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1



CNSE with Maxwell’s law
▷ Let us consider the one-dimensional compressible Navier-Stokes
system in the domain (0, 2π):

∂tρ̂+ ∂x(ρ̂û) = 0 in (0, T )× (0, 2π),

∂t (ρ̂û) + ∂x
(
ρ̂û2

)
+ ∂xp = ∂xŜ in (0, T )× (0, 2π).

}
(1)

• ρ̂, û, p, and Ŝ represent the density, velocity, pressure, and stress
tensor of the fluid, respectively.

• Assume that the pressure p satisfies the following constitutive
law:

p(ρ̂) = aρ̂γ , a > 0, γ ≥ 1.

• The stress tensor Ŝ is assumed to satisfy the Maxwell’s law:

κ∂tŜ + Ŝ = µ∂xû.

• Here µ represents the fluid viscosity and κ denotes the relaxation
time that characterizes the time delay in the response of the
stress tensor to the velocity gradient.

2



CNSE with Maxwell’s law
▷ Let us consider the one-dimensional compressible Navier-Stokes
system in the domain (0, 2π):
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ρ̂û2

)
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• ρ̂, û, p, and Ŝ represent the density, velocity, pressure, and stress
tensor of the fluid, respectively.

• Assume that the pressure p satisfies the following constitutive
law:

p(ρ̂) = aρ̂γ , a > 0, γ ≥ 1.
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• Here µ represents the fluid viscosity and κ denotes the relaxation
time that characterizes the time delay in the response of the
stress tensor to the velocity gradient.

2



Linearized system

▷ We consider the linearized system around the constant steady state
(ρs, us, 0) , ρs > 0, us > 0 of (1):

∂tρ+ us∂xρ+ ρs∂xu = 1O1
f1, in (0, T )× (0, 2π),

∂tu+ us∂xu+ aγρs
γ−2∂xρ−

1

ρs
∂xS = 1O2

f2, in (0, T )× (0, 2π),

∂tS +
1

κ
S −

µ

κ
∂xu = 1O3

f3, in (0, T )× (0, 2π),

ρ(t, 0) = ρ(t, 2π), u(t, 0) = u(t, 2π), S(t, 0) = S(t, 2π), t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x), S(0, x) = S0(x), x ∈ (0, 2π).


(2)

• 1Oj
is the characteristic function of an open set Oj ⊆ (0, 2π), j = 1, 2, 3.

• f1, f2, f3 are the controls.
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Semigroup framework
• Let (L2(0, 2π))3 be endowed with the inner product〈ρ

u
S

 ,

σ
v

S̃

〉
(L2(0,2π))3

= b

∫ 2π

0

ρσ̄ dx+ ρs

∫ 2π

0

uv̄ dx+
κ

µ

∫ 2π

0

S ¯̃S dx.

• We now define the unbounded operator
(
A,D(A; (L2(0, 2π))3)

)
in

(L2(0, 2π))3 by

D(A; (L2(0, 2π))3) =


ρ
u
S

 ∈ (L2(0, 2π))3 : (ρ, u, S)⊤ ∈ H1
p ×H1

p ×H1
p


and

A =


−us

d
dx

−ρs
d
dx

0

−b d
dx

−us
d
dx

1
ρs

d
dx

0 µ
κ

d
dx

− 1
κ

 .

• The control operator B ∈ L((L2(0, 2π))3; (L2(0, 2π))3) is defined by

Bf = (1O1f1, 1O2f2, 1O3f3)
⊤ , f = (f1, f2, f3)

⊤ ∈ (L2(0, 2π))3.
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Well-posedness

▷ With the above introduced notations, the system (2) can be rewritten as

ż(t) = Az(t) + Bf(t), t ∈ (0, T ), z(0) = z0, (3)

• where z(t) = (ρ(t, ·), u(t, ·), S(t, ·))⊤, z0 = (ρ0, u0, S0)
⊤, and f(t) =

(f1(t, ·), f2(t, ·), f3(t, ·))⊤.

