Turnpike behaviour for systems that are partially uncontrollable

Martin Lazar University of Dubrovnik

X Partial differential equations, optimal design and numerics Benasque, August 2024

Joint work with M. Gugat, FAU, Erlangen.

Turnpike properties for partially uncontrollable systems, Automatica, (2023)

The problem framework

We analyse the control system

$$x'(t) + Ax(t) = Bu(t)$$
$$x(0) = x_0,$$

accomopanied by the following optimization problem

$$\min J_{T}(u) = \min_{u} \frac{1}{2} \int_{0}^{T} \left(|u(t) - u_{d}|_{U}^{2} + |Cx(t) - z_{d}|_{Z}^{2} \right) dt + p_{d} \cdot x(T), \tag{\mathcal{P}_{T}}$$

- A a (possibly) unbounded operator on X
- $u \in L^2_{loc}([0,\infty); U)$ control
- $C \in L(X, Z)$ is observation operator
- X, U, Z Hilbert spaces
- $B \in \mathcal{L}(U, X)$ control operator
- u_d and z_d are time independent desirable control and observation
- $p_d \in X$ a linear regularization of the final state

Turnpike

Under suitable conditions:

- observability and controllability (or detectability and stabilizability),
- dissipativity

Turnpike - another approach

The optimality system for the problem $(\mathcal{P}_{\mathcal{T}})$ reads

$$x'_{T}(t) + Ax_{T}(t) = -B(B^{*}p_{T}(t) - u_{d})$$
 $-p'_{T}(t) + A^{*}p_{T}(t) = C^{*}(Cx_{T}(t) - z_{d})$
 $x_{T}(0) = x_{0}$ $p_{T}(T) = p_{d},$

and the optimal control is given by

$$u_T = -B^* p_T + u_d.$$

Turnpike - another approach

The optimality system for the problem $(\mathcal{P}_{\mathcal{T}})$ reads

$$x'_{T}(t) + Ax_{T}(t) = -B(B^{*}p_{T}(t) - u_{d})$$
 $-p'_{T}(t) + A^{*}p_{T}(t) = C^{*}(Cx_{T}(t) - z_{d})$ $x_{T}(0) = x_{0}$ $p_{T}(T) = p_{d},$

and the optimal control is given by

$$u_T = -B^* p_T + u_d.$$

The corresponding stationary problem

$$\min_{u \in U} J_s(u) = \min \left\{ \frac{1}{2} \left(|u - u_d|_U^2 + |Cx - z_d|_Z^2 \right) |Ax = Bu \right\}$$

Its optimality system reads

$$A\bar{x} = -B(B^*\bar{p} - u_d)$$
 $A^*\bar{p} = C^*(C\bar{x} - z_d),$

and the unique solution is

$$\bar{u}=-B^*\bar{p}+u_d.$$

We want to estimate

$$u_T - \bar{u}$$
.

Subtracting two optimality systems

$$y'_{T}(t) + Ay_{T}(t) = -BB^{*}q_{T}(t) \qquad -q'_{T}(t) + A^{*}q_{T}(t) = C^{*}Cy_{T}(t) y_{T}(0) = x_{0} - \bar{x} \qquad q_{T}(T) = p_{d} - \bar{p},$$
(1)

where $y_T = x_T - \bar{x}$ and $q_T = p_T - \bar{p}$.

The obtained system is independent of the target data z_d and u_d .

Subtracting two optimality systems

$$y'_{T}(t) + Ay_{T}(t) = -BB^{*}q_{T}(t) \qquad -q'_{T}(t) + A^{*}q_{T}(t) = C^{*}Cy_{T}(t) y_{T}(0) = x_{0} - \bar{x} \qquad q_{T}(T) = p_{d} - \bar{p},$$
(1)

where $y_T = x_T - \bar{x}$ and $q_T = p_T - \bar{p}$.

The obtained system is independent of the target data z_d and u_d .

We decompose the solution to (1) into two parts

$$y_T = y_{T,1} + y_{T,2}$$

 $q_T = q_{T,1} + q_{T,2}$

First components $(y_{T,1}, q_{T,1})$ satisfy

$$y'_{T,1}(t) + Ay_{T,1}(t) = -BB^*q_{T,1}(t)$$
 $-q'_{T,1}(t) + A^*q_{T,1}(t) = C^*Cy_{T,1}(t)$
 $y_{T,1}(0) = x_0 - \bar{x}$ $q_{T,1}(T) = 0$.

Subtracting two optimality systems

$$y'_{T}(t) + Ay_{T}(t) = -BB^{*}q_{T}(t) \qquad -q'_{T}(t) + A^{*}q_{T}(t) = C^{*}Cy_{T}(t) y_{T}(0) = x_{0} - \bar{x} \qquad q_{T}(T) = p_{d} - \bar{p},$$
(1)

where $y_T = x_T - \bar{x}$ and $q_T = p_T - \bar{p}$.

