The moment method in action

Franck BOYER

Institut de Mathématiques de Toulouse Université Paul Sabatier - Toulouse 3

August, 2024

X Partial differential equations, optimal design and numerics Benasque, Spain

Outline

1. [Abstract moment problems](#page-2-0)

2. [Null-controllability and moment problems](#page-7-0)

3. [Solving scalar exponential moment problems](#page-13-0)

- 3.1 [Partial moment problems](#page-14-0)
- 3.2 [Back to parabolic controllability questions](#page-20-0)

4. [Further cases and applications](#page-30-0)

- 4.1 [What about non scalar control problems ?](#page-31-0)
- 4.2 [Time discrete systems](#page-35-0)
- 4.3 [Boundary controllability of a system with different diffusions](#page-37-0)

Outline

1. [Abstract moment problems](#page-2-0)

-
- 3.2 [Back to parabolic controllability questions](#page-20-0)

- 4.1 [What about non scalar control problems ?](#page-31-0)
- 4.2 [Time discrete systems](#page-35-0)
- 4.3 [Boundary controllability of a system with different diffusions](#page-37-0)

 \bullet *H* a Hilbert space \bullet $E \subset H \setminus \{0\}$ a family in H \bullet $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$
(e, x)_H = \omega_e, \ \forall e \in E. \tag{P}
$$

Main question

Given the family E , for which data ω is there a solution to [\(P\)](#page-3-0)?

Remarks

- $\text{\textbf{t}} \cdot \textsf{Uniqueness} \quad \Longleftrightarrow \quad E^\perp = \{0\} \quad \Longleftrightarrow \quad E \text{ is complete in } H.$
- Necessary existence conditions : there exists $C > 0$ such that

$$
|\omega_e| \leq C ||e||_H, \qquad \forall e \in E,
$$

\n
$$
|\omega_e - \omega_f| \leq C ||e - f||_H, \qquad \forall e, f \in E,
$$

\n...
\n
$$
\left| \sum_{e \in E} \alpha_e \omega_e \right| \leq C \left\| \sum_{e \in E} \alpha_e e \right\|_H, \qquad \forall (\alpha_e)_{e \in E} \subset \mathbb{R} \text{ finitely supported }.
$$

 \bullet *H* a Hilbert space \bullet $\mathcal{E} \subset H \setminus \{0\}$ a family in H \bullet $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$
(e,x)_H = \omega_e, \ \forall e \in E. \tag{P}
$$

Main question

Given the family E , for which data ω is there a solution to [\(P\)](#page-3-0)?

Proposition (Finite case)

If E is finite and linearly independent, then [\(P\)](#page-3-0) *has a solution for every* ω*.*

Sketch of proof

• There exists a **biorthogonal family** $(q_e)_{e\in E} \subset H$

$$
(e, q_f)_H = \delta_{e,f}, \quad \forall e, f \in E.
$$

• A solution of (P) is given by
$$
x = \sum_{f \in E} \omega_f q_f.
$$

• Note that the minimal such family satisfies $\|q_e\|_H =$ $\frac{1}{d(e, \text{Span}(E \setminus \{e\}))}.$

 \bullet *H* a Hilbert space \bullet $E \subset H \setminus \{0\}$ a family in H \bullet $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$
(e, x)_H = \omega_e, \ \forall e \in E. \tag{P}
$$

Main question

Given the family E , for which data ω is there a solution to [\(P\)](#page-3-0)?

Theorem (Infinite case - usual approach)

If E *is infinite, there exists a biorthogonal family* $(q_e)_{e \in E}$ *if and only if*

$$
d(e, \mathrm{Span}(E \setminus \{e\})) > 0, \quad \forall e \in E.
$$

In that case, we have $\|q_e\|_H = \frac{1}{d(e,\text{Span}(E\setminus\{e\}))}$.

