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q Control System: Let Q := (0,T )× (0, 1).

∂tu1 − ∂x (γ1∂xu1) = 0, (t, x) ∈ Q,

∂tu2 − ∂x (γ2∂xu2) = 0, (t, x) ∈ Q,

u1(t, 0) = 0, u2(t, 0) = v(t), t ∈ (0,T ),

u1(t, 1) = u2(t, 1), t ∈ (0,T ),

γ1(1)∂xu1(t, 1) + γ2(1)∂xu2(t, 1) + αu1(t, 1) = 0, t ∈ (0,T ),

u1(0, x) = u1,0(x), u2(0, x) = u2,0(x), x ∈ (0, 1),

(1)

where α ≥ 0, γi ∈ C1([0, 1]) with γi > 0, and v is the control.

q Relevant Spaces:

H :=
{

(v1, v2) ∈ (H1(0, 1))2 : v1(0) = v2(0) = 0, v1(1) = v2(1)
}
,

H′ : Dual space of H w.r.t. pivot space E := L2(0, 1)× L2(0, 1).

q Existing Results:

1. For T > 0, u0 ∈ H′, v ∈ L2(0,T ), ∃ ! u ∈ C([0,T ];H′) ∩ L2(0,T ;E).

2. For (u1,0, u2,0) ∈ H′, ∃ v ∈ L2(0,T ) 3 (u1(T ), u2(T )) = 0.

K. Bhandari, F. Boyer, and V. Hernández-Santamaŕıa. Boundary null-controllability of 1-D
coupled parabolic systems with Kirchhoff-type conditions. Math. Control Signals Systems, vol. 33,
no. 3, pp. 413–471, 2021.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics



2/13

Background Discrete control problem Steps to solve the problem Discrete control results Recovering continuous control result

q Control System: Let Q := (0,T )× (0, 1).

∂tu1 − ∂x (γ1∂xu1) = 0, (t, x) ∈ Q,

∂tu2 − ∂x (γ2∂xu2) = 0, (t, x) ∈ Q,

u1(t, 0) = 0, u2(t, 0) = v(t), t ∈ (0,T ),

u1(t, 1) = u2(t, 1), t ∈ (0,T ),

γ1(1)∂xu1(t, 1) + γ2(1)∂xu2(t, 1) + αu1(t, 1) = 0, t ∈ (0,T ),

u1(0, x) = u1,0(x), u2(0, x) = u2,0(x), x ∈ (0, 1),

(1)

where α ≥ 0, γi ∈ C1([0, 1]) with γi > 0, and v is the control.

q Relevant Spaces:

H :=
{

(v1, v2) ∈ (H1(0, 1))2 : v1(0) = v2(0) = 0, v1(1) = v2(1)
}
,

‖v‖H =

(
2∑

i=1

∫ 1

0
γi (1)|v ′i (x)|2 dx + α|v1(1)|2

)1/2
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Time-discrete control system

For M ∈ N, define ∆t = T/M.

(
un+1

1 −un1
∆t

)
− ∂x (γ1 ∂xu

n+1
1 ) = 0,(

un+1
2 −un2

∆t

)
− ∂x (γ2 ∂xu

n+1
2 ) = 0,

un+1
1 (0) = 0, un+1

2 (0) = vn+1,

un+1
1 (1) = un+1

2 (1),

γ1(1)∂xu
n+1
1 (1) + γ2(1)∂xu

n+1
2 (1) + αun+1

1 (1) = 0,

u0
1 = u1,0, u0

2 = u2,0,

n ∈ {0, 1, . . . ,M − 1} . (2)

Analogous null controllability notion:

For any (u1,0, u2,0) ∈ H′,∃ {vn+1} with

M−1∑
n=0

|vn+1|2 . ‖u0‖2
H′h 3 (uM1 , u

M
2 ) = 0.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Introducing the Problem

(a) The above controllability notion is not achievable.

C. Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3-4):

139–177, 2008. ISSN 0921-7134.

(b) We therefore address a different notion, which roughly means

‖uM‖H′ → 0 as M →∞.

