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Overview

1. Deep neural network architecture

2. Simultaneous controllability

3. Universal approximation theorem
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DEEP NEURAL NETWORK ARCHI-
TECTURE



Multilayer perceptron

We consider the neural network architecture

xk = σ(Wk · xk−1 + bk), k ∈ {1, . . . ,L}.

where L ≥ 1, {Wk,bk}Lk=1 ⊂ Rdk+1×dk × Rdk+1 with dk ≥ 1.

Here σ is the ReLu function σ(x) = max{0, x} for x ∈ R. If x ∈ Rd,
then

σ(x) = σ
(
x1, . . . , xd

)⊤
=

(
σ(x1), . . . , σ(xd)

)⊤
.

We denote by N(W) =
maxk∈{1,...,L}{dk}
the neuronal network
width.
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Finite sample memorization

Denote by hk(x) = Wk · x + bk and consider the input-output map

ϕL(x) = ϕL({Wk,bk}Lk=1, x) = (σ ◦ hL ◦ · · · ◦ σ ◦ h1︸ ︷︷ ︸
L times

)(x)

LetWL = {Wk}Lk=1 and BL = {bk}Lk=1.

Main question: Let d, N, M ≥ 1 and a dataset
{xi, yi}Ni=1 ⊂ Rd ×{1, . . . ,M}. There exist L > 0 and (WL,BL) such that

ϕL(xi) = yi for every i ∈ {1, . . . ,N}?

This is simultaneous controllability or finite sample memorization.
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SIMULTANEOUS CONTROLLABIL-
ITY



Simultaneous controllability theorem

Theorem 1: Simultaneous controllability

Consider the integers d, N, M ≥ 1 and a dataset {xi, yi}Ni=1 ⊂ Rd ×
{1, . . . ,M}. Then, for L = 2N+ 4M− 1 and N(W) = 2, there exist
parametersWL and BL such that the input-output map satisfies

ϕL(WL,BL, xi) = yi, for every i ∈ {1, . . . ,N}.

Moreover, this result cannot be achieved with width 1.

The neural network of the theorem corresponds to the following

• N(W) = maxk∈{0,...,L−1}{dk} = 2.
• Depth L = 2N+ 4M− 1
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Geometric analysis of dynamics

Let us analyze σ(Wx + b).

Observation: IfW ∈ R1×2 and b ∈ R then

H(W,b) = {x ∈ R2 : W · x + b = 0},

define a hyperplane.

All points to the left of the hyperplane H1 collapse to zero.
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Geometric analysis of dynamics

In the case that (w1,w2)
T = W ∈ R2×2 and (b1,b2)T = b ∈ R2 they

define two hyperplanes H1(w1,b1) and H2(w2,b2).

Different regions are mapped to different locations.

Key idea: Construct the parameters such that in each iteration,
points of the same color collapse in the same point.
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Sketch of the construction of the parameter

We construct the parameters in four steps.

(1) Data preconditioning: Projection from d dimensions into a
single dimension.
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Sketch of the construction of the parameter

(2) Compression process: We drive the data from the same class
into single points. Defining the map ϕL22 .
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Sketch of the construction of the parameter

(3) Data sorting: We sort the data with a map ϕL33 .

(4) Mapping to the respective labels: With a map ϕL44 we drive the
data to their respective labels.

Finally, the map ϕL = (ϕL44 ◦ ϕL33 ◦ ϕL22 ◦ ϕL11 ) can memorizes the
dataset.
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UNIVERSAL APPROXIMATION
THEOREM



Universal approximation theorem

Universal Approximation Theorem for Lp(Ω;R+)

Let 1 ≤ p < ∞, d ≥ 1 an integer, and Ω ⊂ Rd a bounded domain.
For any f ∈ Lp(Ω;R+) and ε > 0, there exist a depth L = L(ε) ≥ 1
and parameters WL and BL such that the input-output map ϕL

with N(W) = d + 1 satisfies

∥ϕL(WL,BL, ·)− f(·)∥Lp(Ω;R+) < ε.

Additionally, for all f(·) ∈ W1,p(Ω;R+), we have

L(ε) ≤ C∥f(·)∥dpW1,p(Ω;R+)
ε−dp, (1)

where C is a positive constant independent of f and ε.

Proof: Two step approximation.
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Sketch of the proof (Step 1)

Let fh(x) =
∑
H∈Hh

fHχH(x),

where

fH :=
1

md(H)

∫
H
f(x)dx, for H ∈ Hh.

Then,

∥f − fh∥Lp(C;R+) ≤ ε/2
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Sketch of the proof (Step 2)

We define ϕL = ϕ2 ◦ ϕ1 and we show that

∥fh − ϕL∥Lp(H;R+) = 0 and ∥fh − ϕL∥Lp(Gδ
h ;R+) < ε/2.

Finally, we deduce

∥f − ϕL∥L2(Ω;R+) ≤ ∥f − fh∥Lp(C;R+) + ∥fh − ϕL∥Lp(C;R+) < ε.
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Conclusions

Some novelties of this work are:

1. We have proven that any multilayer perceptron with a depth
L = O(N) and a width greater than or equal to two satisfies the
simultaneous controllability property.

2. Our geometric analysis employed in our proofs departs from
existing techniques.

3. This explicit construction in the UAT allows us to estimate the
number of layers L(ε) to approximate a given function
f ∈ W1,p(Ω).

Thanks for your attention.
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