In particular,

$$
\sum_{e \in E} |\omega_e| \|q_e\|_H < +\infty \qquad \Longrightarrow \qquad x = \sum_{e \in E} \omega_e q_e \text{ solves (P)}.
$$

 \bullet *H* a Hilbert space \bullet $\mathcal{E} \subset H \setminus \{0\}$ a family in H \bullet $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$
(e, x)_H = \omega_e, \ \forall e \in E. \tag{P}
$$

Main question

Given the family E , for which data ω is there a solution to [\(P\)](#page-3-0)?

Theorem (Infinite case - block moment approach)

Assume $d(e, \text{Span}(E\setminus\{e\})) > 0$, $\forall e \in E$ *. Let* $(q_e)_{e \in E}$ be the minimal biorthogonal family.

Let E = Ů $G \in \mathcal{G}$ *G be a partition of E into finite subsets. We have*

$$
\sum_{G \in \mathcal{G}} \left\| \sum_{e \in G} \omega_e q_e \right\| < +\infty \qquad \Longrightarrow \qquad x = \sum_{G \in \mathcal{G}} \left(\sum_{e \in G} \omega_e q_e \right) \text{ solves (P)}.
$$

Remark: $q_G =$ $e \in G$ $\omega_e q_e$ solves the partial moment problem $(e,q_G)_H=$ $\sqrt{ }$ \mathcal{L} ω_e , if $e \in G$, 0, otherwise

Outline

2. [Null-controllability and moment problems](#page-7-0)

-
- 3.2 [Back to parabolic controllability questions](#page-20-0)

- 4.1 [What about non scalar control problems ?](#page-31-0)
- 4.2 [Time discrete systems](#page-35-0)
- 4.3 [Boundary controllability of a system with different diffusions](#page-37-0)

Abstract linear time invariant parabolic control problems

- $\bm{\cdot}$ Two Hilbert spaces : the state space $(X, \langle .,. \rangle)$ and the control space $(U, (.,.)_U).$
- $\cdot A : D(A) \subset X \rightarrow X$ some unbounded operator and such that $-A$ generates a continuous semigroup.
- \cdot $\mathcal{B}: U \mapsto X$ the (bounded) control operator, \mathcal{B}^\star its adjoint.

Our controlled parabolic problem is

$$
(S) \quad \begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}u & \text{in }]0, T[, \\ y(0) = y_0, \end{cases}
$$

 $\cdot \;\: y_0 \in X$ is the initial data and $u \in L^2(]0,\,T[, \,U)$ is the control we are looking for.

Theorem (Well-posedness of (*S*) **in a dual sense)**

 F or any $y_0 \in X$ and $u \in L^2(0,\,T;\,U)$, there exists a unique $y = y_{u,\,y_0} \in \mathcal{C}^0([0,\,T],\,X)$ such that

$$
\langle y(\tau), \phi \rangle - \langle y_0, e^{-\tau \mathcal{A}^{\star}} \phi \rangle = \int_0^{\tau} \left(u(t), \mathcal{B}^{\star} e^{-(\tau-t)\mathcal{A}^{\star}} \phi \right)_U dt, \ \ \forall \tau \in [0, T], \forall \phi \in X.
$$

Null-controllability

Let $T > 0$ be given. We say that (S) is null-controllable at time T , if

$$
\forall y_0 \in X, \ \exists u \in L^2(0, T; U), \text{ such that } y_{u, y_0}(T) = 0.
$$

A function $u \in L^2(0,\, T;\, U)$ is a null-control for our system and the initial data y_0 if and only if

$$
\int_0^T \left(u(T-t), \mathcal{B}^* e^{-t\mathcal{A}^*} \phi \right)_U dt = -\left\langle y_0, e^{-T\mathcal{A}^*} \phi \right\rangle, \ \forall \phi \in X. \tag{GMP}
$$

This is a moment problem in $L^2(0,\,T;\,U)$!

A function $u \in L^2(0,\, T;\, U)$ is a null-control for our system and the initial data y_0 if and only if

$$
\int_0^T \left(u(T-t), \mathcal{B}^* e^{-t\mathcal{A}^*} \phi \right)_U dt = -\left\langle y_0, e^{-T\mathcal{A}^*} \phi \right\rangle, \ \forall \phi \in \Phi.
$$
 (GMP)

This is a moment problem in $L^2(0,\,T;\,U)$!