The obtained system is independent of the target data z_d and u_d .

We decompose the solution to (1) into two parts

$$y_T = y_{T,1} + y_{T,2}$$

 $q_T = q_{T,1} + q_{T,2}$

Second components $(y_{T,2}, q_{T,2})$ satisfy

$$y'_{T,2}(t) + Ay_{T,2}(t) = -BB^*q_{T,2}(t)$$
 $-q'_{T,2}(t) + A^*q_{T,2}(t) = C^*Cy_{T,2}(t)$
 $y_{T,2}(0) = 0$ $q_{T,2}(T) = p_d - \bar{p}$.

M. Lazar (UniDu)

First components $(y_{T,1}, q_{T,1})$ satisfy

$$y'_{T,1}(t) + Ay_{T,1}(t) = -BB^* q_{T,1}(t) \qquad -q'_{T,1}(t) + A^* q_{T,1}(t) = C^* Cy_{T,1}(t) y_{T,1}(0) = x_0 - \bar{x} \qquad q_{T,1}(T) = 0.$$
 (2)

(2) is the optimality system for the problem

$$\min_{v \in L^2(0,T;U)} J_{T,1}(v) = \min_{v \in L^2(0,T;U)} \frac{1}{2} \int_0^T \left(|v(t)|_U^2 + |Cy(t)|_Z^2 \right) dt,$$

where y stands for the solution to

$$y'(t) + Ay(t) = Bv(t)$$
$$y(0) = x_0 - \bar{x}.$$

Consequently,

$$v_{T,1} = -B^* q_{T,1} = \arg \min J_{T,1}$$

and

$$||v_{T,1}||_{L^2(0,T:I)}^2 + ||Cy_{T,1}||_{L^2(0,T:Z)}^2 = 2J_{T,1}(v_{T,1})$$

$$(0,T;Z) = 237,1(\sqrt{7},1)$$

$$\leq 2J_{T,1}(0) = \|CS_t(x_0 - \bar{x})\|_{L^2(0,T;X)}^2 = Q_T(x_0 - \bar{x}) \cdot (x_0 - \bar{x}),$$

where

- S_T is the semigroup generated by -A,
- $Q_T = \int_0^T S_t^* C^* C S_t dt$ is the observability Grammian.

Second components $(y_{T,2}, q_{T,2})$ satisfy

$$y'_{T,2}(t) + Ay_{T,2}(t) = -BB^* q_{T,2}(t) \qquad -q'_{T,2}(t) + A^* q_{T,2}(t) = C^* C y_{T,2}(t) y_{T,2}(0) = 0 \qquad q_{T,2}(T) = p_d - \bar{p}.$$
(3)

(3) is the optimality system for the problem (the change of variable s = T - t)

$$\min_{z \in L^2(0,T;Z)} J_{T,2}(z) = \min_{z \in L^2(0,T;Z)} \frac{1}{2} \int_0^T \left(|z(t)|_Z^2 + |B^*q(t)|_X^2 \right) dt,$$

where q is the solution to the problem

$$q'(t) + A^*q(t) = C^*z(t)$$

 $q(0) = p_d - \bar{p}.$

Specially, $Cy_{T,2} = \arg \min J_{T,2}$.

Consequently

$$||v_{T,2}||_{L^2(0,T;U)}^2 + ||Cy_{T,2}||_{L^2(0,T;Z)}^2 = 2J_{T,2}(Cy_{T,2})$$

$$\leq 2J_{T,2}(0) = ||B^*S_t^*(p_d - \bar{p})||_{L^2(0,T;X)} = \Lambda_T(p_d - \bar{p}) \cdot (p_d - \bar{p}),$$

where $v_{T,2} = B^* q_{T,2}$, while Λ_T stands for the controllability Grammian

$$\Lambda_T = \int_0^T S_t B B^* S_t^* dt.$$

↓□ > ∢□ > ∢필 > ∢필 > 필 →) Q (~

Benasque, August 2024.

Theorem 1. (M. Gugat, M. L, '22.)

The difference of solutions to the original and the stationary optimal control problems $v_T = u_T - \bar{u}$, together with the difference of the corresponding optimal states $y_T = x_T - \bar{x}$, satisfies the estimate

$$\|u_{T} - \bar{u}\|_{L^{2}(0,T;U)}^{2} + \|C(x_{T} - \bar{x})\|_{L^{2}(0,T;Z)}^{2} \leq 2\Big(Q_{T}(x_{0} - \bar{x}) \cdot (x_{0} - \bar{x}) + \Lambda_{T}(p_{d} - \bar{p}) \cdot (p_{d} - \bar{p})\Big),$$

where

- Q_T is the observability Grammian for the pair (A, C),
- Λ_T is the controllability Grammian corresponding to the pair (A, B).

