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0 Control System: Let Q := (0, T) x (0,1).

Orur — Ox(mdxu1) =0, (t,x) € Q,
Orup — Ox(720xu2) = 0, (t,x) € Q,
ui(t,0) = 0, uza(t,0) = v(t), te (0, T), 1)
ul(t, 1) = u2(t, 1), te (0, T),
Y1 (1)1 (t, 1) + v2(1)Oxua(t, 1) + aur(t,1) =0, te (0, T),
u1(0, x) = u1,0(x), u2(0, x) = w2,0(x), x € (0,1),

where a > 0, v; € C1([0,1]) with +; > 0, and v is the control.
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0 Control System: Let Q := (0, T) x (0,1).

Oruy — Ox(m0xur) =0, (t,x) € Q,
61‘”2 - 8)<('Y26XUZ) = O: (t,X) S Q7
u1(t,0) =0, ux(t,0) = v(t), te (0, 7),
u(t,1) = wa(t, 1), te(0,7),
Y1(1)Oxu1(t, 1) + 72(1)Oxua(t, 1) + aur(t,1) =0, t€(0,T),
(0, x) = u1,0(x), u2(0, x) = w2,0(x), x € (0,1),

where a > 0, 4; € CY([0,1]) with ; > 0, and v is the control.

O Relevant Spaces:
H = {(v1,v2) € (H'(0,1))% : v1(0) = v2(0) = 0, v1(1) = v2(1)},

> 1/2
v = i V-/ X 2 X Q| V7 2 .
IVliae (2_;/0 (V! ()2 dx + |1(1)|)

H' : Dual space of H w.r.t. pivot space E := L2(0,1) x L2(0,1).
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0 Control System: Let Q := (0, T) x (0,1).

Orur — Ox(mdxu1) =0, (t,x) € Q,
atUZ - 6x(728xu2) =0, (t,X) S Qa
ui(t,0) = 0, uza(t,0) = v(t), te(0,T), 1)
ul(t, 1) = ng(t, 1), te (0, T),
Y1 (1)1 (t, 1) + v2(1)Oxua(t, 1) + aur(t,1) =0, te (0, T),
u1(0, x) = u1,0(x), u2(0, x) = w2,0(x), x € (0,1),

where a > 0, v; € C1([0,1]) with +; > 0, and v is the control.

O Relevant Spaces:
H = {(v1,v2) € (H'(0,1))% : v1(0) = v2(0) = 0, v1(1) = wv2o(1)},
H' : Dual space of H w.r.t. pivot space E := [2(0,1) x L2(0,1).

O Existing Results:
1. For T>0,up € H',vel?0,T),3uec C([0, T];H')N L0, T; E).
2. For (u1,0,u20) € H',3v € L2(0, T) > (u1(T), ux(T)) = 0.
<"~ K. Bhandari, F. Boyer, and V. Herndndez-Santamaria. Boundary null-controllability of 1-D

coupled parabolic systems with Kirchhoff-type conditions. Math. Control Signals Systems, vol. 33,
no. 3, pp. 413-471, 2021.
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Time-discrete control system

For M € N, define At = T /M.

Uf_H(l) _ un+1(1)
M (1)0xuf (1) +72(1)xus (1) + auf (1) = 0,
ud = 0,ud = w0,

w o u w2 uwd Ut u
1 | | | |

n+1_
U)o ) = 0,
n+l_ n
2 ) — Ou(ya Bt =0,
uf+1(0):0,u§+1(0)=v"+1, nE{O,l,...,M—l}.

I T T T }
b otz ot te
I
0
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Time-discrete control system

For M € N, define At = T /M.

ntl_
(UIT) Ox(m xuf ™) =0,
ntl_ o0
UZAituz) — (2 dxu3) =0,
Uf+1(0):0,ug+1(0): vn+17 n e {0,1,...,’\//—1}. (2)
Uf_H(l) _ un+1(1)
M (1)0xuf (1) +72(1)xus (1) + auf (1) = 0,
ud = 0,ud = w0,

w ut w2 uw® ut uM
| ! | ! | | |
f T T T T T 1
ot oty te ts tg tu
It 1l
0 T
Analogous null controllability notion:
M—1
For any (u1,0, t2,0) € H',3{v""} with Z V2 < o3, h > (uM, uby = 0.
n=0
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Introducing the Problem

(a) The above controllability notion is not achievable.