Remarks

- It is enough to test against the elements of any **complete** family Φ of elements in *X*.
- Solving (*[GMP](#page-9-0)*) is *a priori* as difficult as solving the initial control problem or not ... see M. Morancey's talk.
- \cdot (*[GMP](#page-9-0)*) can be reduced to a more tractable moment problem if we manage to find Φ such that the "test functions"

$$
\left(t \mapsto \mathcal{B}^{\star} e^{-t \mathcal{A}^{\star}} \phi\right)_{\phi \in \Phi}
$$

have simple enough expressions.

A function $u \in L^2(0,\, T;\, U)$ is a null-control for our system and the initial data y_0 if and only if

$$
\int_0^T \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_U dt = -\left\langle y_0, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \ \forall \phi \in \Phi. \tag{GMP}
$$

This is a moment problem in $L^2(0,\,T;\,U)$!

First level of simplification : spectral structure of \mathcal{A}^{\star}

Assume that $\mathcal A^\star$ possesses a family of eigenfunctions $\Phi=\{\phi_\lambda,\lambda\in\Lambda\}$ which is complete in X . Then (GMP) is equivalent to find $v = u(T - .)$

$$
\int_0^T e^{-\lambda t} \left(v(t), \mathcal{B}^{\star} \phi_{\lambda} \right)_U dt = -e^{-\lambda T} \langle y_0, \phi_{\lambda} \rangle, \ \ \forall \lambda \in \Lambda.
$$

A function $u \in L^2(0,\, T;\, U)$ is a null-control for our system and the initial data y_0 if and only if

$$
\int_0^T \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_U dt = -\left\langle y_0, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \forall \phi \in \Phi.
$$
 (GMP)

This is a moment problem in $L^2(0,\,T;\,U)$!

First level of simplification : spectral structure of \mathcal{A}^{\star}

Assume that $\mathcal A^\star$ possesses a family of eigenfunctions $\Phi=\{\phi_\lambda,\lambda\in\Lambda\}$ which is complete in X . Then (*GMP*) is equivalent to find $v = u(T - 1)$

$$
\int_0^T e^{-\lambda t} \left(v(t), \mathcal{B}^{\star} \phi_{\lambda} \right)_U dt = -e^{-\lambda T} \langle y_0, \phi_{\lambda} \rangle, \ \ \forall \lambda \in \Lambda.
$$

Second level of simplification : scalar control

Assume we are dealing with a scalar control problem : $U = \mathbb{R}, \; \mathcal{B}^\star : U \mapsto \mathbb{R}.$ Then (GMP) is equivalent to find $v = u(T - .) \in L^2(0, T; \mathbb{R})$

$$
\int_0^T e^{-\lambda t} v(t) dt = -e^{-\lambda T} \frac{\langle y_0, \phi_\lambda \rangle}{\mathcal{B}^* \phi_\lambda}, \ \ \forall \lambda \in \Lambda.
$$

Outline

3. [Solving scalar exponential moment problems](#page-13-0)

- 3.1 [Partial moment problems](#page-14-0)
- 3.2 [Back to parabolic controllability questions](#page-20-0)

- 4.1 [What about non scalar control problems ?](#page-31-0)
- 4.2 [Time discrete systems](#page-35-0)
- 4.3 [Boundary controllability of a system with different diffusions](#page-37-0)

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Notation

$$
e[\lambda] := \left(t \in (0, +\infty) \mapsto e^{-\lambda t}\right) \in L^2(0, +\infty).
$$

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Partial moment problem

Find
$$
q = q_{G,\omega,T} \in L^2(0,T)
$$
 s.t.
$$
\begin{cases} (e[\lambda], q)_{L^2(0,T)} = \omega_{\lambda}, & \text{for any } \lambda \in G, \\ (e[\lambda], q)_{L^2(0,T)} = 0, & \text{for any } \lambda \in \Lambda \setminus G. \end{cases}
$$
 (PM)

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Partial moment problem

Assumptions

• Parabolic sector: $\Lambda \subset S_n$ for some $\eta \in (0, \pi/2)$.

