
Local Energy Decay

for the Damped Wave Equation

Julien Royer

Work in progress with Rayan Fahs
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The Model Case

We consider on Rd the free wave equation

∂2
t u −∆u = 0,

with (u, ∂tu)|t=0 = (u0, u1) supported in the ball B(R).

The usual energy is a constant of the motion

E(u; t) =

∫
Rd

(
|∇u(t , x)|2 + |∂tu(t , x)|2

)
dx .

In odd dimension, the wave propagates exactly at speed 1 (strong
Huyghens principle). In particular, it goes to infinity and

∀t > 2R, ∥∇u(t)∥2L2(B(R)) + ∥∂tu(t)∥2L2(B(R)) = 0.

In even dimension, the wave propagates at speed at most
1. We still have local energy decay:

∥∇u(t)∥2L2(B(R)) + ∥∂tu(t)∥2L2(B(R)) ⩽ CR t−2dE(u; 0).

In general settings, we are interested in the decay of the energy which remains
in a bounded region for localized initial condition.
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The asymptotically free setting

We consider the (possibly damped) wave equation{
∂2
t u + Pu + a(x)∂tu = 0,

(u, ∂tu)|t=0 = (f , g).

P is the Laplace-Beltrami operator associated to a long-range perturbation
of the flat metric:

P = − 1

w(x)
∆G , ∆G = divG(x)∇,

with w(x) ⩾ c0 > 0, G(x) ⩾ c0 Id and

|∂α(G(x)− Id)|+ |∂α(w(x)− 1)| ≲ ⟨x⟩−ρ0−|α| , ρ0 > 0.

The absorption index a(x) ⩾ 0 is of short range

|∂αa(x)| ≲ ⟨x⟩−1−ρ0−|α| .

The (non-decreasing) energy is

E(u; t) =

∫
Rd

(
⟨G(x)∇u(t , x),∇u(t , x)⟩+ w(x) |∂tu(t , x)|2

)
dx .
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From resolvent estimates to time decay

We study the time-dependent solution from a spectral point of view:

u(t) =
1

2π

∫
Im(z)=µ

e−itzR(z )Fz dz , (µ > 0)

where

R(z ) =
(
−∆G − iawz − wz 2)−1

, Fz = (aw − izw)f + wg .

We prove resolvent estimates in weighted spaces.

We have the limiting absorption principle: the weighted resolvent is
uniform in Im(z ) > 0.

We have control the dependence in Re(z ), in particular for |Re(z )| ≫ 1
and |Re(z )| ≪ 1.

We estimate the resolvent R(z ) and its derivatives.

We can do the same for ∇u(t) and ∂tu(t).
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Contribution of high frequencies

The propagation of high frequency waves is well approximated by the
corresponding classical rays of light.

For the damped wave equation on an unbounded domain, the local energy
decays uniformly if and only if all rays of light escape to infinity or go through
the damping region.

Without damping, we recover the non-trapping condition.

For the damped wave equation on a compact domain, we recover the
geometric control condition.

The decay of the local energy is actually governed by the contribution of low
frequencies.
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State of the art

Theorem (Bouclet-R. ’14, R. ’18)

Assume that the geometric damping condition holds. Let ε > 0. Then for
(f , g) ∈ H 1(Rd)× L2(Rd) supported in B(R) and t ⩾ 0 we have

∥∇u(t)∥2L2(B(R))) + ∥∂tu(t)
∥∥2

L2(B(R))

≲ ⟨t⟩−(2d−ε)(∥∇f ∥2L2(Rd ) + ∥g∥2L2(Rd )

)
.

This is almost optimal in even dimensions.

Theorem (Bouclet-Burq ’21)

Assume that a = 0 and the non-trapping condition holds. Then for
(f , g) ∈ H 1(Rd)× L2(Rd) supported in B(R) and t ⩾ 0 we have

∥u(t)∥2L2(B(R))) ≲ ⟨t⟩−2d∥f ∥2L2(Rd ) + ⟨t⟩2−2d∥g∥2L2(Rd ).

This is optimal in even dimensions.



Main result

Let u0(t) be the solution of{
∂2
t u0 −∆u0 = 0,

(u0, ∂tu0)|t=0 = (wf , awf + wg).

Theorem (Fahs-R., in progress)

Assume that the geometric damping condition holds. Then for
(f , g) ∈ H 1(Rd)× L2(Rd) supported in B(R) and t ⩾ 0 we have

∥u(t)− u0(t)∥2L2(B(R))) ≲ ⟨t⟩−2d−2ρ∥f ∥2L2(Rd ) + ⟨t⟩2−2d−2ρ∥af + g∥2L2(Rd ).

In even dimension, this gives the asymptotic profile for u(t) and in
particular the optimal decay.

In odd dimensions, this gives a rate of decay which is better than what
would be optimal in even dimensions !

Open problem: Prove a similar result for ∇u(t) (our proof works for ∂tu(t)).
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