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I. Introduction

One-dimensional isentropic Euler equations :
▶ Compressible Euler equation (in standard Eulerian coordinates) :{

∂tρ+ ∂x(ρv) = 0,
∂t(ρv) + ∂x

(
ρv2 + κργ

)
= 0.

▶ The p-system (compressible Euler equation in Lagrangian
coordinates) : {

∂tτ − ∂xv = 0,
∂tv + ∂x(κτ

−γ) = 0. (P)

where
▶ ρ = ρ(t, x) ≥ 0 is the density of the fluid,
▶ v = v(t, x) is the velocity of the fluid, so that m := ρv is the local

momentum,
▶ τ := 1/ρ is the specific volume,
▶ the pressure law is p(ρ) = κργ , γ ∈ (1, 3].



Controllability problem

▶ Domain : (t, x) ∈ [0,T ]× [0, L].

▶ State of the system : u = (τ, v).

▶ Control : the “boundary data” : here, on one side, say x = 0, while
there is a fixed boundary law at x = L.

▶ Controllability problem : given u0 and u1, can we find boundary data
x = 0 driving the state from u0 to u1 ?

▶ Equivalently : given u0 and u1, can we find a solution of the system
satisfying the boundary condition and driving u0 to u1 ?



Systems of conservation laws
▶ Both systems enter the class of hyperbolic systems of conservation

laws :
Ut + f (U)x = 0, f : Ω ⊂ Rn → Rn, (SCL)

satisfying the (strict) hyperbolicity condition that at each point

df has n distinct real eigenvalues λ1 < · · · < λn.

▶ Hyperbolic systems of conservation laws develop singularities in
finite time.

▶ This easy to see for instance for the Burgers equation :

ut + (u2)x = 0.



Class of solutions

▶ One can either work with regular solutions (C 1) with small C 1-norm
(for small time), or with discontinuous (weak) solutions.

▶ For the latter case, is natural for the sake of uniqueness to consider
weak solutions which satisfy entropy conditions (entropy solutions).

▶ This is not a mere regularity issue : in the C 1 case, the system is
reversible, but it is irreversible in the context of entropy solutions.

▶ More precisely, the solutions will be of bounded variation, with small
total variation in x (“à la Glimm”) :

TV (u) := sup
N

sup
x1<···<xN

N−1∑
k=0

|u(xk+1)− u(xk)| ≪ 1.

▶ Note that there exist weaker solutions (Glimm-Lax, DiPerna,
Lions-Perthame-Souganidis-Tadmor, etc.)



Entropy conditions

Definition
An entropy/entropy flux couple for a hyperbolic system of conservation
laws (SCL) is defined as a couple of regular functions (η, q) : Ω → R
satisfying :

∀U ∈ Ω, Dη(U) · Df (U) = Dq(U).

Definition
A function U ∈ L∞(0,T ;BV (0, L)) ∩ Lip(0,T ; L1(0, L)) is called an
entropy solution of (SCL) when, for any entropy/entropy flux couple
(η, q), with η convex, one has in the sense of measures

η(U)t + q(U)x ≤ 0,

that is, for all φ ∈ D((0,T )× (0, L)) with φ ≥ 0,
ˆ
(0,T )×(0,L)

(
η(U(t, x))φt(t, x) + q(U(t, x))φx(t, x)

)
dx dt ≥ 0.



Boundary condition

▶ Our boundary condition will take the following form at x = L :

b(u(t, L)) = 0 for a.e. t,

where b = b(ρ, v) : R+ × R → R is a function satisfying some
non-degeneracy conditions (to be specified later).

▶ Examples :
▶ v = 0 : zero-speed on the right boundary,
▶ ρ = ρ : constant density (or constant pressure) at x = L.



Main result

Theorem
Let b satisfy the non-degeneracy condition.

Let u0 := (τ0, v0) ∈ R2 with τ0 > 0 and b(u0) = 0 and let u1 = (τ1, v1)
with τ1 > 0 and b(u1) = 0.

There exist ε > 0 and T > 0 such that for any u0 = (τ0, v0) in
BV (0, L;R2) such that

∥u0 − u0∥L∞(0,L) + TV (u0) ≤ ε,

and b(u0(L
−)) = 0, there is

u ∈ L∞(0,T ;BV (0, L)) ∩ Lip([0,T ]; L1(0, L)),

a weak entropy solution of the p-system such that

u|t=0 = u0 and u|t=T = u1.



Refined variant

Theorem
Let b satisfy the non-degeneracy condition.

Let u0 := (τ0, v0) ∈ R2 with τ0 > 0 and b(u0) = 0 and let u1 = (τ1, v1)
with τ1 > 0 and b(u1) = 0.

Let η > 0. There exist ε > 0 and T > 0 such that for any u0 = (τ0, v0)
in BV (0, L;R2) such that

∥u0 − u0∥L∞(0,L) + TV (u0) ≤ ε,

and b(u0(L
−)) = 0, there is

u ∈ L∞(0,T ;BV (0, L)) ∩ Lip([0,T ]; L1(0, L)),

a weak entropy solution of the p-system such that

u|t=0 = u0 and u|t=T = u1,

and
TV (u(t, ·)) ≤ η, ∀t ∈ (0,T ).