Find $q = q_{G,\omega,T} \in L^2(0,T)$ s.t. $\begin{cases} (e[\lambda], q)_{L^2(0,T)} = \omega_\lambda, & \text{for any } \lambda \in G, \\ (e[\lambda], q)_{L^2(0,T)} = \omega_\lambda, & \text{for any } \lambda \in G, \end{cases}$ $(e[\lambda], q)_{L^2(0,T)} = 0$, for any $\lambda \in \Lambda \backslash G$. (PM)

Theorem (Necessary condition : the price to pay for orthogonality)

A solution to [\(PM\)](#page-14-1) exists **if and only i**

$$
\mathbf{f} \quad \sum_{\lambda \in \Lambda} \frac{1}{|\lambda|} < +\infty.
$$

Sketch of proof

(Müntz, 1914) (Schwartz, 1943)

$$
d_{L^{2}(0,\infty)}\bigg(e[\lambda],\text{Span}(e[\mu],\mu\neq\lambda)\bigg)=\frac{1}{\sqrt{2\,{\rm Re}\,\lambda}}\prod_{\substack{\mu\in\Lambda\\ \mu\neq\lambda}}\left|\frac{1-\frac{\lambda}{\mu}}{1+\frac{\lambda}{\bar{\mu}}}\right|.
$$

9

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Partial moment problem

Assumptions

- Parabolic sector: $\Lambda \subset S_n$ for some $\eta \in (0, \pi/2)$.
- Asymptotics : $N_\Lambda(r) \leqslant \kappa r^\theta$ for any $r > 0$ with $\theta \in (0, 1)$.
- Group size: $\#G \leq n$ and $\text{diam}(G) \leq \rho$.
- Separation : $d(\text{conv}(G), \Lambda \backslash G) \ge \gamma$.

Find
$$
q = q_{G,\omega,T} \in L^2(0,T)
$$
 s.t.
$$
\begin{cases} (e[\lambda], q)_{L^2(0,T)} = \omega_{\lambda}, & \text{for any } \lambda \in G, \\ (e[\lambda], q)_{L^2(0,T)} = 0, & \text{for any } \lambda \in \Lambda \setminus G. \end{cases}
$$
 (PM)

Theorem

There exists $C > 0$ *depending only on* η , κ , θ , n , ρ , γ *such that :* **(B., '23+) (B., '23+)** *for any* $T > 0$, there exists a solution $q_{G,\omega,T}$ to [\(PM\)](#page-14-1) that satisfies

$$
\|q_{G,\omega,T}\|_{L^2(0,\,T)}\leqslant Ce^{Cr_G^\theta+CT^{-\frac{\theta}{1-\theta}}}\max_{L\subset G}|\omega[L]|,
$$

where $r_G = \min_{\lambda \in G} \text{Re} \, \lambda$ and $\omega[L]$ denotes the divided difference associated to L and ω .

Main result

Examples, extensions

- "Usual" bi-orthogonal families : **(Dolecki, '73) (Fattorini-Russel, '74) (Benabdallah B. Gonzalez–Burgos Olive, '14)**
	- Case 1 : The *usual* gap condition holds

$$
\inf_{\substack{\lambda,\mu\in\Lambda\\ \lambda\neq\mu}}|\lambda-\mu|\geqslant\rho.\tag{Gap}
$$

.

