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The problem framework

We analyse the control system
x ′(t) + Ax(t) = Bu(t)

x(0) = x0,

accomopanied by the following optimization problem

min JT (u) = min
u

1

2

∫ T

0

(
|u(t)− ud |2U + |Cx(t)− zd |2Z

)
dt + pd · x(T ), (PT )

A a (possibly) unbounded operator on X
u ∈ L2

loc([0,∞);U) control
C ∈ L(X ,Z) is observation operator
X ,U,Z Hilbert spaces
B ∈ L(U,X ) control operator
ud and zd are time independent desirable control and observation
pd ∈ X a linear regularization of the final state

Turnpike

Under suitable conditions:

observability and controllability (or detectability and stabilizability),

dissipativity
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Turnpike - another approach

The optimality system for the problem (PT ) reads

x ′T (t) + AxT (t) = −B(B∗pT (t)− ud)

xT (0) = x0

−p′T (t) + A∗pT (t) = C∗(CxT (t)− zd)

pT (T ) = pd ,

and the optimal control is given by

uT = −B∗pT + ud .

The corresponding stationary problem

min
u∈U

Js(u) = min

{
1

2

(
|u − ud |2U + |Cx − zd |2Z

)
|Ax = Bu

}
Its optimality system reads

Ax̄ = −B(B∗p̄ − ud) A∗p̄ = C∗(Cx̄ − zd),

and the unique solution is
ū = −B∗p̄ + ud .

We want to estimate
uT − ū.
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Subtracting two optimality systems

y ′T (t) + AyT (t) = −BB∗qT (t)

yT (0) = x0 − x̄

−q′T (t) + A∗qT (t) = C∗CyT (t)

qT (T ) = pd − p̄,
(1)

where yT = xT − x̄ and qT = pT − p̄.
The obtained system is independent of the target data zd and ud .

We decompose the solution to (1) into two parts

yT = yT ,1 + yT ,2

qT = qT ,1 + qT ,2,

Second components (yT ,2, qT ,2) satisfy

y ′T ,2(t) + AyT ,2(t) = −BB∗qT ,2(t)

yT ,2(0) = 0

−q′T ,2(t) + A∗qT ,2(t) = C∗CyT ,2(t)

qT ,2(T ) = pd − p̄.
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First components (yT ,1, qT ,1) satisfy

y ′T ,1(t) + AyT ,1(t) = −BB∗qT ,1(t)

yT ,1(0) = x0 − x̄

−q′T ,1(t) + A∗qT ,1(t) = C∗CyT ,1(t)

qT ,1(T ) = 0.
(2)

(2) is the optimality system for the problem

min
v∈L2(0,T ;U)

JT ,1(v) = min
v∈L2(0,T ;U)

1

2

∫ T

0

(
|v(t)|2U + |Cy(t)|2Z

)
dt,

where y stands for the solution to

y ′(t) + Ay(t) = Bv(t)

y(0) = x0 − x̄ .

Consequently,

vT ,1 = −B∗qT ,1 = arg min JT ,1
and

‖vT ,1‖2
L2(0,T ;U) + ‖CyT ,1‖2

L2(0,T ;Z) = 2JT ,1(vT ,1)

≤ 2JT ,1(0) = ‖CSt(x0 − x̄)‖2
L2(0,T ;X ) = QT (x0 − x̄) · (x0 − x̄),

where

ST is the semigroup generated by −A,
QT =

∫ T

0
S∗t C

∗CStdt is the observability Grammian.
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Second components (yT ,2, qT ,2) satisfy

y ′T ,2(t) + AyT ,2(t) = −BB∗qT ,2(t)

yT ,2(0) = 0

−q′T ,2(t) + A∗qT ,2(t) = C∗CyT ,2(t)

qT ,2(T ) = pd − p̄.
(3)

(3) is the optimality system for the problem (the change of variable s = T − t )

min
z∈L2(0,T ;Z)

JT ,2(z) = min
z∈L2(0,T ;Z)

1

2

∫ T

0

(
|z(t)|2Z + |B∗q(t)|2X

)
dt,

where q is the solution to the problem

q′(t) + A∗q(t) = C∗z(t)

q(0) = pd − p̄.

Specially, CyT ,2 = arg min JT ,2.

Consequently

‖vT ,2‖2
L2(0,T ;U)+‖CyT ,2‖2

L2(0,T ;Z) = 2JT ,2(CyT ,2)

≤ 2JT ,2(0) = ‖B∗S∗t (pd − p̄)‖L2(0,T ;X ) = ΛT (pd − p̄) · (pd − p̄),

where vT ,2 = B∗qT ,2, while ΛT stands for the controllability Grammian

ΛT =

∫ T

0

StBB
∗S∗t dt.
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Theorem 1. (M. Gugat, M. L, ’22.)

The difference of solutions to the original and the stationary optimal control problems
vT = uT − ū, together with the difference of the corresponding optimal states
yT = xT − x̄ , satisfies the estimate

‖uT − ū‖2
L2(0,T ;U) +‖C(xT − x̄)‖2

L2(0,T ;Z) ≤ 2
(
QT (x0− x̄) ·(x0− x̄)+ΛT (pd− p̄) ·(pd− p̄)

)
,

where

QT is the observability Grammian for the pair (A,C),

ΛT is the controllability Grammian corresponding to the pair (A,B).

No conditions on the linear operators A, B and C!

Definition

The operator B(C) is an infinite-time admissible control (observation) operator for the
semigroup generated by −A if the controllability (observability) Gramian Λ∞(Q∞) is a
bounded operator on X.

In that case
‖ΛT‖L(X ) ≤ ‖Λ∞‖L(X )

‖QT‖L(X ) ≤ ‖Q∞‖L(X )

for all T .
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Turnpike results

Theorem 3.

