One-side boundary controllability of the 1-D compressible Euler equation

Olivier Glass (Université Paris-Dauphine, PSL)

in collaboration with Fabio Ancona (Padova) and Tien Khai Nguyen (North Carolina State)

Partial differential equations, optimal design and numerics X Benasque, Aug 18 - Aug 30, 2024

I. Introduction

One-dimensional isentropic Euler equations :

▶ Compressible Euler equation (in standard Eulerian coordinates) :

$$
\begin{cases}\n\partial_t \rho + \partial_x (\rho v) = 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2 + \kappa \rho^\gamma) = 0.\n\end{cases}
$$

 \triangleright The p-system (compressible Euler equation in Lagrangian coordinates) :

$$
\begin{cases} \partial_t \tau - \partial_x v = 0, \\ \partial_t v + \partial_x (\kappa \tau^{-\gamma}) = 0. \end{cases}
$$
 (P)

where

- $\rho = \rho(t, x) \geq 0$ is the density of the fluid,
- \blacktriangleright $v = v(t, x)$ is the velocity of the fluid, so that $m := \rho v$ is the local momentum,
- $\blacktriangleright \tau := 1/\rho$ is the specific volume,
- **►** the pressure law is $p(\rho) = \kappa \rho^{\gamma}$, $\gamma \in (1, 3]$.

Controllability problem

- ▶ Domain : $(t, x) \in [0, T] \times [0, L]$.
- ▶ State of the system : $u = (\tau, v)$.
- \triangleright Control: the "boundary data": here, on one side, say $x = 0$, while there is a fixed boundary law at $x = L$.
- \triangleright Controllability problem : given u_0 and u_1 , can we find boundary data $x = 0$ driving the state from u_0 to u_1 ?
- \triangleright Equivalently : given u_0 and u_1 , can we find a solution of the system satisfying the boundary condition and driving u_0 to u_1 ?

Systems of conservation laws

▶ Both systems enter the class of hyperbolic systems of conservation laws :

$$
U_t + f(U)_x = 0, \quad f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n, \tag{SCL}
$$

satisfying the (strict) hyperbolicity condition that at each point

df has *n* distinct real eigenvalues $\lambda_1 < \cdots < \lambda_n$.

▶ Hyperbolic systems of conservation laws develop singularities in finite time.

▶ This easy to see for instance for the Burgers equation :

$$
u_t+(u^2)_x=0.
$$

Class of solutions

- ▶ One can either work with regular solutions $(C¹)$ with small $C¹$ -norm (for small time), or with discontinuous (weak) solutions.
- ▶ For the latter case, is natural for the sake of uniqueness to consider weak solutions which satisfy entropy conditions (entropy solutions).
- \blacktriangleright This is not a mere regularity issue : in the C^1 case, the system is reversible, but it is irreversible in the context of entropy solutions.
- ▶ More precisely, the solutions will be of bounded variation, with small total variation in x ("à la Glimm") :

$$
TV(u) := \sup_{N} \sup_{x_1 < \cdots < x_N} \sum_{k=0}^{N-1} |u(x_{k+1}) - u(x_k)| \ll 1.
$$

 \triangleright Note that there exist weaker solutions (Glimm-Lax, DiPerna, Lions-Perthame-Souganidis-Tadmor, etc.)

Entropy conditions

Definition

An entropy/entropy flux couple for a hyperbolic system of conservation laws (SCL) is defined as a couple of regular functions $(\eta, q) : \Omega \to \mathbb{R}$ satisfying :

$$
\forall U \in \Omega, \quad D\eta(U) \cdot Df(U) = Dq(U).
$$

Definition

A function $U\in L^\infty(0,\,T;BV(0,L))\cap \mathcal{L}$ ip $(0,\,T;L^1(0,L))$ is called an entropy solution of (SCL) when, for any entropy/entropy flux couple (η, q) , with η convex, one has in the sense of measures

$$
\eta(U)_t+q(U)_x\leq 0,
$$

that is, for all $\varphi \in \mathcal{D}((0, T) \times (0, L))$ with $\varphi > 0$,

$$
\int_{(0,T)\times(0,L)}\big(\eta(U(t,x))\varphi_t(t,x)+q(U(t,x))\varphi_x(t,x)\big)\,dx\,dt\geq 0.
$$

Boundary condition

 \triangleright Our boundary condition will take the following form at $x = L$:

 $b(u(t, L)) = 0$ for a.e. t,

where $b = b(\rho, \nu) : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ is a function satisfying some non-degeneracy conditions (to be specified later).