We recover the known estimates of the literature with "optimal" assumptions on Λ

$$
\|q_{\lambda,T}\|_{L^2(0,T)} \leqslant Ce^{C(\text{Re }\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}}
$$

• Case 2 : the gap condition [\(Gap\)](#page-18-0) does not hold **(Allonsius - B. - Morancey, '20) (Gonzalez–Burgos - Ouaili '21)**

$$
\|q_{\lambda,T}\|_{L^2(0,T)} \leqslant Ce^{C(\operatorname{Re}\lambda)^\theta + CT^{-\frac{\theta}{1-\theta}}}\prod_{\substack{\mu\in\Lambda\\0<|\lambda-\mu|<\rho}}\frac{1}{|\mu-\lambda|}.
$$

Examples, extensions

- "Usual" bi-orthogonal families : **(Dolecki, '73) (Fattorini-Russel, '74) (Benabdallah B. Gonzalez–Burgos Olive, '14)**
	- Case 1 : The *usual* gap condition holds

$$
\inf_{\substack{\lambda,\mu\in\Lambda\\ \lambda\neq\mu}}|\lambda-\mu|\geqslant\rho.\tag{Gap}
$$

.

We recover the known estimates of the literature with "optimal" assumptions on Λ

$$
\|q_{\lambda,T}\|_{L^2(0,T)} \leqslant Ce^{C(\text{Re }\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}}
$$

• Case 2 : the gap condition [\(Gap\)](#page-18-0) does not hold

$$
\|q_{\lambda,T}\|_{L^2(0,T)}\leqslant Ce^{C(\operatorname{Re}\lambda)^\theta+C T^{-\frac{\theta}{1-\theta}}}\prod_{\substack{\mu\in\Lambda\\0<|\lambda-\mu|<\rho}}\frac{1}{|\mu-\lambda|}.
$$

• Taking into account multiplicities :

We get **for free** similar estimates for solutions to

$$
\begin{aligned}\n(e[\mu], q_{\lambda,0})_{L^2(0,T)} &= \delta_{\lambda,\mu}, \ \forall \mu \in \Lambda, \\
(e[\mu, \mu], q_{\lambda,0})_{L^2(0,T)} &= 0, \ \forall \mu \in \Lambda,\n\end{aligned}\n\quad \text{and} \quad\n\begin{cases}\n(e[\mu], q_{\lambda,1})_{L^2(0,T)} &= 0, \ \forall \mu \in \Lambda, \\
(e[\mu, \mu], q_{\lambda,1})_{L^2(0,T)} &= \delta_{\lambda,\mu}, \ \forall \mu \in \Lambda,\n\end{cases}
$$

with

$$
e[\lambda, \lambda] := \left(t \in (0, +\infty) \mapsto (-t)e^{-\lambda t} \right) \in L^2(0, +\infty).
$$

Partial moment problems arising from parabolic controllability questions

(Benabdallah - B. - Morancey, '20) (B., '23+)

Recall the original moment problem to solve

$$
\int_0^T e^{-\lambda t} v(t) dt = e^{-\lambda T} \frac{-\langle y_0, \phi_\lambda \rangle}{\mathcal{B}^* \phi_\lambda}, \ \forall \lambda \in \Lambda.
$$

This amount to consider

$$
\omega_{\lambda} = e^{-\lambda T} \psi_{\lambda},
$$

Lemma (« **Leibniz rule)**

In a group G we have

$$
\max_{L \subset G} |\omega[L]| \leqslant C e^{-r_G T} \max_{L \subset G} |\psi[L]|.
$$

Theorem

With the same assumption above there exists, for any $T > 0$, a solution to

Find
$$
q = q_{G,\psi,T} \in L^2(0,T)
$$
 s.t.
$$
\begin{cases} (e[\lambda], q)_{L^2(0,T)} = e^{-\lambda T} \psi_\lambda, & \text{for any } \lambda \in G, \\ (e[\lambda], q)_{L^2(0,T)} = 0, & \text{for any } \lambda \in \Lambda \setminus G, \end{cases}
$$
 (PM)

that satisfies

$$
\|q_{G,\psi,T}\|_{L^2(0,T)} \leqslant Ce^{Cr_G^{\theta}+CT^{-\frac{\theta}{1-\theta}}}e^{-r_GT}\max_{L\subset G}|\psi[L]|.
$$

