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An unusual game is being played out in the Coast Range of California. Three
alternative male strategies are locked in an ecological "perpetual motion machine"
from which there appears little escape. As in the RPS game, three morphs of
lizards cycle from the ultra-dominant polygynous orange-throated males, which best
the more monogamous mate gaurding blues; the oranges are in turn bested by the
sneaker strategy of yellow-throated males, and the sneaker strategy of yellows is in
turn bested by the mate guarding strategy of blue-throated males. Each strategy in
this game has a strength and a weakness, and there is the evolutionary rub that
keeps the wheels spinning.



Three different types of bacteria E. Coli coexist
thanks to RPS game strategies.

Modelling strategy:

- Three population densities.

- A certain quantity x is modified as a result of the interactions.
- Quadratic coupling (binary interactions) of densities.

- Result:. A kinetic model or system.
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We consider the rock-paper-scissors game played in an interconnected population.

%mssnrs 0 1 2
@ 0 (0,0) | (h,—h) | (=h,h)

1 (=h,h) | (0,0) | (h,—h)

R
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Table 1: Payoff table of the rock-paper-scissors game

Let (x,2,) € R? denote the values of the exchange variables of two agents after the interaction, and
(2/, 2" ) € R? their values just before the interaction. If the player with post-interaction exchange variable

r wins, x and x, satisfy:

r=x2"+h
Ty = T~ h.

If the players play the same, there is no winner and we have
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The constrained model

fy@fF m
?_?E = E [ f(f 11"-*} dux, [IL.B:Eth(T xr — h,) 0 I“l“:iﬁf(t* xr+h)— IL:rEth(T LI')]
] 3 Ji

\ f(0,2)|= o)

-

& 7 in P .
O fe(t, ) = jg |/ oimy (fe(x+ ) + fe(t,z —e) — 2f(t, x,

3

1(0,z) = f=(z)

( r
s (ta) =3 ([ siea)ar.) 2t
3 \Jr+

fi1:0) =0 for a.e. t € RT
Lf(0,z) = f™(x) for a.e. z € RT.




Gult; z) = (f u(t?z)dz) O2u(t, ) for a.e. (t,z) € RT x R%
Ry
u(t,0) =0 for a.e. t € R}
u(0, z) = u™(x) for a.e. x € Ry,
Theorem 1. Consider the initial-boundary value problem (1)-(3), with initial condition u™ € L*(Ry)N
L*(R4) and such that u™ > 0 for a.e. x € Ry. Let T > 0. Then, it has a unique very weak solution,

which belongs to L*((0,T) x Ry) NL®°((0,T) x Ry). Moreover, |lu(t,")||Le®,) < [|u™||Lo®,) for a.e.
t € (0,T). Lastly, the solution is non-negative, i.e. u(t,z) >0 for a.e. t € (0,T) and for a.e. x € Ry.
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Osii(t, &) = (/ v(t, z) dz) O2v(t,xz) for a.e. (t,x) € Ry X
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Proposition 2. Let u be the solution of the initial-boundary value problem (1)-(3) and let
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Then M is a decreasing function of time. In particular, M € C*°((0,T)) and, for allt € R,
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Lemma 1. Let v'™ € L'(R;) N L*(R;) a positive and admissible initial condition

differential equation (13), with initial condition a(0) = 0 and a’'(0) =
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Proof. Since
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Integrating once in time and using that a’(0) = M (0), it holds
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and, since fn-l_m a~Ze"tada = 24/, we obtain
lim F(a*) = M(0).

a* =400
We conclude that as t tends to infinity, if a(t) — +o0o, then a'(t) — 0.

Notice that from its definition, a is an increasing function, hence it has a limit when ¢ goes to infinity
Let ay = limy_, 4o a(t), and suppose that as < +o0o. Then lim;_,, . a’(t) = 0, from which we ge
Flax) = M(0). However, F(a) is the primitive of a strictly positive function and hence is strictl
growing as a function of a, which contradicts limg. o F'(a*) = M(0).
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Similarity solutions:
A e L“_lg#(w/f,‘”’),

so that the mass of the solution u satisfies for all t € R :
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In the particular case p = % one has




Theorem 2. If the initial data u'™ has a bounded second moment M5(0), then there exists C > 0 such

that
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It is simple to show that there exists a constant C' such that
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so that
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FIGURE 1. Numerical profiles of the solution of (1)-(3) at times t = FIGURE 2. Logarithm of the mass vs logarithm of time and comparison with a —1/3
50, 500, 5000, 50000, with initial condition given in (17). slope (dotted-dashed line).
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The Dirichlet problem

QO = (0,7) w; = [/0 w(t, &) dE] Wi (t,z) €e Ry x €
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Lemma 2. Let w™ be the initial condition of the initial-boundary value problem (18)-(20) and suppose
that w™ € LY(Q) N L>(). Then there exists a constant C, depending on w™, and a time T > 0 such
that, for anyt > T,
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Note that

with
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Perspectives

General nonlinear kinetic models. Explanation of the prevalence of Zipf's law in social

sciences.

Log Frequency versus log Size of US firms (by Number of Employees) for 1997
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Source: Axtell (2001).

Notes: Ordinary least squares (OLS) fit gives a slope of 2.06 (s.e. = 0.054; R? = 0.99). This corresponds
to a frequency f(8) ~ §2%9 which is a power law distribution with exponent 1.059. This is very close to
an ideal Zipf’s law, which would have an exponent { = 1.

A Plot of City Rank versus Size for all US Cities with Population over 250,000 in 2010
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Source: Author, using data {rom the Statistical Abstract of the United States (2012).

Nates: The dots plot the empirical data. The line is a power law fit (R? = 0.98), regressing In Rank on
In Size. The slope is —1.03, close to the ideal Zipf's law, which would have a slope of —1.
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