& C. Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3-4):
139-177, 2008. ISSN 0921-7134.
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Introducing the Problem

(a) The above controllability notion is not achievable.
<> C. Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3-4):
139-177, 2008. ISSN 0921-7134.

(b) We therefore address a different notion, which roughly means

luM|lz — 0 as M — oo.

S F Boyer and V. Herndndez-Santamaria . Carleman estimates for time-discrete parabolic
equations and applications to controllability. ESAIM Control Optim. Calc. Var., 26: Paper
No. 12, 43, 2020. ISSN 1292-8119.
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Introducing the Problem

(a) The above controllability notion is not achievable.

<> C. Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3-4):
139-177, 2008. ISSN 0921-7134.

(b) We therefore address a different notion, which roughly means
luM|lz — 0 as M — oo.
e F Boyer and V. Herndndez-Santamaria . Carleman estimates for time-discrete parabolic

equations and applications to controllability. ESAIM Control Optim. Calc. Var., 26: Paper
No. 12, 43, 2020. ISSN 1292-8119.

(c) We further try to check whether this discrete control approximates any control of
the associated continuous system.
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The duality approach (For continuous system)

Consider the following adjoint system

—0rp1 — Ox (71 Oxp1) = 0,
—0rp2 — Ox (72 Oxp2) = 0,
<p1(t7 0) = 07502(“"70) = Oa
_ (3)
(pl(tv 1) - 502(1‘7 1)7
71(1)0xp1(t, 1) 4+ 72(1)Oxp2(t, 1) + apr(t, 1) = 0,
01(T,) =e1,71,92(T,") = @a2,7-

Carleman inequality with some weight functions

|

Observability inequality

|

Controllability result

"> K. Bhandari, F. Boyer, and V. Hernandez-Santamaria. Boundary null-controllability of 1-D

coupled parabolic systems with Kirchhoff-type conditions. Math. Control Signals Systems, vol. 33,

no. 3, pp. 413-471, 2021.
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The duality approach (For discrete system)

Consider adjoint system for the discrete control system (2)

SO”+1 _‘PT

1 —
ar ) —Ox(moxel) =0,
(pg+1_ n

Tﬁ"z — 6x(’Y2 8x<pg) =0,

©7(0) = ¢5(0) = 0, »f(1) = ¢3(1),
71(1)0xp7(1) + 72(1)0xp5(1) + api(1) = 0,
oY (x) = p1,m(x), ¥ (x) = w2,m(x),

ne{0,1,...,M—1}

Discrete Carleman type inequality with similar weight functions

|

Relaxed Observability inequality

|

®(At)-controllability result
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Weight function

) Let 0 < vp < 1 be a constant close to 1 satisfying
21614
(e o) - i) 21 (5)
U For i € {1, 2}, consider the function
B,’(X) =2+ C,'(X — ].)7 X € [07 1],

with ¢y = L and ¢ = e2(71,72) = — 72555 < 0.

O Let K :=2max{||B1]loc, |32]lcc } and let A > 1. Then for i € {1,2}, define

77i(X) — MK _ ekﬂi(x)

pi(x) = eMitx)

1 For 7 >0, let s(t) = 70(t), where

1
0= eonmTer—n 7%

O Finally for i € {1,2}, let r;(t,x) = e=s(ni(x),
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Discrete Carleman Estimate

Theorem (Discrete Carleman type inequality)

Let oM € H, and let X\ > 0 be sufficiently large. Then for sufficiently large T, and for

3 .. . . ..
At, § > 0 such that © 54“ is sufficiently small, the solution of discrete adjoint system
(4) satisfies

M—1

2 L 2 M—1 .
2 [t 3 [ e odenr
M—-1

i=1 n= i=1 n=0

+72 370" (1 (1)2] 8 (V)
n=0
M—1

< Cr ) (6M)1(r3(0)) [0x(£3)(0)

n=0

cc@ 3 ([l [ [ o).

where the constant C > 0 depends on 1,72, «, T and .
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Relaxed Observability Inequality