▶ Examples :

 \blacktriangleright $v = 0$: zero-speed on the right boundary,

 $\rho = \overline{\rho}$: constant density (or constant pressure) at $x = L$.

Main result

Theorem

Let b satisfy the non-degeneracy condition.

Let $\overline{u}_0:=(\overline{\tau}_0,\overline{v}_0)\in\mathbb{R}^2$ with $\overline{\tau}_0>0$ and $b(\overline{u}_0)=0$ and let $\overline{u}_1=(\overline{\tau}_1,\overline{v}_1)$ with $\overline{\tau}_1 > 0$ and $b(\overline{u}_1) = 0$.

There exist $\varepsilon > 0$ and $T > 0$ such that for any $u_0 = (\tau_0, v_0)$ in $BV(0, L; \mathbb{R}^2)$ such that

$$
||u_0-\overline{u}_0||_{L^{\infty}(0,L)}+TV(u_0)\leq \varepsilon,
$$

and $b(u_0(L^-))=0$, there is

$$
u\in L^{\infty}(0,T;BV(0,L))\cap Lip([0,T];L^1(0,L)),
$$

a weak entropy solution of the p-system such that

$$
u_{|t=0}=u_0 \text{ and } u_{|t=T}=\overline{u}_1.
$$

Refined variant

Theorem

Let b satisfy the non-degeneracy condition.

Let $\overline{u}_0:=(\overline{\tau}_0,\overline{v}_0)\in\mathbb{R}^2$ with $\overline{\tau}_0>0$ and $b(\overline{u}_0)=0$ and let $\overline{u}_1=(\overline{\tau}_1,\overline{v}_1)$ with $\overline{\tau}_1 > 0$ and $b(\overline{u}_1) = 0$.

Let $\eta > 0$. There exist $\varepsilon > 0$ and $T > 0$ such that for any $u_0 = (\tau_0, v_0)$ in $BV(0,L;\mathbb{R}^2)$ such that

$$
||u_0-\overline{u}_0||_{L^{\infty}(0,L)}+TV(u_0)\leq \varepsilon,
$$

and $b(u_0(L^-))=0$, there is

$$
u\in L^{\infty}(0,\,T;BV(0,L))\cap Lip([0,\,T];L^1(0,L)),
$$

a weak entropy solution of the p-system such that

$$
u_{|t=0}=u_0 \text{ and } u_{|t=T}=\overline{u}_1,
$$

and

 $TV(u(t, \cdot)) \leq \eta$, $\forall t \in (0, T)$.

II. Previous results : control problems in the context of entropy solutions

- There are very general results in the C^1 case : Li-Rao (2002), ...
- \triangleright Several works on the scalar case: Ancona and Marson (1998), Horsin (1998), Perrollaz (2011), Adimurthi-Gowda-Goshal (2013), Andreianov-Donadello-Marson (2015), Adimurthi-Goshal-Marcati (2016), ...

▶ Several works on the system case :

- ▶ Bressan-Coclite (asymptotic result and a counterexample, 2002),
- ▶ Ancona-Coclite (Temple systems, 2002),
- ▶ Ancona-Marson (one-side open loop stabilization, 2007),
- ▶ G. (Isentropic and non-isentropic Euler, two-sided control 2007, 2014),
- ▶ Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
- ▶ T. Li-L. Yu (2015, partially LD systems),
- ▶ Coron-Ervedoza-G.-Goshal-Perrollaz (Feedback stabilization, 2015),
- ▶ see Nicola De Nitti's talk last week !

▶ ...

Two connected results

▶ Bressan and Coclite (2002) : for a class of systems containing Di Perna's system :

$$
\begin{cases}\n\partial_t \rho + \partial_x (\rho u) = 0, \\
\partial_t u + \partial_x \left(\frac{u^2}{2} + \frac{K^2}{\gamma - 1} \rho^{\gamma - 1} \right) = 0,\n\end{cases}
$$

there are initial conditions $\varphi \in BV([0,1])$ of arbitrary small total variation such that any entropy solution u remaining of small total variation satisfies : for any t , $u(t,\cdot)$ is not constant. $\;\neq\; C^{1}$ case !

