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Gray-Scott Model

® The Gray-Scott system models a chemical reaction

U+2v -3y, Q]
V=P, (2)

where the reaction (1) consumes chemical U and produce V and in the
reaction (2) P is an inert product.
® The Gray-Scott system describes two equations for reacting chemicals U and
V with concentrations u and v respectively:
U = dyAu — uv? + F(1 — u), 3)
v = dyAv + uv? — (F + k)v,

the cubic terms uv? and —uv? corresponds to chemical reaction (1). The linear
term kv comes from the chemical reaction (2) at rate k and positive constant
F > 0 denotes the rate at which U is fed.



Existing Control Result

For T > 0, consider the reaction-diffusion ODE-PDE model

du=—u2+F(1—u)+hMyy in (0,T)x(0,1),
OV = dydxVv+uv? — (F+Kk)v in (0,T) x (0,1),
Oxv=0 on (0,7) x {0,1},
(u, v)(0,+) = (ug, vp) in (0,1).

“

Theorem: (Victor H.S. and Kévin L.B., 2021)
Letur = 3(1£/1—442F), vz = 21—7(1 T /1 — 472F), then there exist

§ > 0, C > 0such that for every d, € (1,00), (g, vo) € L2(0,1) x H'(0, 1) satisfying
ll(to — ux, vo = vE)lli2(0,1)x H1 (0,1) < O

there exist a control h € L2((0, T) x (0, 1)) such that the solution of (u, v) of (4)
satisfying

Ul 0, 7:02(0,1)) + IVIlLoo 0, 7311 (0,1)) T NIl 20,y x (0,1)) < €

and
(u,v)(T,") = (us, V$)~



Concern System

We focused on the following controlled parabolic system with the state functions
u=u(t,x)and v = v(t x)

ou=Au—u?—Fu—-1)+1,h inQ,

ov=Av+u?—(k+F)v in Q;, )
ou=0,0,v=0 onXr,
U(O,X) = UO(X)7 V(O,X) = VO(X) X €Q,

°* ForQCcRV(N=1,2,3)and T >0, Qr =(0,T) xQ, X7 = (0,T) x 9Q.
® Also, w a non-empty open subset of Q.

® Define the space

VI(Qr) = {yly € L3(0, T H'(Q)), ry € L*(0, T; H'()")}.



Underling Control Problem

Consider the system

Oy =A0—0v2 — F(U—1) inQ;,
V= AV+ 0V — (k+ F)v in Q;, (tr)
B,,UZO, 81/sz on zT7 :

l._.l(O,X) = DO(X)7 V(O7X) = VO(X) X € Q.

Let (@, V) be positive trajectory of system (trj) corresponding to an initial data
(T, Vo). Then we have to find neighbourhood O of (Qg, Vg) in the space

L>®(Q) x L>=(R) such that for any initial data (ug, Vo) € O, there exist control h
such that solution (u, v) of system (CS) satisfies

u(T,x)=u(T,x), v(T,x)=v(T,x), x€Qa.e.



Main Result

Theorem

Let kg > 0 and Ty, Vo € C(Q) satisfying Uy > ko and ¥y > ko for x € Q. Let (T, V) be a
solution of system (trj) corresponding to the initial condition (o, Vo), Then, there exists
8o > 0 such that for each (up, vp) satisfying

llto = Toll oo () + Vo = Voll oo (@) < dos

with ug > 0, v > 0O, there is a control h € L°>°(Qr) such that system (CS) admits a
unique solution (u, v) satisfying

u,v e VI(Q,) N L>(Q,),
and u(T,x) = u(T,x), v(T,x) = v(T,x) for almost all x € Q.



First, we show the existence of a positive trajectory (, v) for positive initial
data (D(), Vo).

We linearize the non-linear system (CS) around the positive trajectory (u, )
and prove the global null-controllability of the linearized system. In this step,
we use the duality approach to prove the null-controllability of the linear
system.

* We use the Carleman estimate to prove the observability inequality.

Finally, we use Kakutani’s fixed-point theorem to achieve controllability to
the trajectory (&, v) of the non-linear system (CS) .



Existence of the Positive Trajectory

We get the following well-posedness result for the solution of the system:

Theorem

Let T, Vo € C(R2), then there exists a unique classical solution (T, V) of the system (trj)
such that

0,7 € C([0, 00); Wh9(Q)) N C>7((0, 00) x Q).
Moreover, for T > 0 and Ty > 0, ¥y > 0in Q, then, there exists M(T) > 0

0 < B(t,x) < M(T), 0<u(t,x)<M(T), V(tx)eOr.

Furthermore, if Uo(x) > ko and Vo(x) > Ko in Q for some ky > 0, then there exist
M;(T) > 0, such that for all (t,x) € Qr

koe™ FHMEIT < G(t, x) < My(T), koo™ FHMNT < (2, x) < My(T).