Recovering continuous control result

Theorem (Relaxed observability inequality)

For sufficiently small discrete parameter § and At, 3 constants Ky, K1, K» > 0 such
that any solution to (4) with M € H satisfies

M=t __K
lle°l13, < Cobs< D 10xp5(0)P+e 20V
n=0

L) e

where Cpps = ef1(1+1/T)
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Controllability result

Theorem (¢(At)-controllability in )

Let the discretization parameter At be sufficiently small. Then, for any initial data
ug € H' and any function ¢ satisfying

lim inf ¢(At)

— >0
At—0 o—G/(Anl/4 T 7

there exists a sequence of controls {v"“}nM: Bl satisfies

M—1

D VR < C luoly
n=0

such that the associated solution {u"*l}:ﬂ:?)l of (2) satisfying

M—1
a3y + D Iu" g < Cllwll3, forne{0,1,...,M -1},
n=0

and have the following estimate at tyy = T
M
[u™ N3 < CV@(AL) [|luollyy
where C > 0 is a constant, depending on ¢ and T.
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Convergence of Discrete control

Define approximations Vy € L2(0, T), and Uy = ((UM)I’ (UM)2) € L%(0, T;E) as

M—1

Vin(t) = D g () V' £ € (0, T),
n=0

1 M-1 n+1 n
- 4 ,
U9 = 1 152+ 3 iy (55 )00, (60 € @ui e 1.2),
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Convergence of Discrete control

Define approximations Vy € L2(0, T), and Uy = ((UM)I’ (UM)z) € L%(0, T;E) as

M—-1
V() = > 1y, (V™ tE(0,T),
n=0

1 M—-1 n+1 n
1 Ly .
(Uit 5) = T (052 37 10,0 (570 )00, (10 € @i 1.2),

n=1

Theorem (Convergence Result)
There exist functions v € L?(0, T) and u € L?(0, T; E) such that
Vi — v in L2(0, T), and Uy — u in L%(0, T; E).
Furthermore, the pair of functions (u, v) solves the continuos system (1) such that the

state u satisfies
u(T,-) =(0,0) on (0,1) a.e.
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Idea of the proof-I
O Let g = (g1,82) € L?(0, T; E). For n € {0, M — 1}, define the functions

1 tht1
g (x) = — / " gt x)dt, fori€ {1,2}.
NS
Consider the adjoint system
1
o =] n n .
— gt = O (i 0x]) = g, i€ {1,2},

©1(0) = ¢3(0) = 0, ¥7(1) = ¢3(1),
WIAgl) 0xpY (1) + 72(1) Oxp3(1) + a i (1) = 0,
=0,
For i € {1,2}, we define the functions
M—1

(em)i(t, x) = Z 1[tn,tn+1](t) (%CP?H(X) (l’n+;t t) ,"(x)) . (t.x) € Q.

n=0
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Idea of the proof-I
O Let g = (g1,82) € L?(0, T; E). For n € {0, M — 1}, define the functions

1 tht1
g (x) = — / ! gi(t,x)dt, fori€ {1,2}.
at /.,

Consider the adjoint system

eMl_pn 1
7’A7t’ — O« ('Yi 6)(90:'") = gin , 1€ {172}7

#1(0) = #3(0) = 0, ¢7(1) = ¢3(1),
71(1) Oxp1 (1) + 72(1) dxp3(1) + a1 (1) = 0,
oM =0,
For i € {1,2}, we define the functions
= (tn+l - t) n

(ot = 3 () (e 00 + 222 00000) (e €

n=0

1 Using weak formulation of the discrete control system and the definitions of V),
Upm and ppp, we have:

U0, = (an. om0, s 5 = 7200 [ Via(®) 0: o2, 0)

1 .
= —5 (0, om(A, ) = om(0, )3y 5, VEE L*(0, T; E).
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Idea of the proof-I
O Let g = (g1,82) € L?(0, T; E). For n € {0, M — 1}, define the functions