F. Boyer and V. Hernández-Santamaŕıa . Carleman estimates for time-discrete parabolic

equations and applications to controllability. ESAIM Control Optim. Calc. Var., 26: Paper

No. 12, 43, 2020. ISSN 1292-8119.

(c) We further try to check whether this discrete control approximates any control of
the associated continuous system.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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The duality approach (For continuous system)

Consider the following adjoint system

−∂tϕ1 − ∂x (γ1 ∂xϕ1) = 0,

−∂tϕ2 − ∂x (γ2 ∂xϕ2) = 0,

ϕ1(t, 0) = 0, ϕ2(t, 0) = 0,

ϕ1(t, 1) = ϕ2(t, 1),

γ1(1)∂xϕ1(t, 1) + γ2(1)∂xϕ2(t, 1) + αϕ1(t, 1) = 0,

ϕ1(T , ·) = ϕ1,T , ϕ2(T , ·) = ϕ2,T .

(3)

Carleman inequality with some weight functions

Observability inequality

Controllability result

K. Bhandari, F. Boyer, and V. Hernández-Santamaŕıa. Boundary null-controllability of 1-D

coupled parabolic systems with Kirchhoff-type conditions. Math. Control Signals Systems, vol. 33,

no. 3, pp. 413–471, 2021.
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The duality approach (For discrete system)

Consider adjoint system for the discrete control system (2)

−
(
ϕn+1

1 −ϕn
1

∆t

)
− ∂x (γ1 ∂xϕ

n
1) = 0,

−
(
ϕn+1

2 −ϕn
2

∆t

)
− ∂x (γ2 ∂xϕ

n
2) = 0,

ϕn
1(0) = ϕn

2(0) = 0, ϕn
1(1) = ϕn

2(1),

γ1(1)∂xϕn
1(1) + γ2(1)∂xϕn

2(1) + αϕn
1(1) = 0,

ϕM
1 (x) = ϕ1,M(x), ϕM

2 (x) = ϕ2,M(x),

n ∈ {0, 1, . . . ,M − 1} (4)

Discrete Carleman type inequality with similar weight functions

Relaxed Observability inequality

Φ(∆t)-controllability result

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Weight function

q Let 0 < ν0 < 1 be a constant close to 1 satisfying(
216ν0

(1− ν0)3
γ2

2 (1)− 7γ2
1 (1)

)
≥ 1 (5)

q For i ∈ {1, 2}, consider the function

βi (x) = 2 + ci (x − 1), x ∈ [0, 1],

with c1 = 1 and c2 = c2(γ1, γ2) := − 6
(1−ν0)

< 0.

q Let K := 2 max{‖β1‖∞, ‖β2‖∞} and let λ > 1. Then for i ∈ {1, 2}, define

ηi (x) = eλK − eλβi (x)

µi (x) = eλβi (x)

q For τ > 0, let s(t) = τ θ(t), where

θ(t) =
1

(t+δT )(T+δT − t)
, δ > 0.

q Finally for i ∈ {1, 2}, let ri (t, x) = e−s(t)ηi (x).

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Discrete Carleman Estimate

Theorem (Discrete Carleman type inequality)

Let ϕM ∈ H, and let λ > 0 be sufficiently large. Then for sufficiently large τ , and for

∆t, δ > 0 such that τ3∆t
δ4 is sufficiently small, the solution of discrete adjoint system

(4) satisfies

τ3
2∑

i=1

M−1∑
n=0

∫ L

0
(θn)3(rni )2 |ϕn

i |
2 + τ

2∑
i=1

M−1∑
n=0

∫ L

0
(θn)(rni )2 |∂x (ϕn

i )|2

+ τ2
M−1∑
n=0

(θn)(rn1 (1))2
∣∣ϕn

1(1)
∣∣2

≤ Cτ

M−1∑
n=0

(θn) |(rn2 (0))|2 |∂x (ϕn
2)(0)|2

+C (∆t)−1
2∑

i=1

(∫ 1

0

∣∣(ri ϕi )
0
∣∣2 +

∫ 1

0

∣∣(ri ϕi )
M
∣∣2 +

∫ 1

0

∣∣(ri ∂xϕi )
M
∣∣2),

where the constant C > 0 depends on γ1, γ2, α,T and λ.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Relaxed Observability Inequality

Theorem (Relaxed observability inequality)

For sufficiently small discrete parameter δ and ∆t, ∃ constants K0,K1,K2 > 0 such
that any solution to (4) with ϕM ∈ H satisfies

‖ϕ0‖2
H ≤ Cobs

(
M−1∑
n=0

|∂xϕn
2(0)|2+e

− K2

(∆t)1/4
∥∥∥ϕM

∥∥∥2

H

)
, (6)

where Cobs = eK1(1+1/T ).

