Controllability of the Linearized Compressible Navier-Stokes System with Maxwell's Law¹

Sakil Ahamed

Department of Mathematics & Statistics, IIT Kanpur

X Partial Differential Equations, Optimal Design and Numerics Benasque Science Center, Spain

Aug 18 - Aug 30, 2024

¹Joint work with Subrata Majumdar (Instituto de Matemáticas, UNAM)

 \triangleright Let us consider the one-dimensional compressible Navier-Stokes system in the domain $(0, 2\pi)$:

$$\begin{aligned} \partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{u}) &= 0 & \text{in } (0, T) \times (0, 2\pi), \\ \partial_t (\hat{\rho} \hat{u}) + \partial_x (\hat{\rho} \hat{u}^2) + \partial_x p &= \partial_x \hat{S} & \text{in } (0, T) \times (0, 2\pi). \end{aligned}$$
 (1)

▷ Let us consider the one-dimensional compressible Navier-Stokes system in the domain $(0, 2\pi)$:

$$\begin{aligned} \partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{u}) &= 0 & \text{in } (0, T) \times (0, 2\pi), \\ \partial_t (\hat{\rho} \hat{u}) + \partial_x (\hat{\rho} \hat{u}^2) + \partial_x p &= \partial_x \hat{S} & \text{in } (0, T) \times (0, 2\pi). \end{aligned}$$
 (1)

• $\hat{\rho}$, \hat{u} , p, and \hat{S} represent the density, velocity, pressure, and stress tensor of the fluid, respectively.

▷ Let us consider the one-dimensional compressible Navier-Stokes system in the domain $(0, 2\pi)$:

$$\begin{aligned} \partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{u}) &= 0 & \text{in } (0, T) \times (0, 2\pi), \\ \partial_t (\hat{\rho} \hat{u}) + \partial_x (\hat{\rho} \hat{u}^2) + \partial_x p &= \partial_x \hat{S} & \text{in } (0, T) \times (0, 2\pi). \end{aligned}$$
 (1)

- $\hat{\rho}$, \hat{u} , p, and \hat{S} represent the density, velocity, pressure, and stress tensor of the fluid, respectively.
- Assume that the pressure *p* satisfies the following constitutive law:

$$p(\hat{\rho}) = a\hat{\rho}^{\gamma}, \quad a > 0, \ \gamma \ge 1.$$

▷ Let us consider the one-dimensional compressible Navier-Stokes system in the domain $(0, 2\pi)$:

$$\begin{aligned} \partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{u}) &= 0 & \text{in } (0, T) \times (0, 2\pi), \\ \partial_t (\hat{\rho} \hat{u}) + \partial_x (\hat{\rho} \hat{u}^2) + \partial_x p &= \partial_x \hat{S} & \text{in } (0, T) \times (0, 2\pi). \end{aligned}$$
 (1)

- $\hat{\rho}$, \hat{u} , p, and \hat{S} represent the density, velocity, pressure, and stress tensor of the fluid, respectively.
- Assume that the pressure *p* satisfies the following constitutive law:

$$p(\hat{\rho}) = a\hat{\rho}^{\gamma}, \quad a > 0, \ \gamma \ge 1.$$

• The stress tensor \hat{S} is assumed to satisfy the Maxwell's law:

$$\kappa \partial_t \hat{S} + \hat{S} = \mu \partial_x \hat{u}.$$

▷ Let us consider the one-dimensional compressible Navier-Stokes system in the domain $(0, 2\pi)$:

$$\begin{aligned} \partial_t \hat{\rho} + \partial_x (\hat{\rho} \hat{u}) &= 0 & \text{in } (0, T) \times (0, 2\pi), \\ \partial_t (\hat{\rho} \hat{u}) + \partial_x (\hat{\rho} \hat{u}^2) + \partial_x p &= \partial_x \hat{S} & \text{in } (0, T) \times (0, 2\pi). \end{aligned}$$
 (1)

- $\hat{\rho}$, \hat{u} , p, and \hat{S} represent the density, velocity, pressure, and stress tensor of the fluid, respectively.
- Assume that the pressure *p* satisfies the following constitutive law:

$$p(\hat{\rho}) = a\hat{\rho}^{\gamma}, \quad a > 0, \ \gamma \ge 1.$$

• The stress tensor \hat{S} is assumed to satisfy the Maxwell's law:

$$\kappa \partial_t \hat{S} + \hat{S} = \mu \partial_x \hat{u}.$$

• Here μ represents the fluid viscosity and κ denotes the relaxation time that characterizes the time delay in the response of the stress tensor to the velocity gradient.