 \mathcal{L} et $n \in \mathbb{N}^*$, $\rho > 0$. If Λ satisfies the following \mathbf{weak} \mathbf{gap} condition

$$
\#\bigg(\Lambda\cap D(\mu,\rho/2)\bigg)\leqslant n,\quad\forall\mu\in\mathbb{C},
$$

then we can write

Lemma

$$
\Lambda = \bigsqcup_{G \in \mathcal{G}} G,\tag{1}
$$

where each $G \in \mathcal{G}$ *is a finite set satisfying the assumptions we considered above*

 $\#G \leq n$, diam(*G*) $\leq \rho$, $d(\text{Conv}(G), \Lambda \backslash G) \geq \gamma$.

It's time to sum up everything ...

It's time to sum up everything ...

Lemma

 \mathcal{L} et $n \in \mathbb{N}^*$, $\rho > 0$. If Λ satisfies the following \mathbf{weak} \mathbf{gap} condition

$$
\#\bigg(\Lambda\cap D(\mu,\rho/2)\bigg)\leqslant n,\quad\forall\mu\in\mathbb{C},
$$

then we can write

 $\Lambda = |$ $G \in \mathcal{G}$ G , (1)

where each $G \in \mathcal{G}$ *is a finite set satisfying the assumptions we considered above*

$$
\#G \leqslant n, \quad \text{diam}(G) \leqslant \rho, \quad d(\text{Conv}(G), \Lambda \backslash G) \geqslant \gamma.
$$

Theorem (Small time null-controllability)

Let Λ *satisfying the assumptions* **sector/asymptotics/weak gap***, and* G *as in* [\(1\)](#page-21-0)*. Assume that for some* $M > 0$ *we have*

$$
\max_{L \subset G} |\psi[L]| \leq M, \quad \forall G \in \mathcal{G},
$$

 t hen for every $T>0$, the full moment problem (= the NC problem) has a solution $v\in L^2(0,\,T)$ s.t.

$$
||v||_{L^2(0,T)} \leqslant CMe^{CT^{-\frac{\theta}{1-\theta}}}.
$$

12

Some examples in 1D

Boundary control for 1D cascade parabolic systems **(Fernandez–Cara - González–Burgos - de Teresa, '10)**

The following system is null-controllable at any time $T > 0$

$$
\partial_t y + \begin{pmatrix} \mathcal{A} & 1 \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

with $\mathcal{A} = -\partial_x(\gamma(x)\partial_x \cdot).$

Some examples in 1D

Boundary control for 1D cascade parabolic systems **(Fernandez–Cara - González–Burgos - de Teresa, '10)**

The following system is null-controllable at any time $T > 0$

$$
\partial_t y + \begin{pmatrix} A & 1 \\ 0 & A \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

with $\mathcal{A} = -\partial_x(\gamma(x)\partial_x \cdot).$

Uniform boundary control for discrete 1D cascade parabolic systems **(Allonsius-B.-Morancey, 18**)

$$
\begin{cases} \partial_t y_h + \begin{pmatrix} A_h & 1 \\ 0 & A_h \end{pmatrix} y_h = \mathcal{B}_h \begin{pmatrix} 0 \\ u_h(t) \end{pmatrix} \\ y_h(0) = y_{0,h}, \end{cases}
$$

where A*^h* is the F.D. approximation of A and and B*^h* is the discrete boundary control operator.

Theorem (Relaxed uniform null-controllability)

There exists $C > 0$ and $h_0 > 0$ such that : For any $h < h_0$, any initial data $y_{0,h}$, there exists a $u_h \in L^2(0, T, U_h)$ *such that*

$$
||u_h||_{L^2(0,T)} \leq C||y_{0,h}||_h,
$$

$$
||y_h(T)||_h \leq Ce^{-C/h^2}||y_{0,h}||_h.
$$

Some examples in 2D

The cascade system on a rectangle **(Benabdallah - B. - Gonzalez–Burgos - Olive, '14) (Allonsius - B., '20)**

$$
\hat{c}_t y + \begin{pmatrix} -\Delta & 1 \\ 0 & -\Delta \end{pmatrix} y = 0, \quad y(t,.) = \begin{pmatrix} 0 \\ 1_{\Gamma} u(t,.) \end{pmatrix}.
$$
 (S)

