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|. Introduction

One-dimensional isentropic Euler equations :

» Compressible Euler equation (in standard Eulerian coordinates) :

Oep + 0x(pv) =0,
de(pv) + 0x (pv? + kp™) = 0.

» The p-system (compressible Euler equation in Lagrangian
coordinates) :
Oy — Oxv =0,
{ Orv + Ox(kT™7) = 0. (P)
where
» p=p(t,x) > 0 is the density of the fluid,

> v = v(t,x) is the velocity of the fluid, so that m := pv is the local
momentum,

» 7 :=1/p is the specific volume,

> the pressure law is p(p) = kp?, v € (1, 3].



Controllability problem

» Domain : (t,x) € [0, T] x [0, L].

> State of the system : u = (7, v).

» Control : the "boundary data” : here, on one side, say x = 0, while
there is a fixed boundary law at x = L.

» Controllability problem : given ug and uy, can we find boundary data
x = 0 driving the state from ug to uy ?

» Equivalently : given ug and uy, can we find a solution of the system
satisfying the boundary condition and driving ug to uy ?



Systems of conservation laws

» Both systems enter the class of hyperbolic systems of conservation

laws :
U+ f(U)x=0, F:QCR"—>R", (SCL)

satisfying the (strict) hyperbolicity condition that at each point
df has n distinct real eigenvalues \; < --- < A,.

» Hyperbolic systems of conservation laws develop singularities in
finite time.

» This easy to see for instance for the Burgers equation :

u + (u?), = 0.




Class of solutions

» One can either work with regular solutions (C!) with small Cl-norm
(for small time), or with discontinuous (weak) solutions.

» For the latter case, is natural for the sake of uniqueness to consider
weak solutions which satisfy entropy conditions (entropy solutions).

» This is not a mere regularity issue : in the C! case, the system is
reversible, but it is irreversible in the context of entropy solutions.

» More precisely, the solutions will be of bounded variation, with small
total variation in x (“a la Glimm") :

N—-1

TV(u) :=sup sup Z |u(xk+1) — u(xk)] < 1.
N x3<---<Xn k=0

> Note that there exist weaker solutions (Glimm-Lax, DiPerna,
Lions-Perthame-Souganidis-Tadmor, etc.)



Entropy conditions

Definition
An entropy/entropy flux couple for a hyperbolic system of conservation
laws (SCL) is defined as a couple of regular functions (1,q) : @ - R
satisfying :

vU € Q, Dn(U)- Df(U) = Dq(U).

Definition

A function U € L*°(0, T; BV(0, L)) N Lip(0, T; L1(0, L)) is called an
entropy solution of (SCL) when, for any entropy/entropy flux couple
(n, g), with 1 convex, one has in the sense of measures

U(U)t + CI(U)X <0,

that is, for all ¢ € D((0, T) x (0, L)) with ¢ >0,

/ (n(U(t,3))ge(t %) + a(U(E %))px (£, %)) dx dt > 0.
(0,T)x(0,L)



Boundary condition

» Our boundary condition will take the following form at x = L :
b(u(t,L)) =0 forae. t,

where b = b(p,v) : Rt x R — R is a function satisfying some
non-degeneracy conditions (to be specified later).

» Examples :

» v =0 : zero-speed on the right boundary,
» p = p : constant density (or constant pressure) at x = L.



Main result

Theorem
Let b satisfy the non-degeneracy condition.

Let Ty := (?O,Vo) € R? with To > 0 and b(Uo) =0 and let i1 = (?1,71)
with 71 > 0 and b(Ul) =0.

There exist € > 0 and T > 0 such that for any uy = (1, Vo) in
BV(0, L; R?) such that

|uo — TollLo=(0,) + TV (wo) < e,
and b(ug(L™)) =0, there is
ue L0, T; BV(0,L)) N Lip([0, T]; L*(0, L)),
a weak entropy solution of the p-system such that

Uit—o = Ug and U1 = U1.



Refined variant

Theorem
Let b satisfy the non-degeneracy condition.

Let Tg := (To, Vo) € R? with 7o > 0 and b(Up) = 0 and let 1y = (71, V1)
with 71 > 0 and b(Ul) =0.

Letn > 0. There exist e > 0 and T > 0 such that for any ug = (19, vo)
in BV(0, L; R?) such that

luo — ol (0,0) + TV (o) < e,
and b(upg(L™)) =0, there is
u e L>=(0, T; BV(0,L)) N Lip([0, T]; L*(0, L)),
a weak entropy solution of the p-system such that
Ut—o = Up and up_7 =Ty,

and
TV(u(t,-))<n, Vte(0,T).