Linearized system

▷ We consider the linearized system around the constant steady state $(\rho_s, u_s, 0), \rho_s > 0, u_s > 0$ of (1):

$$\begin{aligned} &\partial_{t}\rho + u_{s}\partial_{x}\rho + \rho_{s}\partial_{x}u = \mathbb{1}_{\mathcal{O}_{1}}\mathbf{f}_{1}, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}u + u_{s}\partial_{x}u + a\gamma\rho_{s}{}^{\gamma-2}\partial_{x}\rho - \frac{1}{\rho_{s}}\partial_{x}S = \mathbb{1}_{\mathcal{O}_{2}}\mathbf{f}_{2}, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}S + \frac{1}{\kappa}S - \frac{\mu}{\kappa}\partial_{x}u = \mathbb{1}_{\mathcal{O}_{3}}\mathbf{f}_{3}, & \text{in } (0,T) \times (0,2\pi), \\ &\rho(t,0) = \rho(t,2\pi), \ u(t,0) = u(t,2\pi), \ S(t,0) = S(t,2\pi), & t \in (0,T), \\ &\rho(0,x) = \rho_{0}(x), \quad u(0,x) = u_{0}(x), \quad S(0,x) = S_{0}(x), & x \in (0,2\pi). \end{aligned}$$

Linearized system

▷ We consider the linearized system around the constant steady state $(\rho_s, u_s, 0), \rho_s > 0, u_s > 0$ of (1):

$$\begin{aligned} &\partial_{t}\rho + u_{s}\partial_{x}\rho + \rho_{s}\partial_{x}u = \mathbb{1}_{\mathcal{O}_{1}}\mathbf{f}_{1}, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}u + u_{s}\partial_{x}u + a\gamma\rho_{s}{}^{\gamma-2}\partial_{x}\rho - \frac{1}{\rho_{s}}\partial_{x}S = \mathbb{1}_{\mathcal{O}_{2}}\mathbf{f}_{2}, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}S + \frac{1}{\kappa}S - \frac{\mu}{\kappa}\partial_{x}u = \mathbb{1}_{\mathcal{O}_{3}}\mathbf{f}_{3}, & \text{in } (0,T) \times (0,2\pi), \\ &\rho(t,0) = \rho(t,2\pi), \ u(t,0) = u(t,2\pi), \ S(t,0) = S(t,2\pi), & t \in (0,T), \\ &\rho(0,x) = \rho_{0}(x), \quad u(0,x) = u_{0}(x), \quad S(0,x) = S_{0}(x), & x \in (0,2\pi). \end{aligned}$$

• $\mathbb{1}_{\mathcal{O}_j}$ is the characteristic function of an open set $\mathcal{O}_j \subseteq (0, 2\pi), j = 1, 2, 3$.

• f_1, f_2, f_3 are the controls.

Semigroup framework

• Let $(L^2(0, 2\pi))^3$ be endowed with the inner product

$$\left\langle \begin{pmatrix} \rho \\ u \\ S \end{pmatrix}, \begin{pmatrix} \sigma \\ v \\ \tilde{S} \end{pmatrix} \right\rangle_{(L^2(0,2\pi))^3} = b \int_0^{2\pi} \rho \bar{\sigma} \, \mathrm{d}x + \rho_s \int_0^{2\pi} u \bar{v} \, \mathrm{d}x + \frac{\kappa}{\mu} \int_0^{2\pi} S \bar{\tilde{S}} \, \mathrm{d}x.$$

