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Gray-Scott Model

• The Gray-Scott system models a chemical reaction

U + 2V → 3V , (1)
V → P, (2)

where the reaction (1) consumes chemical U and produce V and in the
reaction (2) P is an inert product.

• The Gray-Scott system describes two equations for reacting chemicals U and
V with concentrations u and v respectively:{

∂t u = du∆u − uv2 + F (1 − u),
∂t v = dv∆v + uv2 − (F + k)v ,

(3)

the cubic terms uv2 and −uv2 corresponds to chemical reaction (1). The linear
term kv comes from the chemical reaction (2) at rate k and positive constant
F > 0 denotes the rate at which U is fed.



Existing Control Result
For T > 0, consider the reaction-diffusion ODE-PDE model

∂t u = −uv2 + F (1 − u) + h1ω(t) in (0,T )× (0, 1),
∂t v = dv∂xx v + uv2 − (F + k)v in (0,T )× (0, 1),
∂x v = 0 on (0,T )× {0, 1},
(u, v)(0, ·) = (u0, v0) in (0, 1).

(4)

Theorem: (V́ıctor H.S. and Kévin L.B., 2021)
Let u± = 1

2 (1 ±
√

1 − 4γ2F ), v∓ = 1
2γ (1 ∓

√
1 − 4γ2F ), then there exist

δ > 0,C > 0 such that for every dv ∈ (1,∞), (u0, v0) ∈ L2(0, 1)×H1(0, 1) satisfying

∥(u0 − u±, v0 − v∓)∥L2(0,1)×H1(0,1) < δ,

there exist a control h ∈ L2((0,T )× (0, 1)) such that the solution of (u, v) of (4)
satisfying

∥u∥H1(0,T ;L2(0,1)) + ∥v∥L∞(0,T ;H1(0,1)) + ∥h∥L2((0,T )×(0,1)) ≤ C

and
(u, v)(T , ·) = (u±, v∓).



Concern System

We focused on the following controlled parabolic system with the state functions
u ≡ u(t , x) and v ≡ v(t , x)

∂t u = ∆u − uv2 − F (u − 1) + 1ωh in QT ,

∂t v = ∆v + uv2 − (k + F )v in QT ,

∂νu = 0, ∂νv = 0 on ΣT ,

u(0, x) = u0(x), v(0, x) = v0(x) x ∈ Ω,

(CS)

• For Ω ⊂ RN(N = 1, 2, 3) and T > 0, QT = (0,T )× Ω , ΣT = (0,T )× ∂Ω.

• Also, ω a non-empty open subset of Ω.

• Define the space

V 1(QT ) := {y |y ∈ L2(0,T ;H1(Ω)), ∂t y ∈ L2(0,T ;H1(Ω)∗)}.



Underling Control Problem

Consider the system
ūt = ∆ū − ūv̄2 − F (ū − 1) in QT ,

v̄t = ∆v̄ + ūv̄2 − (k + F )v̄ in QT ,

∂ν ū = 0, ∂ν v̄ = 0 on ΣT ,

ū(0, x) = ū0(x), v̄(0, x) = v̄0(x) x ∈ Ω.

(trj)

Let (ū, v̄) be positive trajectory of system (trj) corresponding to an initial data
(ū0, v̄0). Then we have to find neighbourhood O of (ū0, v̄0) in the space
L∞(Ω)× L∞(Ω) such that for any initial data (u0, v0) ∈ O, there exist control h
such that solution (u, v) of system (CS) satisfies

u(T , x) = ū(T , x), v(T , x) = v̄(T , x), x ∈ Ω a.e.



Main Result

Theorem
Let k0 > 0 and ū0, v̄0 ∈ C(Ω) satisfying ū0 ≥ k0 and v̄0 ≥ k0 for x ∈ Ω. Let (ū, v̄) be a
solution of system (trj) corresponding to the initial condition (ū0, v̄0), Then, there exists
δ0 > 0 such that for each (u0, v0) satisfying

∥u0 − ū0∥L∞(Ω) + ∥v0 − v̄0∥L∞(Ω) ≤ δ0,

with u0 ≥ 0, v0 ≥ 0, there is a control h ∈ L∞(QT ) such that system (CS) admits a
unique solution (u, v) satisfying

u, v ∈ V 1(QT ) ∩ L∞(QT ),

and u(T , x) = ū(T , x), v(T , x) = v̄(T , x) for almost all x ∈ Ω.