II. Previous results : control problems in the context of
entropy solutions

» There are very general results in the C! case : Li-Rao (2002), ...

> Several works on the scalar case :
Ancona and Marson (1998), Horsin (1998), Perrollaz (2011),
Adimurthi-Gowda-Goshal (2013), Andreianov-Donadello-Marson
(2015), Adimurthi-Goshal-Marcati (2016), ...

» Several works on the system case :

» Bressan-Coclite (asymptotic result and a counterexample, 2002),
Ancona-Coclite (Temple systems, 2002),

Ancona-Marson (one-side open loop stabilization, 2007),

G. (Isentropic and non-isentropic Euler, two-sided control 2007,
2014),

Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
T. Li-L. Yu (2015, partially LD systems),
Coron-Ervedoza-G.-Goshal-Perrollaz (Feedback stabilization, 2015),
see Nicola De Nitti's talk last week !
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Two connected results

» Bressan and Coclite (2002) : for a class of systems containing Di
Perna’s system :

{ O¢p + Ox(pu) = 0,

8tu + 8)( (%2 + ,Y’iz]_p’y_l) = 07

there are initial conditions ¢ € BV/([0, 1]) of arbitrary small total
variation such that any entropy solution u remaining of small total
variation satisfies : for any t, u(t,) is not constant. # C! case!

» G. (2007) : A sufficient condition concerning the isentropic Euler
equation

(E) . atp+ax(pu):07 (P) . 6t’TfaxVIOv
1 9e(pu) + Ox(pu® + kp7) = 0, T Oev+ Oi(kTY) =0,

for final states to be reachable by acting on both sides. For instance,
all constant states are reachable.



[Il. Basic facts on systems of conservation laws

» Systems of conservations laws :
up+f(u)x=0, f:R"—=R",

A(u) == df(u) has n real distinct eigenvalues A; < --- < A,
which are characteristic speeds of the system with corresponding
eigenvectors r;(u).

» Genuinely non-linear fields in the sense of Lax :

VAi.ri 20 forall u.

= we normalize V)\; - r; = 1.

» In the case of (P) we have

M = —v/mr T and Ay = /ryr L.



Boundary conditions

» We can now express our non-degeneracy condition on the boundary
law b: Rt x R = R.

We ask that b satisfies the two following conditions :

» Standard condition for the Cauchy problem :

n-Vb#0onQ,

> Condition for the backward in time Cauchy problem :
rn-Vb#0onQ,

> Example : b(u) = v (control by the velocity)



The Riemann problem

» Find autosimilar solutions u = T(x/t) to

{ ue + (F(u))x =0

ur- = uy and U+ = .

» Solved by introducing Lax’s curves which consist of points that can
be joined starting from u; either by a shock or a rarefaction wave.



Shocks and rarefaction waves

Shocks Rarefaction waves

uy ur

uy ; ur

Discontinuities satisfying : Regular solutions,

. L . obtained with integral curves of r; :
» Rankine-Hugoniot (jump) relations & !

d
[f(u)] =s[u], 75 Filo) = ri(Ri(o)),
» Lax's inequalities : Ri(0) = uy,
)\,’(U,) <s < )\,’(U/) with o > 0.

Propagates at speed \;(R;(0))
Propagates at speed S~ ﬁ;' Aj



Solving the Riemann problem

. 2-rarefaction
ur

Um
u

1-shock Y ur

» Lax's Theorem proves that one can solve (at least locally) the
Riemann problem by first following the 1-curve (gathering states
connected to u; by a 1-rarefaction/1-shock), then the 2-curve.



Boundary Riemann problem

1-shock uy

Curve b(u) =0

» The same principle applies on the boundary (both forward and
backward in time)



Front-tracking algorithm (Dafermos, Di Perna, Bressan,
Risebro, . ..)

» Approximate initial condition by piecewise constant functions

» Solve the Riemann problems and replace rarefaction waves by
rarefaction fans

» One obtain a piecewise constant function, with straight
discontinuities (fronts)

> iterate the process at each interaction point (points where fronts
meet)



Estimates, convergence, etc.

» One shows than this defines a piecewise constant function, with a
finite number of fronts and discrete interaction points.

» A central argument is due to Glimm : analyzing interactions of fronts
a+ B8 — o' + B+~ and the evolution of the strength of waves
across an interaction, one proves that if TV (up) is small enough :

T(t) := Z loa|+ C Z |oal|og| is non-increasing,
« waves «,3 approaching waves

(04 the size of the front «) and then
TV (u(t)) < C TV(ug) for some C > 0.