II. Previous results : control problems in the context of
entropy solutions

▶ There are very general results in the C 1 case : Li-Rao (2002), ...

▶ Several works on the scalar case :
Ancona and Marson (1998), Horsin (1998), Perrollaz (2011),
Adimurthi-Gowda-Goshal (2013), Andreianov-Donadello-Marson
(2015), Adimurthi-Goshal-Marcati (2016), ...

▶ Several works on the system case :

▶ Bressan-Coclite (asymptotic result and a counterexample, 2002),
▶ Ancona-Coclite (Temple systems, 2002),
▶ Ancona-Marson (one-side open loop stabilization, 2007),
▶ G. (Isentropic and non-isentropic Euler, two-sided control 2007,

2014),
▶ Andreianov-Donadello-Ghoshal-Razafison (2015, triangular system),
▶ T. Li-L. Yu (2015, partially LD systems),
▶ Coron-Ervedoza-G.-Goshal-Perrollaz (Feedback stabilization, 2015),
▶ see Nicola De Nitti’s talk last week !
▶ ...



Two connected results
▶ Bressan and Coclite (2002) : for a class of systems containing Di

Perna’s system :{
∂tρ+ ∂x(ρu) = 0,
∂tu + ∂x

(
u2

2 + K2

γ−1ρ
γ−1

)
= 0,

there are initial conditions φ ∈ BV ([0, 1]) of arbitrary small total
variation such that any entropy solution u remaining of small total
variation satisfies : for any t, u(t, ·) is not constant. ̸= C 1 case !

▶ G. (2007) : A sufficient condition concerning the isentropic Euler
equation

(E ) :

{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2 + κργ) = 0, (P) :

{
∂tτ − ∂xv = 0,
∂tv + ∂x(κτ

−γ) = 0,

for final states to be reachable by acting on both sides. For instance,
all constant states are reachable.



III. Basic facts on systems of conservation laws

▶ Systems of conservations laws :

ut + f (u)x = 0, f : Rn → Rn,

A(u) := df (u) has n real distinct eigenvalues λ1 < · · · < λn,
which are characteristic speeds of the system with corresponding
eigenvectors ri (u).

▶ Genuinely non-linear fields in the sense of Lax :

∇λi .ri ̸= 0 for all u.

⇒ we normalize ∇λi · ri = 1.

▶ In the case of (P) we have

λ1 = −
√
κγτ−γ−1 and λ2 =

√
κγτ−γ−1.



Boundary conditions
▶ We can now express our non-degeneracy condition on the boundary

law b : R+ × R → R.

We ask that b satisfies the two following conditions :

▶ Standard condition for the Cauchy problem :

r1 · ∇b ̸= 0 on Ω,

▶ Condition for the backward in time Cauchy problem :

r2 · ∇b ̸= 0 on Ω,

▶ Example : b(u) = v (control by the velocity)



The Riemann problem

▶ Find autosimilar solutions u = u(x/t) to{
ut + (f (u))x = 0
u|R− = ul and u|R+ = ur .

▶ Solved by introducing Lax’s curves which consist of points that can
be joined starting from ul either by a shock or a rarefaction wave.



Shocks and rarefaction waves

Shocks

ul ur

Discontinuities satisfying :
▶ Rankine-Hugoniot (jump) relations[

f (u)
]
= s

[
u
]
,

▶ Lax’s inequalities :

λi (ur ) < s < λi (ul)

Propagates at speed s ∼
ffl ur
ul

λi

Rarefaction waves

ul ur

Regular solutions,
obtained with integral curves of ri :

d

dσ
Ri (σ) = ri (Ri (σ)),

Ri (0) = ul ,

with σ ≥ 0.

Propagates at speed λi (Ri (σ))



Solving the Riemann problem

um

um

ur

2-rarefaction

ul

x

t

ul ur1-shock

▶ Lax’s Theorem proves that one can solve (at least locally) the
Riemann problem by first following the 1-curve (gathering states
connected to ul by a 1-rarefaction/1-shock), then the 2-curve.



Boundary Riemann problem

1-shock

u+

Curve b(u) = 0 x = L

x

t

u−

u+

u−

▶ The same principle applies on the boundary (both forward and
backward in time)



Front-tracking algorithm (Dafermos, Di Perna, Bressan,
Risebro, . . .)

▶ Approximate initial condition by piecewise constant functions
▶ Solve the Riemann problems and replace rarefaction waves by

rarefaction fans

x

t

▶ One obtain a piecewise constant function, with straight
discontinuities (fronts)

▶ iterate the process at each interaction point (points where fronts
meet)



Estimates, convergence, etc.

▶ One shows than this defines a piecewise constant function, with a
finite number of fronts and discrete interaction points.