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Controllability result

Theorem (φ(∆t)-controllability in H′)

Let the discretization parameter ∆t be sufficiently small. Then, for any initial data
u0 ∈ H′ and any function φ satisfying

lim inf
∆t→0

φ(∆t)

e−C2/(∆t)1/4
> 0,

there exists a sequence of controls {vn+1}M−1
n=0 satisfies

M−1∑
n=0

|vn+1|2 ≤ C ‖u0‖2
H′ ,

such that the associated solution {un+1}M−1
n=0 of (2) satisfying

‖un+1‖2
H′ +

M−1∑
n=0

‖un+1‖2
E ≤ C‖u0‖2

H′ for n ∈ {0, 1, . . . ,M − 1},

and have the following estimate at tM = T

‖uM‖H′ ≤ C
√
φ(∆t) ‖u0‖H′ ,

where C > 0 is a constant, depending on φ and T.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Convergence of Discrete control

Define approximations VM ∈ L2(0,T ), and UM =
((

UM

)
1
,
(
UM

)
2

)
∈ L2(0,T ;E) as

VM (t) =

M−1∑
n=0

1(tn,tn+1](t) vn+1
, t ∈ (0,T ),

(UM )i (t, x) = 1[t0,t1](t)
u1
i (x)

2
+

M−1∑
n=1

1(tn,tn+1](t)

(
un+1
i + un

i

2

)
(x), (t, x) ∈ Q, i ∈ {1, 2}.

Theorem (Convergence Result)

There exist functions v ∈ L2(0,T ) and u ∈ L2(0,T ;E) such that

VM ⇀ v in L2(0,T ), and UM ⇀ u in L2(0,T ;E).

Furthermore, the pair of functions (u, v) solves the continuos system (1) such that the
state u satisfies

u(T , ·) = (0, 0) on (0, 1) a.e.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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Idea of the proof-I
q Let g = (g1, g2) ∈ L2(0,T ;E). For n ∈ {0,M − 1}, define the functions

gn+1
i (x) =

1

∆t

∫ tn+1

tn

gi (t, x) dt, for i ∈ {1, 2}.

Consider the adjoint system
−

ϕn+1
i
−ϕn

i
∆t − ∂x (γi ∂xϕ

n
i ) = gn+1

i , i ∈ {1, 2},
ϕn

1(0) = ϕn
2(0) = 0, ϕn

1(1) = ϕn
2(1),

γ1(1) ∂xϕ
n
1(1) + γ2(1) ∂xϕ

n
2(1) + αϕn

1(1) = 0,

ϕM = 0,

For i ∈ {1, 2}, we define the functions

(ϕM )i (t, x) :=

M−1∑
n=0

1[tn,tn+1](t)

(
(t − tn)

∆t
ϕ

n+1
i (x) +

(tn+1 − t)

∆t
ϕ

n
i (x)

)
, (t, x) ∈ Q.

q Using weak formulation of the discrete control system and the definitions of VM ,
UM and ϕM , we have:∫ T

0

〈UM (t), g(t)〉E dt−〈u0, ϕM (0, ·)〉H′,H − γ2(0)

∫ T

0

VM (t) ∂x (ϕM )2(t, 0) dt

= −
1

2
〈u0, ϕM (∆t, ·)− ϕM (0, ·)〉H′,H, ∀ g ∈ L2(0,T ; E).

q Taking limit as M →∞, we get∫ T

0

〈u(t), g(t)〉E dt−〈u0, ϕ(0, ·)〉H′,H − γ2(0)

∫ T

0

v(t) ∂xϕ2(t, 0) dt = 0, ∀ g ∈ L2(0,T ; E),

where ϕ solves the adjoint system with source term g and ϕT = 0.