» One deduces bounds in L°BV,, then in Lip,LL, so we have
compactness (Helly's theorem). ..



IV. Some ideas of the construction. Main difficulty.

» Bressan & Coclite's counterexample. DiPerna’s system is a 2 x 2
hyperbolic system with GNL fields, and which satisfies

the interaction of two shocks of the same family generates
a shock in this family (normal) and a shock in the other family.

Starting from an initial date with a dense set of shocks, this
propagates over time, even with control on both sides.

> A basic idea (even to control on both sides) is to use the fact that
for the p-system :

the interaction of two shocks of the same family generates a shock
in this family (normal) and a rarefaction in the other family.

\ |\

DiPerna’s system p-system



Some ideas, control from both boundaries, 1

» To begin with, one would like to absorb the waves of a family 2 in
the solution by sending a strong (large) shock of this family from the
boundary.

o L
» This is connected to Coron's return method.

» Such a strong shock absorbs waves of its own family in a first time,
but waves that cross may create interact again above this shock...



Some ideas, control from both boundaries, 2

» An idea is then to send additional 2-shocks from the boundary to
improve the situation.

t

» In particular, we want to prevent 1-shocks to cross.

» Indeed, if only 1-rarefactions cross, since they do not interact, the
system reaches a constant state.



The construction

» First we construct the solution under the 2-strong shock, taking the
additional 2-shocks described above in to account :

t

——— 2 strong shock

—— 2 weak shock
...... 2 rarefaction
——— 1 shock

1 rarefaction

» It remains to construct the approximations beyond the strong
2-shock, that is, we have to extend :
> the 1-rarefaction waves forward in time
» the 2-shocks backward in time



» We construct this approximation by using 1 — x as the time variable.

2 shock

...... 1 rarefaction

» we have to solve the interactions.



» Finally we get an approximation like :

2 shock

...... 1 rarefaction

» This solves the controllability problem when one controls on both
sides.



One-side controls

» When one controls only from one side (say, from the left), there are
two differences :

» One has to take into account the reflections at x = L below the
strong shock. Not an issue.

> One has to take into account the reflections at x = L of the strong
shock. There are two situations, one of which changes everything.

» Situation 1. The strong 2-shock is reflected as a 1-rarefaction when
(rn-Vb)(ra-Vb) <O.

In this case, since this adds a rarefaction to the picture, the above
construction still works.

» Situation 2. The strong 2-shock is reflected as a 1-shock when
(r1-Vb)(ra-Vb)>0.

In this case, one needs an additional construction.
Example : v =0 at x = L.



A reflection as a shock

» When the strong 2-shock is reflected as a 1-shock, it can then
interact with 1-rarefactions, and one does not reach a constant state.

it

2 shock

...... 1 rarefaction

1 shock




|deas of the construction, 1

» We first consider the same construction as in the two-sided case. We
can construct everything that is below the strong shock and the

backward additional 2-shocks.
)

X‘:o x =1L

» One has to extend the 1-rarefactions and the strong reflected
1-shock.



|deas of the construction, 2

» The idea is again to send additional 2-shocks from the boundary to
treat the interactions between the 1-rarefactions and the reflected
1-shock.

» More precisely, we will use their reflection at x = L to interact
appropriately with the 1-strong shock.

» The idea is to reach this situation :

!

strong shock

1-rarefaction fronts

,,,,,,, 2-compression fronts

————— 1-compression fronts




|deas of the construction, 3

n

» However, here there is no “'privileged direction of time”, the result
always depends on the future.

» Hence we use a fixed-point scheme.

» A difficulty is that the map is discontinuous, and one uses an
“almost-fixed point theorem” for discontinuous mappings.

» Precisely, we use Klee's theorem

Theorem (Klee, 1961)

A mapping from a closed convex in R" into itself with discontinuities of
size less than e, has an almost fixed point :

(") = x7[| < e



Open problems

» General controllability problem. Is there a good general condition to
distinguish controllable systems (e.g. p-system) from uncontrollable
ones (e.g. DiPerna’s system) ?

» Control from one side. What about the 3 x 3 full Euler system ?

» Other possible approaches?
Vanishing viscosity (cf. Bianchini-Bressan) ? Glimm scheme ? Kinetic
approaches?

» Asymptotic stabilization. In the BV case with a closed-loop
feedback, much is yet to be done. ..



Thank you for your attention !



