Solution formula gives for (t, x) ∈ ΩT

q(t, x) = q0(ξW (t, x; 0))∂2ξW (t, x; 0)

with ξW the solution of

ξ(t, x, τ ) = x +
∫ τ

t
V

(
W

[
q, γ, a, b

]
(t, ξ(t, x; s)), t, ξ(t, x; s)

)
ds

W [q, γ, a, b](t, x) =
∫ ξW (t,b(x);0)
ξW (t,a(x);0) γ(t, x, ξW (0, y; t))q0(y) dy.

Literature
[14] A. Keimer and L. Pflug Existence, uniqueness and regularity results on nonlocal balance laws. Journal of Differential Equations (JDE),

(2017).
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Finite time horizon of existence

Blow-up in finite time: Nonlocal Burgers’ with the wrong sided kernel

∂tq(t, x) + ∂x

(∫ x+1
x

q(t, y) dy q(t, x)
)

= 0
q0(x) = χ[0,1](x)

Solution blows up for t → 1.
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Figure: Left: Nonlocal impact
∫ x+1

x q(t, y) dy Middle: Characteristics Right: Solution
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Semi-global existence of solutions

Theorem (Existence of the solution for larger time)

Suppose that in addition one of the following items holds:
1. a(x) = a with a ∈ R ∪ {±∞} and b(x) = b with b ∈ R ∪ {±∞}
2. supp(γ(t, x, ·)) ⊊ (a(x), b(x)) ∀x ∈ R
3. ◦ η ∈ R>0, a(x) = x, b(x) = x + η ∀x ∈ R

◦ Ṽ ∈ W 1,∞
loc (R) : V ′ ≦ 0 not explicitly space-time dependent

◦ γ(t, x, y) = 1
η γ̃(y−x

η ) ∀(x, y) ∈ R2 with γ̃ ∈ W 1,∞(R) monotone decreasing
◦ q0 ∈ L∞(R;R≥0)

Then, the solution exists on every finite time horizon.

Corollary (A maximum principle)

In the case of the previous item 3, the solution satisfied a maximum-principle, i.e.

inf
x∈R

q0(x) ≤ q(t, x) ≤ ∥q0∥L∞(R) ∀(t, x) ∈ (0, T ) × R a.e.

Theorem (Stability)

L1 stability in the initial datum holds if the initial datum is total variation bounded.
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The final problem or the singular
limit

Nonlocal conservation law on R
Recall for η ∈ R>0 the weak solution qη of the nonlocal conservation law on R with
exponential kernel

qt(t, x) = −∂x

(
V
(
W [q, γη](t, x)

)
q(t, x)

)
(t, x) ∈ (0, T ) × R

q(0, x) = q0(x) x ∈ R
W [q, γη](t, x) := 1

η

∫ ∞
x

e
x−y

η q(t, y) dy (t, x) ∈ (0, T ) × R.

Corresponding local conservation law on R
Consider the local counter-part q as the weak entropy solution of

∂tq(t, x) = −∂x

(
V (q(t, x))q(t, x)

)
(t, x) ∈ (0, T ) × R

q(0, x) = q0(x) x ∈ R.

The singular limit problem

Do we have in “some sense”
qη

η→0→ q?
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TV bounds and the nonlocal term

No TV bounds to be expected for the solution

[15] M. Colombo, G. Crippa, E. Marconi, and Laura V. Spinolo Local limit of nonlocal
traffic models: Convergence results and total variation blow-up Annales de l’Institut
Henri Poincaré C, Analyse non linéaire, (2021).

But maybe for the nonlocal term?

The nonlocal term (thanks to the exponential weight) satisfies

∂xW [qη](t, x) = 1
ηW [qη](t, x) − 1

ηqη(t, x) ∀(t, x) ∈ ΩT .

Theorem (A nonlocal transport equation for the nonlocal term)

The nonlocal term (call it from now on Wη) satisfies the following Cauchy problem

∂tWη + V (Wη)∂xWη = −1
η

∫ ∞
x

exp(x−y
η )V ′(Wη(t, y))∂yWη(t, y)Wη(t, y) dy (t, x) ∈ ΩT

Wη(0, x) = 1
η

∫ ∞
x

exp(x−y
η )q0(y) dy.
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TV bound on nonlocal term

Theorem (Uniform TV bound)

It holds that

|Wη(t, ·)|TV (R) ≤ |Wη(0, ·)|TV (R) ≤ |q0|TV (R) ∀η ∈ R>0 ∀t ∈ [0, T ],

and thus {
Wη ∈ C

(
[0, T ]; L1

loc(R)
)

: η ∈ R>0
}

c
↪→ C

(
[0, T ]; L1

loc(R)
)
.