▶ A central argument is due to Glimm : analyzing interactions of fronts
α+ β → α′ + β′ + γ′ and the evolution of the strength of waves
across an interaction, one proves that if TV (u0) is small enough :

Υ(t) :=
∑

α waves

|σα|+C
∑

α,β approaching waves

|σα||σβ | is non-increasing,

(σα the size of the front α) and then
TV (u(t)) ≤ C TV (u0) for some C > 0.

▶ One deduces bounds in L∞t BVx , then in LiptL1
x , so we have

compactness (Helly’s theorem). . .



IV. Some ideas of the construction. Main difficulty.
▶ Bressan & Coclite’s counterexample. DiPerna’s system is a 2 × 2

hyperbolic system with GNL fields, and which satisfies

the interaction of two shocks of the same family generates
a shock in this family (normal) and a shock in the other family.

Starting from an initial date with a dense set of shocks, this
propagates over time, even with control on both sides.

▶ A basic idea (even to control on both sides) is to use the fact that
for the p-system :
the interaction of two shocks of the same family generates a shock

in this family (normal) and a rarefaction in the other family.

DiPerna’s system p-system



Some ideas, control from both boundaries, 1
▶ To begin with, one would like to absorb the waves of a family 2 in

the solution by sending a strong (large) shock of this family from the
boundary.

t

0 L

▶ This is connected to Coron’s return method.

▶ Such a strong shock absorbs waves of its own family in a first time,
but waves that cross may create interact again above this shock...



Some ideas, control from both boundaries, 2

▶ An idea is then to send additional 2-shocks from the boundary to
improve the situation.

t

0 L

▶ In particular, we want to prevent 1-shocks to cross.
▶ Indeed, if only 1-rarefactions cross, since they do not interact, the

system reaches a constant state.



The construction
▶ First we construct the solution under the 2-strong shock, taking the

additional 2-shocks described above in to account :

2 rarefaction

L0

t

2 strong shock

2 weak shock

1 shock

1 rarefaction

▶ It remains to construct the approximations beyond the strong
2-shock, that is, we have to extend :
▶ the 1-rarefaction waves forward in time
▶ the 2-shocks backward in time



▶ We construct this approximation by using 1 − x as the time variable.

2 shock

1 rarefaction

▶ we have to solve the interactions.



▶ Finally we get an approximation like :

x = L

x = 0
t

1 rarefaction

2 shock

▶ This solves the controllability problem when one controls on both
sides.



One-side controls
▶ When one controls only from one side (say, from the left), there are

two differences :

▶ One has to take into account the reflections at x = L below the
strong shock. Not an issue.

▶ One has to take into account the reflections at x = L of the strong
shock. There are two situations, one of which changes everything.

▶ Situation 1. The strong 2-shock is reflected as a 1-rarefaction when

(r1 · ∇b)(r2 · ∇b) < 0.

In this case, since this adds a rarefaction to the picture, the above
construction still works.

▶ Situation 2. The strong 2-shock is reflected as a 1-shock when

(r1 · ∇b)(r2 · ∇b) > 0.

In this case, one needs an additional construction.
Example : v = 0 at x = L.



A reflection as a shock

▶ When the strong 2-shock is reflected as a 1-shock, it can then
interact with 1-rarefactions, and one does not reach a constant state.

1 shock

1 rarefaction

t

x = L
x = 0

2 shock



Ideas of the construction, 1

▶ We first consider the same construction as in the two-sided case. We
can construct everything that is below the strong shock and the
backward additional 2-shocks.

x = 0 x = L

▶ One has to extend the 1-rarefactions and the strong reflected
1-shock.



Ideas of the construction, 2
▶ The idea is again to send additional 2-shocks from the boundary to

treat the interactions between the 1-rarefactions and the reflected
1-shock.

▶ More precisely, we will use their reflection at x = L to interact
appropriately with the 1-strong shock.

▶ The idea is to reach this situation :

1-rarefaction fronts

x = 0 x = L

strong shock

1-compression fronts

2-compression fronts



Ideas of the construction, 3

▶ However, here there is no “”privileged direction of time”, the result
always depends on the future.

▶ Hence we use a fixed-point scheme.
▶ A difficulty is that the map is discontinuous, and one uses an

“almost-fixed point theorem” for discontinuous mappings.
▶ Precisely, we use Klee’s theorem

Theorem (Klee, 1961)
A mapping from a closed convex in Rn into itself with discontinuities of
size less than ε, has an almost fixed point :

∥f (x⋆)− x⋆∥ ≤ ε.



Open problems

▶ General controllability problem. Is there a good general condition to
distinguish controllable systems (e.g. p-system) from uncontrollable
ones (e.g. DiPerna’s system) ?

▶ Control from one side. What about the 3 × 3 full Euler system ?

▶ Other possible approaches ?
Vanishing viscosity (cf. Bianchini-Bressan) ? Glimm scheme ? Kinetic
approaches ?

▶ Asymptotic stabilization. In the BV case with a closed-loop
feedback, much is yet to be done. . .



Thank you for your attention !