Theorem

For any non empty Γ *the system* [\(S\)](#page-25-0) *is null-controllable at any time* $T > 0$ *, with the estimate*

 $||u||_{L^2((0,T)\times\Gamma)} \leq C e^{C/T} ||y_0||.$

The cascade system on a disk **(Trabut, '24)**

Ω Γ

Theorem

For any non empty Γ *the system* [\(S\)](#page-25-0) *is null-controllable at any time* $T > 0$ *, with the estimate*

 $||u||_{L^2((0,T)\times\Gamma)} \leq C e^{C/T} ||y_0||.$

Minimal null-control time issues

(Benabdallah - B. - Morancey, '20) (B., '23+)

Theorem

Let Λ *satisfying the assumptions* **sector/asymptotics/weak gap***, and* G *as in* [\(1\)](#page-21-0)*.* A ssume that for some $M>0$ and some $\,^* >0,$ we have

$$
\max_{L \subset G} |\psi[L]| \leqslant M e^{r_G T^*}, \quad \forall G \in \mathcal{G},\tag{2}
$$

.

 t hen for every $T>T^*$, the full moment problem (= the NC problem) has a solution $v\in L^2(0,\,T)$ s.t.

$$
||v||_{L^{2}(0,T)} \leqslant C_{T^{\ast}} Me^{C(T-T^{\ast})^{-\frac{\theta}{1-\theta}}}
$$

Remark : Conversely if the NC at time T has a solution, then [\(2\)](#page-26-0) holds for $T^* = T$.

The minimal null control time for this problem is thus the quantity

Some examples

1D boundary control - non constant coupling **(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)**

$$
\partial_t y + \begin{pmatrix} A & a(x) \\ 0 & A \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

 \rightsquigarrow There exists functions a such that the minimal null-control time $T_{0,a}$ is any a priori given number.

Some examples

1D boundary control - non constant coupling **(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)**

$$
\partial_t y + \begin{pmatrix} A & a(x) \\ 0 & A \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

 \rightsquigarrow There exists functions *a* such that the minimal null-control time $T_{0,a}$ is any *a priori* given number.

A two diffusion case - constant coupling **(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '14)** $\partial_t y +$ $\begin{pmatrix} A & 1 \end{pmatrix}$ $0 \quad -d\mathcal{A}$ $y = 0, y(t, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ *u*(*t*) $\bigg), \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ θ \setminus

 \rightsquigarrow There exists (many) coefficients $d > 0$ such that the minimal null-control time $T_{0,d}$ is any *a priori* given number.

Some examples

1D boundary control - non constant coupling **(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)**

$$
\partial_t y + \begin{pmatrix} A & a(x) \\ 0 & A \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

 \rightsquigarrow There exists functions *a* such that the minimal null-control time $T_{0,a}$ is any *a priori* given number.

A two diffusion case - constant coupling **(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '14)** $\partial_t y +$ $\begin{pmatrix} A & 1 \end{pmatrix}$ $0 \quad -d\mathcal{A}$ $y = 0, y(t, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ *u*(*t*) $\bigg), \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ θ \setminus

 \rightsquigarrow There exists (many) coefficients $d > 0$ such that the minimal null-control time $T_{0,d}$ is any *a priori* given number.

Less involved (yet interesting) example **(B. - Benabdallah - Morancey, '20)**

$$
\partial_t y + \begin{pmatrix} A & 1 \\ 0 & A + b(x) \end{pmatrix} y = 0, \quad y(t, 0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t, 1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

 \rightsquigarrow For b small enough in L^2 the system is null-controllable at any time $T>0$ despite the spectral condensation that occurs in the system.