Theorem (Convergence to a limit point)

Modulo subsequences there exists q∗ ∈ C([0, T ]; L1
loc(R)) so that

lim
η→0

∥qη − q∗∥C([0,T ];L1
loc(R)) = 0 ∧ lim

η→0
∥Wη − q∗∥C([0,T ];L1

loc(R)) = 0,

when q∗ is a weak solution of the local conservation law, i.e. it satisfies
∀ϕ ∈ C1

c ((−42, T ) × R)∫∫
ΩT

∂tϕ(t, x)q∗(t, x) + ∂xϕ(t, x)V (q∗(t, x))q∗(t, x) dx dt +
∫
R ϕ(0, x)q0(x) dx = 0.
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Sketch of proof

Recall the identity for (t, x) ∈ ΩT

∂xWη(t, x) = 1
ηWη(t, x) − 1

ηqη(t, x)

implies
η|Wη(t, ·)|TV (R) =

∫
R |Wη(t, x) − qη(t, x)| dx

and η → 0 gives the claim.
Passing to the limit in the weak solution is possible due to the strong L1 convergence.
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Convergence result

Theorem (Convergence nonlocal – local)

Given that x 7→ xV (x) is strictly convex or concave and V ′ ≦ 0, we have

lim
η→0

∥qη − q∥C([0,T ];L1
loc(R)) = 0,

where q is the local Entropy solution. Additionally, the nonlocal term Wη converges to q.

Literature
[16] A. Bressan and W. Shen Entropy admissibility of the limit solution for a nonlocal model of traffic flow Comm. Math. Sci. , (2021).

[17] C. De Lellis, F. Otto, and M. Westdickenberg Minimal Entropy conditions for Burgers equation Quaterly of Applied Mathematics, (2004).

[18] A. Keimer and L. Pflug On approximation of local conservation laws by nonlocal conservation laws Journal of Mathematical Analysis and
Applications (JMAA), (2019).

[19] G. M. Coclite, J. M. Coron, N. De Nitti, A. Keimer, and L. Pflug A general result on the approximation of local conservation laws by nonlocal
conservation laws: The singular limit problem for exponential kernels Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, (2022).
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Illustration (I)

Figure: Solution of the nonlocal balance law with exponential kernel (top) and constant kernel (bottom). From left to right η is decreasing,
η ∈

{
10−1, 10−2, 10−3}. Colorbar: 0 1
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Illustration (II)

Figure: Left: Solution of the nonlocal balance law with exponential kernel (top), and constant kernel (bottom) its corresponding nonlocal term
plotted for t = 0.5 and η ∈ {10−1, 10−2, 10−3}. Right: Evolution of the corresponding total variations showing a monotone decreasing nature in
terms of the nonlocal term (dotted lines) which is also the case for the local counterpart.
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Generalizations (I)

Theorem (General convergence in the singular limit case)

The singular limit convergence holds in the case that V ′ ≦ 0 (no concavity of the flux
required) and for kernels which are convex.

Literature
[20] M. Colombo, G. Crippa, E. Marconi, and L. V. Spinolo, Nonlocal Traffic Models with General Kernels: Singular Limit, Entropy Admissibility,

and Convergence Rate. Archive for Rational Mechanics and Analysis , (2023).
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Generalizations (II) – kernels with
fixed support

Problem setup – kernels with fixed support

Consider again (under suitable assumptions)

qt(t, x) = −∂x

(
V
(
W [q, γη](t, x)

)
q(t, x)

)
(t, x) ∈ (0, T ) × R

q(0, x) = q0(x) x ∈ R
W [q, γη](t, x) :=

∫ ∞
x

γη(y − x)q(t, y) dy (t, x) ∈ (0, T ) × R.

with
γη(x) = cγ(η)γ(x)

1
η , cγ(η) :=

( ∫ ∞
0 γ(y)

1
η dy

)−1
.

Assumptions on γ

We assume that ∃δ ∈ R>0 s.t:
1) Integrability and total variation bound: γ ∈ BV (R>0;R≧0)
2) Bounded second derivative in arbitrary small neighborhood: γ|(0,δ) ∈ W 2,∞((0, δ))
3) Negative derivative in zero: γ′(0) < 0
4) Upper bound on R>δ: γ(x) ≥ γ(y) ∀(x, y) ∈ (0, δ) × R>δ
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Interpretation of the kernel and a
weakened maximum principle

0
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Figure: Left: In the top row, the spatial scaling, in the bottom row, the power scaling is visualized for two different values of γ, viz. a linear kernel
(γ ≡ 2(1 − ·), left) and a non-monotone, piecewise-linear kernel (γ ≡ 2(1 − ·)χ(0,0.5)(·) + (2 · −1)χ(0.5,1)(·), right). In all cases, the kernels γη

for η ∈ {1, 0.5, 0.25} are shown.