Linearized System

® The linearized control system corresponding to the non-linear system (CS)
around (T, v):

=Aw— Fw — V2w —20vz +1,h  in Q,

= Az — (F4+k)z+ V2w + 20vz inQ;,

E}w —0= oz onXx (5)
v — YT v n
w(0, x) = wo(x), 2(0,x) = zo(x) xeQ.

® The adjoint system corresponding to the linear system (5) is

—0p = D — Fé + V2 + 724 in Qr,

—0np = Ay — (F + k)b + 2Tvep — 20v¢ i Qr, ©
O¢d=0,0,9=0 on I,

&(T,x) = o7(X), (T, x) = P7(x) X €.

® To prove null controllability of the linearized system (5) is equivalent to prove
following type observability inequality:

1900, gy + 400, ey < € | / 16/2 ot



Carleman Estimate

® The idea to prove the above observability inequality for the system (6) is to
derive a Carleman inequality for the system (6).

* Consider w’ CC w a nonempty open subset and a function o € C?(Q) such
that

a(x) >0 forall xeQ,
alpo =0 and |Va(x)]>0 forall xeQ\w'.
® For A > 0, we defined functions ¢, 3 : Qr — R such that
era(x) era(x) _ 62>\||a||oo,§

Lp(t,X): ma ﬁ(t,X): t(T—t) ’ (t,X)G OT

and »
9()\) —e )‘HaHoo’ﬁ_



Carleman Estimate

Lemma

Let v =: inf{V(t, x)|(t,x) € (0, T) x w} > 0. Then, there exists a positive constant
A = C(Q,w,w )1 + 1T, + V|2, + k2 + F2) > 1 such that for any A > A1, any
s> 0(\)(T + T?) and é7, 1 € L2(Q), the corresponding solution (¢, ) of the
equation (6) satisfies

// [ X(sp)%l012 + A*(s¢)° o] 2% vat < Go // Xo(sip) €258 |2 dixat.
@ Qv

where Cy = Co(Q,w,w’,v) > 0.

Proposition (Observability inequality)
There exist \, s > 0such that, for all $7,%1 € L2(), the solution (¢, ) of (6) satisfies

3
1600, )12 ) + 1180, ) Z2 () < C //Q ez |g[? dxdt, )
T

for some C > 0.



Null-Controllability of the Linearized System

For any (wg, 29) € L2(R) x L2(R), there exist a control h € L>(Qr) such that the
solution (w, z) of system (5) corresponding to h satisfies w(T,x) = z(T, x) = 0 for
almost all x € Q. Moreover the control h satisfies

1Al g < C( 1Woll 20y + ||zo||Lz(m)
for some C > 0.
* At first, we get the following L?-estimate
1912, ., < O (401 + 2l )

After this, using a bootstrap argument with Sobolev embedding results to get
L*°-estimate.



|dea of Proof for Main Result

Theorem (Kakutani's fixed point theorem)

Let K be a compact convex subset of Banach space Y and let G : K — X be an upper
semi-continuous mapping(set-valued) with convex values G(x) such that G(x) C K for
each x € K. Then there is at least one x € K such that x € G(x).

® Let (U, V) be a trajectory of the system (trj) corresponding to (tp, ), satisfying
Ug > koaﬂd Vo> kg.Wesetw=u—-u,z= v — v with Wy = Ug — Up and
Zp = Vo — V.

® Then easy to see that (w, z) satisfies the control system

W = Aw — Iw — w(z+V)? — (Uz+20V)z+1,h inQr,
hz=Az—(I+Kz+w(z+V)?+(Uz+2UV)z inQr,
ow=0,0,z=0 onxr,
w(0, x) = wp(x), 2(0,x) = Zo(x) X €Q,

8

® So, local exact controllability to the trajectories of system (CS) is equivalent to
the local null controllability of the system (8).



® Let R > 0, and consider set
K={nel=>Qr) : lInllso,a <R} 9)

Then, for each n € K, we consider solution of the following linear control
system:

4w = Aw — lw — a(n)w — b(n)z+ 1,h in Qr,
01z = Az — (I + k)z+ a(n)w + b(n)z in Qr,
ow=0,0,z=0 onXr,
w(0, x) = wp(x), (0, x) = z5(x) X € Q,

where a(n) = (n + V)2, b(n) = (Un + 20 7V).
* Forn € K, let us define a set-valued map A : K — 2L%(@) by

There exists hy, € L>°(Q;) such that
the solution (W), Z,) of the equation (10) corresponding
to n and h;, satisfies wy, (T, x) = z,(T,x) = 0.

A(n) = { € L3(Qr)

an

® We proved that A is an upper semi-continuous, A(n) is convex and A(K) C K.
So, A has a fixed point which gives the required result.
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