1 tht1
g (x) = — / ! gi(t,x)dt, fori€ {1,2}.
at /.,

Consider the adjoint system

eMl_pn 1
7’A7t’ — O« ('Yi a%ﬁi”) = gin , 1€ {172}7

#1(0) = ¢5(0) = 0, (1) = ¥5(1),
71(1) Oxp1 (1) + 72(1) dxp3(1) + a1 (1) = 0,

oM =0,
For i € {1,2}, we define the functions
M—1
t—tn) , tor1 —t)
(ot = 3 () (e 00 + 222 00000) (e €
ot t t

1 Using weak formulation of the discrete control system and the definitions of V),
Upm and ppp, we have:

U0, = (an. om0, s 5 = 7200 [ Via(®) 0: o2, 0)

1 .
= —5 (0, om(A, ) = om(0, )3y 5, VEE L*(0, T; E).

1 Taking limit as M — oo, we get

[ w6, 60 dt (. 900, N 30 = 20) [ WO 002(,0)t =0, Ve € L0, T E),

where ¢ solves the adjoint system with source term g and 1 = 0.
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Idea of the proof-II

ThA Lépez, E. Zuazua. Uniform null-controllability for the one-dimensional heat equation with
rapidly oscillating periodic density. Annales de I'Institut Henri Poincaré C, Analyse non linéaire,
Volume 19, Issue 5, 2002, Pages 543-580, ISSN 0294-1449.
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Idea of the proof-II

A Lépez, E. Zuazua. Uniform null-controllability for the one-dimensional heat equation with
rapidly oscillating periodic density. Annales de I'Institut Henri Poincaré C, Analyse non linéaire,
Volume 19, Issue 5, 2002, Pages 543-580, ISSN 0294-1449.

1 For o1 € H, consider the following time-discrete adjoint system

Tt —en
— e — 0« (7 0xp]) =0, i € {1,2},
#1(0) = ¢3(0) =0,
1(1) = ¢3(1), nef{0,1,....,M—1},
71(1) Ox1 (1) + 72(1) Oxp3(1) + a 7 (1) =0,
M
po =eT,

Using ¢", we define ¢ as before.
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Idea of the proof-II

A Lépez, E. Zuazua. Uniform null-controllability for the one-dimensional heat equation with
rapidly oscillating periodic density. Annales de I'Institut Henri Poincaré C, Analyse non linéaire,
Volume 19, Issue 5, 2002, Pages 543-580, ISSN 0294-1449.

1 For ¢ € H, consider the following time-discrete adjoint system

#1(0) = ¥3(0) = 0,

©7(1) = ¢3(1), nef{01,....M—1},
71(1) 05T (1) + 72(1) Oxep3(1) + a1 (1) = 0,

M =or,

Using ¢", we define ¢p as before.
0 Then for every o1 = M € H, the approximate control V) satisfies

T 9, oM 4 9, M—1 0 -1
/ Via(t) O (iom) ,(t,0) dt = — (A1) <); BESE ) (w B ,
E HH

0

where gM € H.
1 Passing to the limit gives

T
[0 002(8.0)dt + a0, 90,001 50 =0, Vipr €.
0
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Background

Idea of the proof-II

A Lépez, E. Zuazua. Uniform null-controllability for the one-dimensional heat equation with
rapidly oscillating periodic density. Annales de I'Institut Henri Poincaré C, Analyse non linéaire,
Volume 19, Issue 5, 2002, Pages 543-580, ISSN 0294-1449.

1 For ¢o1 € H, consider the following time-discrete adjoint system

el _on .
— T — O (viOkp]) =0, i € {1,2},
#1(0) = ¢3(0) =0,
eI(1) = @i(1), ne{01,...,M—1},
71(1) Oxp7 (1) + 72(1) Oxp3(1) + a f(1) = 0,
<PM = $T;

Using ¢", we define ), as before.
0 Then for every o1 = oM € H, the approximate control V) satisfies

T 5, oM o, M—1 0 -1
/ Vin(t) O (em) ,(£,0) dt = —o(At) <0,\$”4 ) (w % :
0 E HH

where M € H.
1 Passing to the limit gives

-
/(; v(t) Oxp2(t, 0) dt + (uo, go(O,X)),H/YH = (u(T), *PT>H/,H =0, VereH.

This proves u(T,-) =0on (0,1) a.e.
13/13
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