Theorem 1
The operator (A,D(A; (L2(0, 2π))3)) is the infinitesimal generator of a
strongly continuous semigroup {Tt}t≥0 on (L2(0, 2π))3. Further, for any

f ∈ L2(0, T ; (L2(0, 2π))3) and for any z0 ∈ (L2(0, 2π))3, (3) admits a
unique solution (ρ, u, S) ∈ C([0, T ]; (L2(0, 2π))3) with

∥(ρ, u, S)∥C([0,T ];(L2(0,2π))3) ⩽ C
(
∥z0∥(L2(0,2π))3 + ∥f∥L2(0,T ;(L2(0,2π))3)

)
.
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Problem statement

▷ Let T > 0. Then for any (ρ0, u0, S0)
⊤, (ρ1, u1, S1)

⊤ ∈ (L2(0, 2π))3, can we
find controls fi ∈ L2

(
0, T ;L2(Oi)

)
, i = 1, 2, 3, such that the corresponding

solution (ρ, u, S)⊤ of (2) with initial condition (ρ0, u0, S0)
⊤, satisfy

(ρ,u,S)⊤(T,x) = (ρ1,u1,S1)
⊤(x), for all x ∈ (0, 2π)?
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Controllability results (Control acts locally)

Theorem 2
Let f2 = 0 = f3 in (2) and O1 ⊂ (0, 2π). Then there exists a T0 > 0
such that the system (2) is exactly controllable in
L2(0, 2π)× L̇2(0, 2π)× L̇2(0, 2π) at time T > T0, by an interior
control f1 ∈ L2

(
0, T ;L2(O1)

)
for the density.

Remark 1

• The system is also exactly controllable at time T > T0 by
velocity or stress control.

• In the above theorem, the waiting time T0 is of the form

T0 = 2π

(
1

|β1|
+

1

|β2|
+

1

|β3|

)
,

where βi, i = 1, 2, 3 are the velocity of the characteristics
equations associated to the linear system.
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Observability inequality
▷ Consider the following adjoint system of (2):

∂tσ + us∂xσ + ρs∂xv = 0, in (0, T )× (0, 2π),

∂tv + b∂xσ + us∂xv −
1

ρs
∂xS̃ = 0, in (0, T )× (0, 2π),

∂tS̃ −
1

κ
S̃ −

µ

κ
∂xv = 0, in (0, T )× (0, 2π),

σ(t, 0) = σ(t, 2π), v(t, 0) = v(t, 2π), S̃(t, 0) = S̃(t, 2π), t ∈ (0, T ),

σ(T, x) = σT (x), v(T, x) = vT (x), S̃(T, x) = S̃T (x), x ∈ (0, 2π).


(4)

Proposition 3
Let T > 0. Then the system (2) is exactly controllable in (L2(0, 2π))3 at time
T > 0 using a control f1 in L2(0, T ;L2(0, 2π)) with support in O1 acting in the
density equation, if and only if, there exists a positive constant CT > 0 such that
for any (σT , vT , S̃T )⊤ ∈ (L2(0, 2π))3, (σ, v, S̃)⊤, the solution of (4), satisfies the
following observability inequality:

∫ 2π

0
|σT (x)|2 dx +

∫ 2π

0
|vT (x)|2 dx+

∫ 2π

0
|S̃T (x)|2 dx ⩽ CT

∫ T

0

∫
O
|σ(t, x)|2 dxdt.
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Spectral analysis of the linearized operator

Proposition 4
The spectrum of the linearized operator consists of 0 and three sequences λ1

n, λ
2
n

and λ3
n of eigenvalues. Furthermore:

(a) All the eigenvalues have negative real part.

(b) The eigenvalues behave asymptotically as

λ1
n =− ω1 + iβ1n+O

(
1

|n|

)
,

λ2
n =− ω2 + iβ2n+O

(
1

|n|

)
,

λ3
n =− ω3 + iβ3n+O

(
1

|n|

)
.