• We now define the unbounded operator $(\mathcal{A}, \mathcal{D}(\mathcal{A}; (L^2(0, 2\pi))^3))$ in $(L^2(0, 2\pi))^3$ by

$$\mathcal{D}(\mathcal{A}; (L^{2}(0, 2\pi))^{3}) = \left\{ \begin{pmatrix} \rho \\ u \\ S \end{pmatrix} \in (L^{2}(0, 2\pi))^{3} : (\rho, u, S)^{\top} \in H^{1}_{p} \times H^{1}_{p} \times H^{1}_{p} \right\}$$

and

$$\mathcal{A} = \begin{bmatrix} -u_s \frac{d}{dx} & -\rho_s \frac{d}{dx} & 0\\ -b \frac{d}{dx} & -u_s \frac{d}{dx} & \frac{1}{\rho_s} \frac{d}{dx}\\ 0 & \frac{\mu}{\kappa} \frac{d}{dx} & -\frac{1}{\kappa} \end{bmatrix}.$$

• The control operator $\mathcal{B} \in \mathcal{L}((L^2(0, 2\pi))^3; (L^2(0, 2\pi))^3)$ is defined by

 $\mathcal{B}\boldsymbol{f} = (1_{\mathcal{O}_1}\boldsymbol{f_1}, 1_{\mathcal{O}_2}\boldsymbol{f_2}, 1_{\mathcal{O}_3}\boldsymbol{f_3})^\top, \qquad \boldsymbol{f} = (\boldsymbol{f_1}, \boldsymbol{f_2}, \boldsymbol{f_3})^\top \in (L^2(0, 2\pi))^3.$

Well-posedness

 \triangleright With the above introduced notations, the system (2) can be rewritten as

$$\dot{z}(t) = \mathcal{A}z(t) + \mathcal{B}f(t), \quad t \in (0,T), \qquad z(0) = z_0,$$
(3)

• where $z(t) = (\rho(t, \cdot), u(t, \cdot), S(t, \cdot))^{\top}, z_0 = (\rho_0, u_0, S_0)^{\top}$, and $f(t) = (f_1(t, \cdot), f_2(t, \cdot), f_3(t, \cdot))^{\top}$.

Well-posedness

 \triangleright With the above introduced notations, the system (2) can be rewritten as

$$\dot{z}(t) = \mathcal{A}z(t) + \mathcal{B}f(t), \quad t \in (0,T), \qquad z(0) = z_0,$$
(3)

• where $z(t) = (\rho(t, \cdot), u(t, \cdot), S(t, \cdot))^{\top}, z_0 = (\rho_0, u_0, S_0)^{\top}$, and $f(t) = (f_1(t, \cdot), f_2(t, \cdot), f_3(t, \cdot))^{\top}$.

Theorem 1 The operator $(\mathcal{A}, \mathcal{D}(\mathcal{A}; (L^2(0, 2\pi))^3))$ is the infinitesimal generator of a strongly continuous semigroup $\{\mathbb{T}_t\}_{t\geq 0}$ on $(L^2(0, 2\pi))^3$. Further, for any $f \in L^2(0, T; (L^2(0, 2\pi))^3)$ and for any $z_0 \in (L^2(0, 2\pi))^3$, (3) admits a unique solution $(\rho, u, S) \in C([0, T]; (L^2(0, 2\pi))^3)$ with

$$\|(\rho, u, S)\|_{C([0,T]; (L^2(0,2\pi))^3)} \leq C\Big(\|z_0\|_{(L^2(0,2\pi))^3} + \|f\|_{L^2(0,T; (L^2(0,2\pi))^3)}\Big).$$

Problem statement

▷ Let T > 0. Then for any $(\rho_0, u_0, S_0)^{\top}, (\rho_1, u_1, S_1)^{\top} \in (L^2(0, 2\pi))^3$, can we find controls $f_i \in L^2(0, T; L^2(\mathcal{O}_i)), i = 1, 2, 3$, such that the corresponding solution $(\rho, u, S)^{\top}$ of (2) with initial condition $(\rho_0, u_0, S_0)^{\top}$, satisfy