Approach

• First, we show the existence of a positive trajectory (ū, v̄) for positive initial
data (ū0, v̄0).

• We linearize the non-linear system (CS) around the positive trajectory (ū, v̄)
and prove the global null-controllability of the linearized system. In this step,
we use the duality approach to prove the null-controllability of the linear
system.

• We use the Carleman estimate to prove the observability inequality.

• Finally, we use Kakutani’s fixed-point theorem to achieve controllability to
the trajectory (ū, v̄) of the non-linear system (CS) .



Existence of the Positive Trajectory

We get the following well-posedness result for the solution of the system:

Theorem
Let ū0, v̄0 ∈ C(Ω), then there exists a unique classical solution (ū, v̄) of the system (trj)
such that

ū, v̄ ∈ C([0,∞);W 1,q(Ω)) ∩ C2,1((0,∞)× Ω).

Moreover, for T > 0 and ū0 ≥ 0, v̄0 ≥ 0 in Ω, then, there exists M(T ) > 0

0 ≤ ū(t , x) ≤ M(T ), 0 ≤ v̄(t , x) ≤ M(T ), ∀ (t , x) ∈ QT .

Furthermore, if ū0(x) ≥ k0 and v̄0(x) ≥ k0 in Ω for some k0 > 0, then there exist
M1(T ) > 0, such that for all (t , x) ∈ QT

k0e−(F+M2(T ))T ≤ ū(t , x) ≤ M1(T ), k0e−(F+M2(T ))T ≤ v̄(t , x) ≤ M1(T ).



Linearized System

• The linearized control system corresponding to the non-linear system (CS)
around (ū, v̄): 

wt = ∆w − Fw − v̄2w − 2ūv̄z + 1ωh in QT ,

zt = ∆z − (F + k)z + v̄2w + 2ūv̄z in QT ,
∂w
∂ν

= 0 = ∂z
∂ν

on ΣT ,

w(0, x) = w0(x), z(0, x) = z0(x) x ∈ Ω.

(5)

• The adjoint system corresponding to the linear system (5) is
−∂tϕ = ∆ϕ− Fϕ+ v̄2ϕ+ v̄2ψ in QT ,

−∂tψ = ∆ψ − (F + k)ψ + 2ūv̄ψ − 2ūv̄ϕ in QT ,

∂νϕ = 0, ∂νψ = 0 on ΣT ,

ϕ(T , x) = ϕT (x), ψ(T , x) = ψT (x) x ∈ Ω.

(6)

• To prove null controllability of the linearized system (5) is equivalent to prove
following type observability inequality:

∥ϕ(0, ·)∥2
L2(Ω)

+ ∥ψ(0, ·)∥2
L2(Ω)

≤ C
∫∫

Qω
T

|ϕ|2 dxdt .



Carleman Estimate

• The idea to prove the above observability inequality for the system (6) is to
derive a Carleman inequality for the system (6).

• Consider ω′ ⊂⊂ ω a nonempty open subset and a function α ∈ C2(Ω) such
that

α(x) > 0 for all x ∈ Ω,

α|∂Ω = 0 and |∇α(x)| > 0 for all x ∈ Ω \ ω′.

• For λ > 0, we defined functions φ, β : QT → R such that

φ(t , x) =
eλα(x)

t(T − t)
, β(t , x) =

eλα(x) − e2λ∥α∥∞,Ω

t(T − t)
, (t , x) ∈ QT

and
θ(λ) = e2λ∥α∥∞,Ω .