Assume that B and C are an infinite-time admissible control and observation operator for
the semigroup generated by −A, respectively. Then the following result holds.

a) (Integral turnpike) For any target data ud and zd ,

1

T

∫ T

0

uT −−−−−→
T→∞

ū strongly in U,

1

T

∫ T

0

CxT −−−−−→
T→∞

Cx̄ strongly in Z .

with the convergence rate of O(1/
√
T ).

b) (Measure turnpike) For every ε > 0 there exists a constant Cε > 0 (that depends
on x0 − x̄ and pd − p̄) such that for every T > 0 we have

µ
{
t ∈ [0,T ]

∣∣ |uT − ū|2 + |C(xT − x̄)|2 ≥ ε
}
< Cε.

c) (Convergence of the optimal value functions )

1

T
min JT = min Js +O(

1√
T

) as T →∞.
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Parameter dependent problems

A family of the parameter-dependent control systems

x ′(ω, t) + A(ω)x(ω, t) = B(ω)u(t)

x(ω, 0) = x0(ω),

accompanied by an optimal control problem of the form

uT := min JT (u)

= min
u

1

2

∫ T

0

(
|u(t)− ud |2U +

∣∣ ∫
Ω

(
C(ω)x(ω, t)− zd(ω)

)
dω
∣∣2
Z

)
dt +

∫
Ω

pd(ω) · x(ω,T )dω

The corresponding stationary problem:

ū : = min
u∈U

Js(u)

= min

{
1

2

(
|u − ud |2U +

∣∣ ∫
Ω

(
C(ω)x(ω)− zd(ω)

)
dω
∣∣2
Z

) ∣∣A(ω)x = B(ω)u

}
.

We want to estimate
uT − ū.
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The problem is well posed

uT = −
∫

Ω

B(ω)∗pT (ω)dω + ud

where pT is the optimal dual state:

x ′T (ω, t) + A(ω)xT (ω, t) = −B(ω)

∫
Ω

(B(ν)∗pT (ν, t)− ud)dν

xT (ω, 0) = x0(ω)

−p′T (ω, t) + A(ω)∗pT (ω, t) = C(ω)∗
∫

Ω

(C(ν)xT (ν, t)− zd(ν))dν

pT (ω,T ) = pd(ω),

Similarly

ū = −
∫

Ω

B(ω)∗p̄(ω)dω + ud ,

where p̄ is the optimal dual variable for the stationary problem.

We repeat the steps from the deterministic case.

We consider
yT = xT − x̄

qT = pT − p̄

We decompose the system satisfied by (yT , qT ) into two parts.

Each part is detected as optimality system for a similar kind of problem.
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Consuqently, we obtain the averaged control analogue of Theorem 7.

Theorem 4.

‖uT − ū‖2
L2(0,T ;U) + ‖

∫
Ω

C(ω) (xT (ω, ·)− x̄(ω)) dω‖
2

L2(0,T ;U)

≤
∫

Ω

(
QT (ω)(x0 − x̄)(ω) · (x0 − x̄)(ω) + ΛT (ω)(pT − p̄)(ω) · (pT − p̄)(ω)

)
dω,

where ΛT (ω)
(
QT (ω)

)
stands for the controllability (observability) Grammian associated

to the parameter value ω.
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Tunrpike for optimal averaged controls

Theorem 5.

Assume that for almost every ω ∈ Ω we have that B(ω) and C(ω) are an infinite-time
admissible control and observation operator for the semigroup generated by −A(ω),
respectively.

a) (Integral turnpike) For any target data ud and zd(ω), we have

1

T

∫ T

0

uT = ū +O(
1√
T

) as T →∞,

1

T

∫ T

0

∫
Ω

C(ω)xT (ω)dω =

∫
Ω

C(ω)x̄(ω)dω +O(
1√
T

) as T →∞.

b) (Measure turnpike) For every ε > 0 there exists a constant Cε > 0 (that depends
on ‖x0 − x̄‖L2(Ω;X ) and ‖pd − p̄‖L2(Ω;X )) such that for every T > 0 we have

µ
{
t ∈ [0,T ]

∣∣ |uT − ū|2 +
∣∣ ∫

Ω

C(ω)(xT (ω)− x̄(ω))dω
∣∣2 ≥ ε} < Cε.

c) (Convergence of the optimal value functions)

1

T
min JT = min Js +O(

1√
T

) as T →∞.
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A numerical example

Consider the system for x = (x1, x2):

x ′1 = x1 + u

x ′2 = x2 + u.

with the optimization problem

min
1

2

∫ T

0

(
|u(t)|2 + |x1(t) + x2(t)− 1|2

)
dt.

x1 − x2 is independent of the control and uncontrollable.
What can we say about the observation Cx = x1 + x2?
The corresponding static problem is

min
1

2

(
|u|2 + |x1 + x2 − 1|2

)
subject to

x1 = −u
x2 = −u.

Its solution is ū = − 2
5
, x̄ = ( 2

5
, 2

5
).

M. Lazar (UniDu) Benasque, August 2024. 13 / 15



Figure 1: The graph of the optimal control uT (t).

Figure 2: The graph of xT ,1(t) + xT ,2(t) − 0.8.
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Conclusion

Turnpike results for infinite-dimensional, LQ optimal control problems.

The key estimate on the difference between evolutional and stationary optimal
controls and observations is derived with virtually no assumptions on the operators
A,B, and C .

The turnpike properties follow directly by assuming infinite-time admissibility of
control and observation operator.

Results obtained both in deterministic and parameter dependent case.

Exponential turnpike?

Thanks for your attention!
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