 $(\rho, \mathbf{u}, \mathbf{S})^{\top}(\mathbf{T}, \mathbf{x}) = (\rho_1, \mathbf{u}_1, \mathbf{S}_1)^{\top}(\mathbf{x}), \text{ for all } x \in (0, 2\pi)?$

Controllability results (Control acts locally)

Theorem 2

Let $f_2 = 0 = f_3$ in (2) and $\mathcal{O}_1 \subset (0, 2\pi)$. Then there exists a $T_0 > 0$ such that the system (2) is exactly controllable in $L^2(0, 2\pi) \times \dot{L}^2(0, 2\pi) \times \dot{L}^2(0, 2\pi)$ at time $T > T_0$, by an interior control $f_1 \in L^2(0, T; L^2(\mathcal{O}_1))$ for the density.

Controllability results (Control acts locally)

Theorem 2

Let $f_2 = 0 = f_3$ in (2) and $\mathcal{O}_1 \subset (0, 2\pi)$. Then there exists a $T_0 > 0$ such that the system (2) is **exactly controllable** in $L^2(0, 2\pi) \times \dot{L}^2(0, 2\pi) \times \dot{L}^2(0, 2\pi)$ at time $T > T_0$, by an interior control $f_1 \in L^2(0, T; L^2(\mathcal{O}_1))$ for the density.

Remark 1

• The system is also *exactly controllable* at time $T > T_0$ by velocity or stress control.

Controllability results (Control acts locally)

Theorem 2

Let $f_2 = 0 = f_3$ in (2) and $\mathcal{O}_1 \subset (0, 2\pi)$. Then there exists a $T_0 > 0$ such that the system (2) is **exactly controllable** in $L^2(0, 2\pi) \times \dot{L}^2(0, 2\pi) \times \dot{L}^2(0, 2\pi)$ at time $T > T_0$, by an interior control $f_1 \in L^2(0, T; L^2(\mathcal{O}_1))$ for the density.

Remark 1

- The system is also *exactly controllable* at time $T > T_0$ by velocity or stress control.
- In the above theorem, the waiting time T_0 is of the form

$$T_0 = 2\pi \left(\frac{1}{|\beta_1|} + \frac{1}{|\beta_2|} + \frac{1}{|\beta_3|}\right),\,$$

where β_i , i = 1, 2, 3 are the velocity of the characteristics equations associated to the linear system.

Observability inequality

 \triangleright Consider the following adjoint system of (2):

$$\begin{aligned} &\partial_{t}\sigma + u_{s}\partial_{x}\sigma + \rho_{s}\partial_{x}v = 0, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}v + b\partial_{x}\sigma + u_{s}\partial_{x}v - \frac{1}{\rho_{s}}\partial_{x}\tilde{S} = 0, & \text{in } (0,T) \times (0,2\pi), \\ &\partial_{t}\tilde{S} - \frac{1}{\kappa}\tilde{S} - \frac{\mu}{\kappa}\partial_{x}v = 0, & \text{in } (0,T) \times (0,2\pi), \\ &\sigma(t,0) = \sigma(t,2\pi), \ v(t,0) = v(t,2\pi), \ \tilde{S}(t,0) = \tilde{S}(t,2\pi), & t \in (0,T), \\ &\sigma(T,x) = \sigma_{T}(x), \quad v(T,x) = v_{T}(x), \quad \tilde{S}(T,x) = \tilde{S}_{T}(x), & x \in (0,2\pi). \end{aligned}$$

Proposition 3

Let T > 0. Then the system (2) is exactly controllable in $(L^2(0, 2\pi))^3$ at time T > 0 using a control f_1 in $L^2(0, T; L^2(0, 2\pi))$ with support in \mathcal{O}_1 acting in the density equation, if and only if, there exists a positive constant $C_T > 0$ such that for any $(\sigma_T, v_T, \tilde{S}_T)^\top \in (L^2(0, 2\pi))^3$, $(\sigma, v, \tilde{S})^\top$, the solution of (4), satisfies the following observability inequality:

$$\int_0^{2\pi} |\sigma_T(x)|^2 \, \mathrm{d}x + \int_0^{2\pi} |v_T(x)|^2 \, \mathrm{d}x + \int_0^{2\pi} |\tilde{S}_T(x)|^2 \, \mathrm{d}x \leqslant C_T \int_0^T \int_{\mathcal{O}} |\sigma(t,x)|^2 \, \mathrm{d}x \, \mathrm{d}t$$