 \triangleright G. (2007) : A sufficient condition concerning the isentropic Euler equation

$$
(E): \left\{\begin{array}{ll}\partial_t \rho + \partial_x(\rho u) = 0, \\ \partial_t(\rho u) + \partial_x(\rho u^2 + \kappa \rho^\gamma) = 0,\end{array}\right. \quad (P): \left\{\begin{array}{ll}\partial_t \tau - \partial_x v = 0, \\ \partial_t v + \partial_x(\kappa \tau^{-\gamma}) = 0,\end{array}\right.
$$

for final states to be reachable by acting on both sides. For instance, all constant states are reachable.

III. Basic facts on systems of conservation laws

▶ Systems of conservations laws :

$$
u_t + f(u)_x = 0, \quad f: \mathbb{R}^n \to \mathbb{R}^n,
$$

 $A(u) := df(u)$ has n real distinct eigenvalues $\lambda_1 < \cdots < \lambda_n$, which are characteristic speeds of the system with corresponding eigenvectors $r_i(u)$.

 \triangleright Genuinely non-linear fields in the sense of Lax :

$$
\nabla \lambda_i.r_i \neq 0 \quad \text{for all } u.
$$

 \Rightarrow we normalize $\nabla \lambda_i \cdot r_i = 1$.

 \blacktriangleright In the case of (P) we have

$$
\lambda_1 = -\sqrt{\kappa \gamma \tau^{-\gamma - 1}}
$$
 and $\lambda_2 = \sqrt{\kappa \gamma \tau^{-\gamma - 1}}$.

Boundary conditions

▶ We can now express our non-degeneracy condition on the boundary law $b: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$.

We ask that *b* satisfies the two following conditions :

▶ Standard condition for the Cauchy problem :

 $r_1 \cdot \nabla b \neq 0$ on Ω ,

▶ Condition for the backward in time Cauchy problem :

 $r_2 \cdot \nabla b \neq 0$ on Ω ,

Example : $b(u) = v$ (control by the velocity)

The Riemann problem

Find autosimilar solutions
$$
u = \overline{u}(x/t)
$$
 to

$$
\begin{cases} u_t + (f(u))_x = 0 \\ u_{\vert \mathbb{R}^-} = u_l \text{ and } u_{\vert \mathbb{R}^+} = u_r. \end{cases}
$$

▶ Solved by introducing Lax's curves which consist of points that can be joined starting from u_l either by a shock or a rarefaction wave.

Shocks and rarefaction waves

Rarefaction waves $u_l \rightarrow u_l$

Discontinuities satisfying :

▶ Rankine-Hugoniot (jump) relations

 $\left[f(u) \right] = s \left[u \right],$

 \blacktriangleright Lax's inequalities :

$$
\lambda_i(u_r) < s < \lambda_i(u_l)
$$

Propagates at speed $s \sim \int_{u_l}^{u_r} \lambda_i$

Regular solutions, obtained with integral curves of r_i :

$$
\begin{cases}\n\frac{d}{d\sigma}R_i(\sigma) = r_i(R_i(\sigma)),\\ \nR_i(0) = u_i,\n\end{cases}
$$

with $\sigma \geq 0$.

Propagates at speed $\lambda_i(R_i(\sigma))$

Solving the Riemann problem

▶ Lax's Theorem proves that one can solve (at least locally) the Riemann problem by first following the 1-curve (gathering states connected to u_1 by a 1-rarefaction/1-shock), then the 2-curve.

Boundary Riemann problem

▶ The same principle applies on the boundary (both forward and backward in time)

Front-tracking algorithm (Dafermos, Di Perna, Bressan, Risebro, . . .)

- ▶ Approximate initial condition by piecewise constant functions
- ▶ Solve the Riemann problems and replace rarefaction waves by rarefaction fans

- ▶ One obtain a piecewise constant function, with straight discontinuities (fronts)
- \triangleright iterate the process at each interaction point (points where fronts meet)

Estimates, convergence, etc.

- ▶ One shows than this defines a piecewise constant function, with a finite number of fronts and discrete interaction points.
- ▶ A central argument is due to Glimm : analyzing interactions of fronts $\alpha + \beta \rightarrow \alpha' + \beta' + \gamma'$ and the evolution of the strength of waves across an interaction, one proves that if $TV(u_0)$ is small enough :

$$
\Upsilon(t):=\sum_{\alpha\text{ waves}}|\sigma_\alpha|+C\sum_{\alpha,\beta\text{ approaching waves}}|\sigma_\alpha||\sigma_\beta|\text{ is non-increasing,}
$$

 $(\sigma_{\alpha}$ the size of the front α) and then $TV(u(t)) \leq C TV(u_0)$ for some $C > 0$.