Carleman Estimate

Lemma
Let ν =: inf{v(t , x)|(t , x) ∈ (0,T )× ω} > 0. Then, there exists a positive constant
λ1 = C(Ω, ω, ω

′
)(1 + ∥ū∥2

∞ + ∥v̄∥2
∞ + k2 + F 2) > 1 such that for any λ ≥ λ1, any

s ≥ θ(λ)(T + T 2) and ϕT , ψT ∈ L2(Ω), the corresponding solution (ϕ, ψ) of the
equation (6) satisfies∫∫

QT

[
λ4(sφ)5|ϕ|2 + λ4(sφ)3|ψ|2

]
e2sβ dxdt ≤ C0

∫∫
Qω

T

λ9(sφ)7e2sβ |ϕ|2 dxdt .

where C0 = C0(Ω, ω, ω
′, ν) > 0.

Proposition (Observability inequality)
There exist λ, s > 0 such that, for all ϕT , ψT ∈ L2(Ω), the solution (ϕ, ψ) of (6) satisfies

∥ϕ(0, ·)∥2
L2(Ω)

+ ∥ψ(0, ·)∥2
L2(Ω)

≤ C
∫∫

Qω
T

e
3
2 sβ |ϕ|2 dxdt , (7)

for some C > 0.



Null-Controllability of the Linearized System

Theorem
For any (w0, z0) ∈ L2(Ω)× L2(Ω), there exist a control h ∈ L∞(QT ) such that the
solution (w , z) of system (5) corresponding to h satisfies w(T , x) = z(T , x) = 0 for
almost all x ∈ Ω. Moreover the control h satisfies

∥h∥L∞(Qω
T
) ≤ C

(
∥w0∥L2(Ω) + ∥z0∥L2(Ω)

)
for some C > 0.

• At first, we get the following L2-estimate

∥h∥2
L2(Qω

T
)
≤ C1

(
∥w0∥2

L2(Ω)
+ ∥z0∥2

L2(Ω)

)
.

After this, using a bootstrap argument with Sobolev embedding results to get
L∞-estimate.



Idea of Proof for Main Result

Theorem (Kakutani’s fixed point theorem )
Let K be a compact convex subset of Banach space Y and let G : K → X be an upper
semi-continuous mapping(set-valued) with convex values G(x) such that G(x) ⊂ K for
each x ∈ K . Then there is at least one x ∈ K such that x ∈ G(x).

• Let (u, v) be a trajectory of the system (trj) corresponding to (ū0, v̄0), satisfying
ū0 ≥ k0 and v̄0 ≥ k0. We set w = u − u, z = v − v with w0 = u0 − ū0 and
z0 = v0 − v̄0.

• Then easy to see that (w , z) satisfies the control system
∂t w = ∆w − lw − w(z + v)2 − (uz + 2u v)z + 1ωh in QT ,
∂t z = ∆z − (l + k)z + w(z + v)2 + (uz + 2u v)z in QT ,

∂νw = 0, ∂νz = 0 on ΣT ,

w(0, x) = w0(x), z(0, x) = z0(x) x ∈ Ω,

(8)

• So, local exact controllability to the trajectories of system (CS) is equivalent to
the local null controllability of the system (8).



• Let R > 0, and consider set

K =
{
η ∈ L∞(QT ) : ∥η∥∞,QT

≤ R
}
. (9)

Then, for each η ∈ K, we consider solution of the following linear control
system: 

∂t w = ∆w − lw − a(η)w − b(η)z + 1ωh in QT ,
∂t z = ∆z − (l + k)z + a(η)w + b(η)z in QT ,
∂νw = 0, ∂νz = 0 on ΣT ,

w(0, x) = w0(x), z(0, x) = z0(x) x ∈ Ω,

(10)

where a(η) = (η + v)2, b(η) = (uη + 2u v).

• For η ∈ K, let us define a set-valued map Λ : K → 2L2(QT ) by

Λ(η) =

z ∈ L2(QT )

∣∣∣∣∣∣
There exists hη ∈ L∞(QT ) such that
the solution (wη , zη) of the equation (10) corresponding
to η and hη satisfies wη(T , x) = zη(T , x) = 0.


(11)

• We proved that Λ is an upper semi-continuous, Λ(η) is convex and Λ(K) ⊂ K.
So, Λ has a fixed point which gives the required result.
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