• βj , j = 1, 2, 3 are the distinct real roots of the equation

r3 + 2usr
2 +

(
u2
s − bρs −

µ

κρs

)
r −

µus

κρs
= 0,

and ωj =
β2
j+2usβj+u2

s−bρs

κ
(
3β2

j+4usβj+u2
s−bρs−µ/κρs

) ̸= ωi for i ̸= j.

(c) Multiple eigenvalues can occur only for finitely many n.
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Spectrum of the linearized operator
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Figure: Eigenvalues of A in the complex plane for |n| varies from 1 to 30
when µ = ρs = us = b = 1 and k=1.
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Ingham inequality

Proposition 5
Let T > 2π

(
1

|β1| +
1

|β2| +
1

|β3|

)
. Then there exist positive constants C

and C1 depending on T such that for g(t) =
∑
n∈Z∗

3∑
l=1

alne
λl
n(T−t) with

∑
n∈Z∗

3∑
l=1

|aln|2 < ∞, the following inequality holds:

C
∑
n∈Z∗

3∑
l=1

|aln|2 ≤
∫ T

0

|g(t)|2 dt ≤ C1

∑
n∈Z∗

3∑
l=1

|aln|2.

▷ The proof of this inequality relies on the construction of a family

biorthogonal to the family of exponentials {e−λl
nt, n ∈ Z∗, l = 1, 2, 3}.
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Methodology of the proof
▷ Exact controllability of the linear system is equivalent to a
certain observability inequality satisfied by the solution of the
corresponding adjoint problem.

▷ We proved the observability inequality using the spectral analysis of
the linearized operator.

• The spectrum of the linear operator consists of three sequences of
complex eigenvalues whose real parts converge to three distinct
finite numbers, and the imaginary parts behave as n for
|n| → ∞.

• The eigenfunctions of the linearized operator and its adjoint form
Riesz bases.

• Using the series representation of the solution of the adjoint
problem and a hyperbolic type Ingham inequality, we proved
the observability inequality.
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Controllability results (Control acts everywhere)

Theorem 6
Let f2 = 0 = f3 in (2) and O1 = (0, 2π). Then for any T > 0 the
system (2) is exactly controllable in
L2(0, 2π)× L̇2(0, 2π)× L̇2(0, 2π) at time T > 0, by a control
f1 ∈ L2

(
0, T ;L2(0, 2π)

)
acting everywhere in the density.

Remark 2
Additionally, we achieve exact controllability of the system (2) at
time T > 0 by means of interior control acting either velocity or stress
equation applied everywhere in the domain.
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Methodology of the proof

▷ We used direct method by constructing the control explicitly to
prove the controllability.

• The eigenfunctions of A, the linear operator associated to the
system (2) forms a Riesz Basis.

• System (2) can be projected onto each finite dimensional
eigenspaces for each n ∈ Z.

• Any given time T > 0, each finite dimensional system is
controllable using Hautus Test and construct the control using
the finite-dimensional controllability operator.

• Summing up these finite dimensional controls, we can
construct a control for the whole system.
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Conclusion

• We thoroughly study the controllability aspects of the compressible
Navier-Stokes system with Maxwell’s law linearized around a non-zero
velocity in (L2(0, 2π))3 with periodic boundary condition using
distributed L2-controls.

• We give the proof of a suitable Ingham-type inequality which
helps to derive the required observability inequality.

• We can obtain the above results for the system with boundary
controls.

• Also, we have lack of controllability of the system in small time
when the control acts locally in the domain or in the boundary.
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Open problems

• Does T0 represent the minimal time for the exact
controllability of the system?

Determine the minimal time Tmin > 0, such that the system is
exactly controllable at T ≥ Tmin and the system is not exactly
controllable at T < Tmin is a challenging open problem.

• What controllability results can we obtain for the system
with Dirichlet boundary conditions?

The proof is based on explicit computation of the eigenvalues and
eigenfunctions of the linear operator; hence, it is confined to
specific boundary conditions ( periodic in this case). Thus, it is
interesting to see what controllability result we can get for the
Dirichlet boundary conditions.
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“I can’t change the direction of the wind, but I can adjust

my sails to always reach my destination.” - Jimmy Dean

Thank You for Your
Attention ...