▶ One deduces bounds in $L_t^{\infty}BV_x$, then in $Lip_tL_x^1$, so we have compactness (Helly's theorem). . .

IV. Some ideas of the construction. Main difficulty.

EXECUTE: Bressan & Coclite's counterexample. DiPerna's system is a 2×2 hyperbolic system with GNL fields, and which satisfies

the interaction of two shocks of the same family generates a shock in this family (normal) and a shock in the other family.

Starting from an initial date with a dense set of shocks, this propagates over time, even with control on both sides.

▶ A basic idea (even to control on both sides) is to use the fact that for the p -system :

the interaction of two shocks of the same family generates a shock in this family (normal) and a rarefaction in the other family.

DiPerna's system

Some ideas, control from both boundaries, 1

 \triangleright To begin with, one would like to absorb the waves of a family 2 in the solution by sending a strong (large) shock of this family from the boundary.

- This is connected to Coron's return method.
- ▶ Such a strong shock absorbs waves of its own family in a first time, but waves that cross may create interact again above this shock...

Some ideas, control from both boundaries, 2

▶ An idea is then to send additional 2-shocks from the boundary to improve the situation.

- \blacktriangleright In particular, we want to prevent 1-shocks to cross.
- ▶ Indeed, if only 1-rarefactions cross, since they do not interact, the system reaches a constant state.

The construction

▶ First we construct the solution under the 2-strong shock, taking the additional 2-shocks described above in to account :

- ▶ It remains to construct the approximations beyond the strong 2-shock, that is, we have to extend :
	- \blacktriangleright the 1-rarefaction waves forward in time
	- \blacktriangleright the 2-shocks backward in time

▶ We construct this approximation by using $1 - x$ as the time variable.

 \blacktriangleright we have to solve the interactions.

 \blacktriangleright Finally we get an approximation like :

▶ This solves the controllability problem when one controls on both sides.

One-side controls

- ▶ When one controls only from one side (say, from the left), there are two differences :
	- \triangleright One has to take into account the reflections at $x = L$ below the strong shock. Not an issue.
	- ▶ One has to take into account the reflections at $x = L$ of the strong shock. There are two situations, one of which changes everything.

 \triangleright Situation 1. The strong 2-shock is reflected as a 1-rarefaction when

$$
(r_1\cdot\nabla b)(r_2\cdot\nabla b)<0.
$$

In this case, since this adds a rarefaction to the picture, the above construction still works.

▶ Situation 2. The strong 2-shock is reflected as a 1-shock when

$$
(r_1\cdot\nabla b)(r_2\cdot\nabla b)>0.
$$

In this case, one needs an additional construction. Example : $v = 0$ at $x = L$.

A reflection as a shock

▶ When the strong 2-shock is reflected as a 1-shock, it can then interact with 1-rarefactions, and one does not reach a constant state.

Ideas of the construction, 1

 \triangleright We first consider the same construction as in the two-sided case. We can construct everything that is below the strong shock and the backward additional 2-shocks.

▶ One has to extend the 1-rarefactions and the strong reflected 1-shock.

Ideas of the construction, 2

- ▶ The idea is again to send additional 2-shocks from the boundary to treat the interactions between the 1-rarefactions and the reflected 1-shock.
- \triangleright More precisely, we will use their reflection at $x = L$ to interact appropriately with the 1-strong shock.
- \blacktriangleright The idea is to reach this situation :

Ideas of the construction, 3

- ▶ However, here there is no "'privileged direction of time", the result always depends on the future.
- ▶ Hence we use a fixed-point scheme.
- ▶ A difficulty is that the map is discontinuous, and one uses an "almost-fixed point theorem" for discontinuous mappings.
- ▶ Precisely, we use Klee's theorem

Theorem (Klee, 1961)

A mapping from a closed convex in \mathbb{R}^n into itself with discontinuities of size less than ε , has an almost fixed point :

$$
||f(x^*)-x^*||\leq \varepsilon.
$$

Open problems

- ▶ General controllability problem. Is there a good general condition to distinguish controllable systems (e.g. p-system) from uncontrollable ones (e.g. DiPerna's system) ?
- \triangleright Control from one side. What about the 3 \times 3 full Euler system?
- ▶ Other possible approaches? Vanishing viscosity (cf. Bianchini-Bressan) ? Glimm scheme ? Kinetic approaches ?
- \triangleright Asymptotic stabilization. In the BV case with a closed-loop feedback, much is yet to be done. . .

Thank you for your attention !