Theorem (Weakened maximum principle)

For η ∈ R>0, there exists a unique solution qη until a given time T ∈ R>0. Even more,
for any given κ ∈ R>0 and a time horizon T ∈ R>0, there exists ηκ,T ∈ R>0 s.t.

∀(t, η) ∈ (0, T ) ×
(
0, ηκ,T

)
: ∥qη(t, ·)∥L∞(R) ≤ (1 + κ)∥q0∥L∞(R).
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Singular limit convergence for
kernels with fixed support

Theorem (Convergence to the local Entropy solution)

The solution qη ∈ C
(
[0, T ]; L1

loc(R)
)

converges to the local entropy solution q∗ for η → 0
and so does the nonlocal term

lim
η→0

∥∥∥∥qη − q∗
∥∥∥∥
X

= 0 ∧ lim
η→0

∥∥∥∥W [qη, γη] − q∗
∥∥∥∥
X

= 0

with X := C
(
[0, T ]; L1

loc(R)
)
.

Idea of the proof

Use again the exponential kernel Eη(t, x) = 1
η

∫∞
x exp

(
x−y

η

)
q(t, y) dy, (t, x) ∈ ΩT as

well as lower and upper estimations for the kernel γ.

Literature
[21] A. Keimer and L. Pflug, On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed

support arXiv, (2023).
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Consequences

Consequences

• Justifies nonlocal conservation laws also by the corresponding local equations.

• Enables another approach on how to tackle local problems: Define solutions of local
conservation laws as limit of nonlocal ones.

• Hyperbolic nature of the dynamics is conserved (not true for viscosity
approximations), only infinite speed of information.

• Many results – see also open problems – can be semi-explicitly stated in the nonlocal
setup (solution, control, optimal control, etc....).

• Limits for related problems of control and optimal control, of local conservation laws
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Oleinik’s Entropy condition for the
nonlocal term

Theorem (Oleı̆nik-type inequality for Wη)

Consider again the exponential kernel for the nonlocal conservation law. Let δ > 0,
0 < κ1 < κ2, and q0 ∈ L∞(R;R≥0) and let V ∈ W 2,∞

loc (R) be a non-increasing velocity
function such that at least one of the following conditions is satisfied:

V ′(ξ) = −δ < 0, ∀ξ ∈ [ess inf q0, ess sup q0]; (1)
0 ≤ V ′(ξ) + V ′′(ξ)ξ ≤ κ1, V ′(ξ) ≤ −κ2, ∀ξ ∈ [ess inf q0, ess sup q0]. (2)

Then the nonlocal term Wη satisfies the following inequality:

Wη(t,x)−Wη(t,y)
x−y ≥ − 1

κt, for all t > 0 and x, y ∈ R with x ̸= y, (3)

with κ := δ (in case of assumption (1)) or κ := κ2 − κ1 (in case of assumption (2)) and
Wη converges to the local entropy solution for η → 0.

Remark (Further estimates)

When looking at V ′(Wη)Wη, one can get further Oleinik-type estimates.

Literature
[22] G. M. Coclite, M. Colombo, G. Crippa, N. De Nitti, A. Keimer, E. Marconi, L. Pflug, L. V. Spinolo, Oleinik-type estimates for nonlocal

conservation laws and applications to the nonlocal-to-local limit JHDE, (2024).
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The singular limit for weakly
coupled systems of nonlocal
balance laws (I)

The weakly coupled nonlocal system of balance laws – traffic flow modelling and lane-changing

Consider the “weakly” coupled (via r.h.s.) system as Cauchy problem on R with
exponential kernel

∂tq
1
η + ∂x

(
V1(Wη[q1

η])q1
η

)
= S

(
qη, Wη[qη], x

)
,

∂tq
2
η + ∂x

(
V2(Wη[q2

η])q2
η

)
= −S

(
qη, Wη[qη], x

)
,

qη(0, ·) ≡ q0,

for i ∈ {1, 2} Wη[qi
η](t, x) = 1

η

∫ ∞
x

exp
(

x−y
η

)
qi

η(t, y) dy, (t, x) ∈ (0, T ) × R.

Problem setup

Do we converge for η → 0 towards the entropy solution of the system of balance laws

∂tq
1 + ∂x

(
V1(q1)q1) = S

(
q, q, x

)
,

∂tq
2 + ∂x

(
V2(q2)q2

)
= −S

(
q, q, x

)
,

q(0, ·) ≡ q0?
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The singular limit for weakly
coupled systems of nonlocal
balance laws (II)

Theorem (Exponential (in time) but uniform in η TV bounds)

Assume that q0 ∈ L∞(R;R2
≥0) ∩ TV (R;R2), Vi ∈ W 1,∞

loc (R) : V ′
i ≦ 0, i ∈ {1, 2} and

that the source term has the structure

S
(
qη, Wη[qη], x

)
=

(
q2

η

q2
max

− q1
η

q1
max

)
H(Wη[qη], x), x ∈ R

with H : R3 → R≥0 smooth enough. Then, we obtain uniformly in η

∃C ∈ R>0 ∀η ∈ R>0 : |Wη[qη](t, ·)|TV (R;R2) ≤ exp(Ct) ∀t ∈ [0, T ].