Spectral analysis of the linearized operator

Proposition 4

The spectrum of the linearized operator consists of 0 and three sequences λ_n^1 , λ_n^2 and λ_n^3 of eigenvalues. Furthermore:

- (a) All the eigenvalues have negative real part.
- (b) The eigenvalues behave asymptotically as

$$\begin{split} \lambda_n^1 &= -\omega_1 + i\beta_1 n + O\left(\frac{1}{|n|}\right), \\ \lambda_n^2 &= -\omega_2 + i\beta_2 n + O\left(\frac{1}{|n|}\right), \\ \lambda_n^3 &= -\omega_3 + i\beta_3 n + O\left(\frac{1}{|n|}\right). \end{split}$$

• $\beta_j, j = 1, 2, 3$ are the distinct real roots of the equation

 $r^{3} + 2u_{s}r^{2} + \left(u_{s}^{2} - b\rho_{s} - \frac{\mu}{\kappa\rho_{s}}\right)r - \frac{\mu u_{s}}{\kappa\rho_{s}} = 0,$ and $\omega_{j} = \frac{\beta_{j}^{2} + 2u_{s}\beta_{j} + u_{s}^{2} - b\rho_{s}}{\kappa\left(3\beta_{j}^{2} + 4u_{s}\beta_{j} + u_{s}^{2} - b\rho_{s} - \mu/\kappa\rho_{s}\right)} \neq \omega_{i} \text{ for } i \neq j.$

(c) Multiple eigenvalues can occur only for finitely many n.

Spectrum of the linearized operator

Figure: Eigenvalues of \mathcal{A} in the complex plane for |n| varies from 1 to 30 when $\mu = \rho_s = u_s = b = 1$ and k=1.

Ingham inequality

Proposition 5 Let $T > 2\pi \left(\frac{1}{|\beta_1|} + \frac{1}{|\beta_2|} + \frac{1}{|\beta_3|} \right)$. Then there exist positive constants C and C_1 depending on T such that for $g(t) = \sum_{n=1}^{3} a_n^l e^{\overline{\lambda_n^l}(T-t)}$ with $n \in \mathbb{Z}^*$ l-1 $\sum \sum_{n=1}^{\infty} |a_n^l|^2 < \infty$, the following inequality holds: $C \sum_{n=1}^{3} \sum_{n=1}^{3} |a_n^l|^2 \le \int_0^T |g(t)|^2 \, \mathrm{d}t \le C_1 \sum_{n=1}^{3} \sum_{l=1}^{3} |a_n^l|^2.$

▷ The proof of this inequality relies on the construction of a family biorthogonal to the family of exponentials $\{e^{-\lambda_n^l t}, n \in \mathbb{Z}^*, l = 1, 2, 3\}$.

Methodology of the proof

 \triangleright *Exact controllability* of the linear system is *equivalent* to a certain *observability inequality* satisfied by the solution of the corresponding adjoint problem.

 \triangleright We proved the observability inequality using the spectral analysis of the linearized operator.

- The spectrum of the linear operator consists of three sequences of complex eigenvalues whose *real parts converge* to three distinct finite numbers, and the *imaginary parts behave as* n for |n| → ∞.
- The eigenfunctions of the linearized operator and its adjoint form *Riesz bases.*
- Using the series representation of the solution of the adjoint problem and a *hyperbolic type Ingham inequality*, we proved the *observability inequality*.

Controllability results (Control acts everywhere)

Theorem 6 Let $f_2 = 0 = f_3$ in (2) and $\mathcal{O}_1 = (0, 2\pi)$. Then for any T > 0 the system (2) is exactly controllable in $L^2(0, 2\pi) \times \dot{L}^2(0, 2\pi) \times \dot{L}^2(0, 2\pi)$ at time T > 0, by a control $f_1 \in L^2(0, T; L^2(0, 2\pi))$ acting everywhere in the density.