Manish Kumar [IISER K] X Partial differential equations, optimal design and numerics
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where ϕ solves the adjoint system with source term g and ϕT = 0.
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q Let g = (g1, g2) ∈ L2(0,T ;E). For n ∈ {0,M − 1}, define the functions

gn+1
i (x) =

1

∆t

∫ tn+1

tn

gi (t, x) dt, for i ∈ {1, 2}.

Consider the adjoint system
−

ϕn+1
i
−ϕn

i
∆t − ∂x (γi ∂xϕ

n
i ) = gn+1

i , i ∈ {1, 2},
ϕn

1(0) = ϕn
2(0) = 0, ϕn

1(1) = ϕn
2(1),

γ1(1) ∂xϕ
n
1(1) + γ2(1) ∂xϕ

n
2(1) + αϕn

1(1) = 0,

ϕM = 0,

For i ∈ {1, 2}, we define the functions

(ϕM )i (t, x) :=

M−1∑
n=0

1[tn,tn+1](t)

(
(t − tn)

∆t
ϕ

n+1
i (x) +

(tn+1 − t)

∆t
ϕ

n
i (x)

)
, (t, x) ∈ Q.

q Using weak formulation of the discrete control system and the definitions of VM ,
UM and ϕM , we have:∫ T

0

〈UM (t), g(t)〉E dt−〈u0, ϕM (0, ·)〉H′,H − γ2(0)

∫ T

0

VM (t) ∂x (ϕM )2(t, 0) dt

= −
1

2
〈u0, ϕM (∆t, ·)− ϕM (0, ·)〉H′,H, ∀ g ∈ L2(0,T ; E).

q Taking limit as M →∞, we get∫ T

0

〈u(t), g(t)〉E dt−〈u0, ϕ(0, ·)〉H′,H − γ2(0)

∫ T

0

v(t) ∂xϕ2(t, 0) dt = 0, ∀ g ∈ L2(0,T ; E),

where ϕ solves the adjoint system with source term g and ϕT = 0.
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A. López, E. Zuazua. Uniform null-controllability for the one-dimensional heat equation with

rapidly oscillating periodic density. Annales de l’Institut Henri Poincaré C, Analyse non linéaire,

Volume 19, Issue 5, 2002, Pages 543-580, ISSN 0294-1449.

q For ϕT ∈ H, consider the following time-discrete adjoint system

−
ϕn+1
i
−ϕn

i
∆t − ∂x (γi ∂xϕ

n
i ) = 0, i ∈ {1, 2},

ϕn
1(0) = ϕn

2(0) = 0,

ϕn
1(1) = ϕn

2(1),

γ1(1) ∂xϕ
n
1(1) + γ2(1) ∂xϕ

n
2(1) + αϕn

1(1) = 0,

ϕM = ϕT ,

n ∈ {0, 1, . . . ,M − 1},

Using ϕn, we define ϕM as before.

q Then for every ϕT = ϕM ∈ H, the approximate control VM satisfies∫ T

0

VM (t) ∂x
(
ϕM

)
2
(t, 0) dt = −φ(∆t)

〈
∂x ϕ̂

M
,
∂xϕ

M + ∂xϕ
M−1

2

〉
E

−
〈
u0,

ϕ0 + ϕ−1

2

〉
H′,H

,

where ϕ̂M ∈ H.

q Passing to the limit gives
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Using ϕn, we define ϕM as before.

q Then for every ϕT = ϕM ∈ H, the approximate control VM satisfies∫ T

0

VM (t) ∂x
(
ϕM

)
2
(t, 0) dt = −φ(∆t)

〈
∂x ϕ̂

M
,
∂xϕ

M + ∂xϕ
M−1

2

〉
E

−
〈
u0,

ϕ0 + ϕ−1

2

〉
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,

where ϕ̂M ∈ H.

q Passing to the limit gives∫ T

0

v(t) ∂xϕ2(t, 0) dt + 〈u0, ϕ(0, x)〉H′,H = 〈u(T ), ϕT 〉H′,H = 0, ∀ϕT ∈ H.

This proves u(T , ·) = 0 on (0, 1) a.e.
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