Theorem (Convergence towards the entropy solution)

For η → 0, the nonlocal term Wη[qη] as well as qη converge in C[0, T ]; L1
loc(R;R2)) to

the entropy solution of the corresponding system of weakly coupled local balance laws.

Remark (Generalization)

Weakly coupled systems (N > 2), source term coupling, kernels.

Literature
[23] F. Chiarello and A. Keimer, On the singular limit problem in nonlocal balance laws: Applications to nonlocal lane-changing traffic flow models

JMAA, (2024).
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The p-norm singular limit

Definition (Problem setup)

Let p ∈ R>0, we call the following Cauchy problem

qt(t, x) + ∂x

(
V (Wp[q, γ](t, x))q(t, x)

)
= 0 (t, x) ∈ ΩT

q(0, x) = q0(x) x ∈ R

with the nonlocal term in p

Wp[q, γ](t, x) =
1

η

∫ ∞
x

(
γ
(

x−y
η

)
q(t, y)

)p

dy
1

p

(t, x) ∈ ΩT

the nonlocal p−norm problem.

Remark (Challenges)

• p−norm not “differentiable” at 0. Banach’s fixed-point approach does not work .

• In the case of well-posedness, do we obtain the singular limit convergence towards
the local entropy solution?

Department of Mathematics, FAU A. Keimer Nonlocal Conservation Laws 26.08.2024 30/35



Well-posedness (p-norm)

Assumptions

• q0 ∈ L∞(R;R>qmin), qmin ∈ R>0
• q0 ∈ TV (R)
• V ∈ W 2,∞

loc (R;R), V ′ ≦ 0 on R

• γ ∈ W 2,1 on its support
• ∥γ∥Lp(R<0) = 1, γ′ ≥ 0
• η ∈ R>0.

Theorem (Existence, uniqueness and maximum principle)

For each T ∈ R>0, there is a unique weak solution

qη ∈ C([0, T ]; L1
loc(R)) ∩ L∞((0, T ); L∞(R) ∩ TV (R))

and the maximum principle is satisfied, i.e.

∀(t, x) ∈ (0, T ) × R a.e.: qmin ≤ ess inf
x̃∈R

q0(x̃) ≤ q(t, x) ≤ ∥q0∥L∞(R).
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Convergence to the local Entropy
solution (p-norm)

Theorem (Convergence to the Entropy solution)

Given the previously stated assumptions and use again the exponential kernel. Then,
the solution and the nonlocal term converge towards the local entropy solutions for
η → 0.

Remark (Generalizations and related questions)

What about
• q0 being not bounded away from zero? Compactness in space holds for the nonlocal

operator.

• Do we converge (in some sense) for p → ∞ to the solution of

qt + ∂x

V
(
∥1

ηe
x−·
η q(t, ·)∥L∞(x,∞)

)
q(t, x)

 = 0

and what can be said about solutions to this conservation law?

• Better singular limit convergence for certain p ̸= 1?

Work in progress
[24] D. Amadori, F. Chiarello, A. Keimer and L. Pflug, Nonlocal conservation laws with p-norm, the singular limit problem and applications to traffic

flow, (2024?).
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Open Problems

Open problems

• General kernels for the singular limit problem, particularly symmetric and constant
kernels

• Systems of nonlocal conservation laws and the singular limit problem

Example: The nonlocal GARZ (Generalized Aw-Rascle-Zhang) model

∂tρ + ∂x

(
(γη ∗ V (ρ, ω))ρ

)
= 0

∂tω +
(
γη ∗ V (ρ, ω)

)
∂xω = 0

• Optimal control of nonlocal conservation laws (control to state mapping differentiable)

• The singular limit problem for optimal control

• Networks and how to handle the nonlocality close to the junctions

The field of nonlocal conservation laws and more general nonlocal PDE models is
barely studied, in many cases nonlocal modelling is more reasonable and there is

(still) a lot to work on!
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The End?

Thank you very much!
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Figure: Top: Nonlocal term W for Burgers’ equation and η ∈ {0.3, 0.2, 0.1} with symmetric kernel and sign changing initial datum Bottom:
Nonlocal term W at time t ∈ {0.25, 0.5, 0.75} from left to right. Colorbar: −1 +1
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