Controllability results (Control acts everywhere)

Theorem 6

Let $f_2 = 0 = f_3$ in (2) and $\mathcal{O}_1 = (0, 2\pi)$. Then for any T > 0 the system (2) is exactly controllable in $L^2(0, 2\pi) \times \dot{L}^2(0, 2\pi) \times \dot{L}^2(0, 2\pi)$ at time T > 0, by a control $f_1 \in L^2(0, T; L^2(0, 2\pi))$ acting everywhere in the density.

Remark 2

Additionally, we achieve *exact controllability* of the system (2) at time T > 0 by means of interior control acting either velocity or stress equation applied everywhere in the domain.

Methodology of the proof

 \triangleright We used *direct method* by constructing the control explicitly to prove the controllability.

- The eigenfunctions of \mathcal{A} , the linear operator associated to the system (2) forms a Riesz Basis.
- System (2) can be projected onto each finite dimensional eigenspaces for each $n \in \mathbb{Z}$.
- Any given time T > 0, each *finite dimensional system is controllable* using *Hautus Test* and construct the control using the finite-dimensional controllability operator.
- Summing up these finite dimensional controls, we can construct a control for the whole system.

Conclusion

• We thoroughly study the controllability aspects of the compressible Navier-Stokes system with Maxwell's law linearized around a non-zero velocity in $(L^2(0, 2\pi))^3$ with *periodic boundary* condition using distributed L^2 -controls.

• We give the proof of a suitable *Ingham-type inequality* which helps to derive the required *observability inequality*.

• We can obtain the above results for the system with *boundary* controls.

• Also, we have *lack of controllability* of the system in *small time* when the *control acts locally* in the domain or in the boundary.

Open problems

• Does T₀ represent the minimal time for the exact controllability of the system?

Determine the minimal time $T_{min} > 0$, such that the system is exactly controllable at $T \ge T_{min}$ and the system is not exactly controllable at $T < T_{min}$ is a challenging open problem.

Open problems

• Does T₀ represent the minimal time for the exact controllability of the system?

Determine the minimal time $T_{min} > 0$, such that the system is exactly controllable at $T \ge T_{min}$ and the system is not exactly controllable at $T < T_{min}$ is a challenging open problem.

• What controllability results can we obtain for the system with Dirichlet boundary conditions?

The proof is based on explicit computation of the eigenvalues and eigenfunctions of the linear operator; hence, it is confined to specific boundary conditions (periodic in this case). Thus, it is interesting to see what controllability result we can get for the Dirichlet boundary conditions.

References

S. Ahamed, S. Majumdar Controllability and stabilizability of the linearized compressible Navier-Stokes system with Maxwell's law. Submitted.

S. Ahamed, D. Maity, D. Mitra Lack of null controllability of one dimensional linear coupled transport-parabolic system with variable coefficients, J. Differential Equations 320 (2022), pp. 64-113.

S. Ahamed, D. Mitra Some controllability results for linearized compressible Navier-Stokes system with Maxwell's law, J. Math. Anal. Appl,535.1 (2024): 128108.

S. Chowdhury, D. Mitra, M. Ramaswamy, and M. Renardy Approximate controllability results for linear viscoelastic flows, Journal of Mathematical Fluid Mechanics, 19.3 (2017), pp. 529-549. S. Chowdhury, D. Mitra, M. Ramaswamy, and M. Renardy Null controllability of the linearized compressible Navier Stokes system in one dimension, J. Differential Equations 257 (2014), pp. 3813-3849.

S. Chowdhury, M. Ramaswamy, and J.-P. Raymond Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension, SIAM J. Control Optim, 50 (2012), pp. 2959-2987.

J. M. Coron Control and nonlinearity, vol. **136** of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, (2007).

M. Tucsnak and G. Weiss Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, (2009). "I can't change the direction of the wind, but I can adjust my sails to always reach my destination." - Jimmy Dean