Theorem 2. (M. Gugat, M. L, '22.)

The difference of solutions to the original and the stationary optimal control problems $v_T = u_T - \bar{u}$, together with the difference of the corresponding optimal states $y_T = x_T - \bar{x}$, satisfies the estimate

$$\|u_{T} - \bar{u}\|_{L^{2}(0,T;U)}^{2} + \|C(x_{T} - \bar{x})\|_{L^{2}(0,T;Z)}^{2} \leq 2\Big(Q_{T}(x_{0} - \bar{x}) \cdot (x_{0} - \bar{x}) + \Lambda_{T}(p_{d} - \bar{p}) \cdot (p_{d} - \bar{p})\Big),$$

where

- Q_T is the observability Grammian for the pair (A, C),
- Λ_T is the controllability Grammian corresponding to the pair (A, B).

No conditions on the linear operators A, B and C!

Definition

The operator B(C) is an infinite-time admissible control (observation) operator for the semigroup generated by -A if the controllability (observability) Gramian $\Lambda_{\infty}(Q_{\infty})$ is a bounded operator on X.

In that case

$$\|\Lambda_{\mathcal{T}}\|_{L(X)} \le \|\Lambda_{\infty}\|_{L(X)}$$

 $\|Q_{\mathcal{T}}\|_{L(X)} \le \|Q_{\infty}\|_{L(X)}$

for all T.

Turnpike results

Theorem 3.

Assume that B and C are an infinite-time admissible control and observation operator for the semigroup generated by -A, respectively. Then the following result holds.

a) (Integral turnpike) For any target data u_d and z_d ,

$$\frac{1}{T} \int_0^T u_T \xrightarrow[T \to \infty]{} \bar{u} \quad \text{strongly in } U,$$

$$\frac{1}{T} \int_0^T Cx_T \xrightarrow[T \to \infty]{} C\bar{x} \quad \text{strongly in } Z.$$

with the convergence rate of $O(1/\sqrt{T})$.

b) (Measure turnpike) For every $\varepsilon>0$ there exists a constant $C_{\varepsilon}>0$ (that depends on $x_0-\bar{x}$ and $p_d-\bar{p}$) such that for every T>0 we have

$$\mu\{t \in [0,T] | |u_T - \bar{u}|^2 + |C(x_T - \bar{x})|^2 \ge \varepsilon\} < C_{\varepsilon}.$$

c) (Convergence of the optimal value functions)

$$\frac{1}{T}\min J_T = \min J_s + \mathcal{O}(\frac{1}{\sqrt{T}}) \qquad \text{as } T \to \infty.$$

8/15

M. Lazar (UniDu) Benasque, August 2024.

Parameter dependent problems

A family of the parameter-dependent control systems

$$x'(\omega,t) + A(\omega)x(\omega,t) = B(\omega)u(t)$$
$$x(\omega,0) = x_0(\omega),$$

accompanied by an optimal control problem of the form

$$u_{T} := \min J_{T}(u)$$

$$= \min_{u} \frac{1}{2} \int_{0}^{T} \left(|u(t) - u_{d}|_{U}^{2} + \left| \int_{\Omega} \left(C(\omega) x(\omega, t) - z_{d}(\omega) \right) d\omega \right|_{Z}^{2} \right) dt + \int_{\Omega} p_{d}(\omega) \cdot x(\omega, T) d\omega$$

The corresponding stationary problem:

$$\begin{split} \bar{u} &:= \min_{u \in U} J_s(u) \\ &= \min \left\{ \frac{1}{2} \left(|u - u_d|_U^2 + \big| \int_{\Omega} \left(C(\omega) x(\omega) - z_d(\omega) \right) \left| d\omega \right|_Z^2 \right) |A(\omega) x = B(\omega) u \right\}. \end{split}$$

We want to estimate

$$u_T - \bar{u}$$
.

M. Lazar (UniDu)

The problem is well posed

$$u_{T} = -\int_{\Omega} B(\omega)^{*} p_{T}(\omega) d\omega + u_{d}$$

where p_T is the optimal dual state:

$$x'_{T}(\omega, t) + A(\omega)x_{T}(\omega, t) = -B(\omega) \int_{\Omega} (B(\nu)^{*} p_{T}(\nu, t) - u_{d}) d\nu$$

$$x_{T}(\omega, 0) = x_{0}(\omega)$$

$$-p'_{T}(\omega, t) + A(\omega)^{*} p_{T}(\omega, t) = C(\omega)^{*} \int_{\Omega} (C(\nu)x_{T}(\nu, t) - z_{d}(\nu)) d\nu$$

$$p_{T}(\omega, T) = p_{d}(\omega),$$

Similarly

$$ar{u} = -\int_{\Omega} B(\omega)^* ar{p}(\omega) d\omega + u_d,$$

where \bar{p} is the optimal dual variable for the stationary problem.

We repeat the steps from the deterministic case.

We consider

$$y_T = x_T - \bar{x}$$
$$a_T = p_T - \bar{p}$$

- We decompose the system satisfied by (y_T, q_T) into two parts.
- Each part is detected as optimality system for a similar kind of problem.

Consugently, we obtain the averaged control analogue of Theorem 7.

Theorem 4.

$$\begin{aligned} \|u_{T} - \bar{u}\|_{L^{2}(0,T;U)}^{2} + \|\int_{\Omega} C(\omega) \left(x_{T}(\omega,\cdot) - \bar{x}(\omega)\right) d\omega\|_{L^{2}(0,T;U)}^{2} \\ \leq \int_{\Omega} \left(Q_{T}(\omega)(x_{0} - \bar{x})(\omega) \cdot (x_{0} - \bar{x})(\omega) + \Lambda_{T}(\omega)(p_{T} - \bar{p})(\omega) \cdot (p_{T} - \bar{p})(\omega)\right) d\omega, \end{aligned}$$

where $\Lambda_T(\omega)(Q_T(\omega))$ stands for the controllability (observability) Grammian associated to the parameter value ω .

M. Lazar (UniDu)

Tunrpike for optimal averaged controls

Theorem 5.

Assume that for almost every $\omega \in \Omega$ we have that $B(\omega)$ and $C(\omega)$ are an infinite-time admissible control and observation operator for the semigroup generated by $-A(\omega)$, respectively.

a) (Integral turnpike) For any target data u_d and $z_d(\omega)$, we have

$$\frac{1}{T}\int_0^T u_T = \bar{u} + \mathcal{O}(\frac{1}{\sqrt{T}}) \qquad \text{as } T \to \infty,$$

$$\frac{1}{T}\int_0^T\int_{\Omega}C(\omega)x_T(\omega)d\omega=\int_{\Omega}C(\omega)\bar{x}(\omega)d\omega+\mathcal{O}(\frac{1}{\sqrt{T}})\qquad\text{as }T\to\infty.$$

b) (Measure turnpike) For every $\varepsilon>0$ there exists a constant $C_{\varepsilon}>0$ (that depends on $\|x_0-\bar{x}\|_{L^2(\Omega;X)}$ and $\|p_d-\bar{p}\|_{L^2(\Omega;X)}$) such that for every T>0 we have

$$\mu\big\{t\in[0,T]\big|\,|u_{\mathcal{T}}-\bar{u}|^2+\big|\int_{\Omega}C(\omega)(x_{\mathcal{T}}(\omega)-\bar{x}(\omega))d\omega\big|^2\geq\varepsilon\big\}< C_{\varepsilon}.$$

c) (Convergence of the optimal value functions)

$$\frac{1}{T}\min J_T = \min J_s + \mathcal{O}(\frac{1}{\sqrt{T}})$$
 as $T \to \infty$.

M. Lazar (UniDu) Benasque, August 2024.

A numerical example

Consider the system for $\mathbf{x} = (x_1, x_2)$:

$$x_1' = x_1 + u$$
$$x_2' = x_2 + u.$$

with the optimization problem

$$\min \frac{1}{2} \int_0^T \left(|u(t)|^2 + |x_1(t) + x_2(t) - 1|^2 \right) dt.$$

 $x_1 - x_2$ is independent of the control and uncontrollable.

What can we say about the observation $C\mathbf{x} = x_1 + x_2$?

The corresponding static problem is

$$\min \frac{1}{2} \left(|u|^2 + |x_1 + x_2 - 1|^2 \right)$$

subject to

$$x_1 = -u$$

$$x_2 = -u$$
.

Its solution is $\bar{u} = -\frac{2}{5}$, $\bar{\mathbf{x}} = (\frac{2}{5}, \frac{2}{5})$.

Figure 1: The graph of the optimal control $u_T(t)$.

Figure 2: The graph of $x_{T,1}(t) + x_{T,2}(t) - 0.8$.

Conclusion

- Turnpike results for infinite-dimensional, LQ optimal control problems.
- The key estimate on the difference between evolutional and stationary optimal controls and observations is derived with virtually no assumptions on the operators A, B, and C.
- The turnpike properties follow directly by assuming infinite-time admissibility of control and observation operator.
- Results obtained both in deterministic and parameter dependent case.
- Exponential turnpike?

Conclusion

- Turnpike results for infinite-dimensional, LQ optimal control problems.
- The key estimate on the difference between evolutional and stationary optimal controls and observations is derived with virtually no assumptions on the operators A, B, and C.
- The turnpike properties follow directly by assuming infinite-time admissibility of control and observation operator.
- Results obtained both in deterministic and parameter dependent case.
- Exponential turnpike?

Thanks for your attention!