Outline

-
- 3.2 [Back to parabolic controllability questions](#page-20-0)

4. [Further cases and applications](#page-30-0)

- 4.1 [What about non scalar control problems ?](#page-31-0)
- 4.2 [Time discrete systems](#page-35-0)
- 4.3 [Boundary controllability of a system with different diffusions](#page-37-0)

Few words about some non scalar moment problem

Reminder

For a non scalar control : the moment problem to solve is more involved

Find
$$
v \in L^2(0, T; U)
$$
 such that $\int_0^T e^{-\lambda t} (v(t), \mathcal{B}^{\star} \phi_{\lambda})_U dt = -e^{-\lambda T} \langle y_0, \phi_{\lambda} \rangle$, $\forall \lambda \in \Lambda$.

Abstract problem

Given a family $(b_\lambda)_{\lambda\in\Lambda}\subset U\backslash\{0\}$, a family of scalars $(\omega_\lambda)_{\lambda\in\Lambda}\subset\mathbb{C}$, can we find $v\in L^2(0,\,T;\,U)$ such that

$$
(e[\lambda]b_{\lambda},v)_{L^2(0,T;U)}=\omega_{\lambda}, \ \forall \lambda\in\Lambda.
$$

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$
\begin{cases}\n(e[\lambda]b_{\lambda}, q)_{L^2(0,T;U)} = \omega_{\lambda}, & \forall \lambda \in G, \\
(e[\lambda], q)_{L^2(0,T)} = 0_U, & \forall \lambda \in \Lambda \backslash G.\n\end{cases}
$$

Few words about some non scalar moment problems

Resolution

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$
\langle (e[\lambda]b_{\lambda}, q)_{L^{2}(0, T; U)} = \omega_{\lambda}, \qquad \forall \lambda \in G,
$$

\n
$$
(e[\lambda], q)_{L^{2}(0, T)} = 0_{U}, \quad \forall \lambda \in \Lambda \setminus G.
$$
 (VPM)

Two particular *limiting* cases

Case 1: All the $(b_{\lambda})_{\lambda \in G}$ are **colinear**

[\(VPM\)](#page-32-0) is equivalent to a scalar moment problem

 \Rightarrow same estimates as before depending on the divided differences $\omega[L]$ for $L \subset G$.

Case 2: All the $(b_{\lambda})_{\lambda \in G}$ are **pairwise orthogonal**

The eigenvalues in *G* do not see each other

$$
q(t) = \sum_{\mu \in G} \omega_{\mu} \frac{b_{\mu}}{\|b_{\mu}\|^2} \tilde{q}_{\mu}(t),
$$

where \tilde{q}_μ is the biorthogonal in $L^2(0,\,T)$ to $e[\mu]$ among the family $(\Lambda\backslash G)\cup\{\mu\}.$

Few words about some non scalar moment problems

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$
\begin{cases}\n(e[\lambda]b_{\lambda}, q)_{L^{2}(0, T; U)} = \omega_{\lambda}, & \forall \lambda \in G, \\
(e[\lambda], q)_{L^{2}(0, T)} = 0_{U}, & \forall \lambda \in \Lambda \setminus G.\n\end{cases}
$$
\n(VPM)

Fifty shades of grey **(B. - Morancey, '23)**

Theorem

Consider the same assumptions as before on Λ *and G.*

For each G, we can build:

- *an* **explicit** $n \times n$ *matrix* M_G *depending only on G and* $(b_\lambda)_{\lambda \in G}$
- \bullet *an* **explicit** vector $\xi_G \in \mathbb{C}^n$ depending only on the divided differences $\omega[L]$ with $L \subset G$

such that there exists a solution to [\(VPM\)](#page-32-0) *that satisfies*

$$
\|q_{G,b,\omega,T}\|_{L^2(0,T;U)} \leqslant Ce^{Cr_G^{\theta}+CT^{-\frac{\theta}{1-\theta}}}\left(M_G\xi_G,\xi_G\right)^{\frac{1}{2}}.
$$

The red factor is optimal.

Resolution

(Gonzalez–Burgos - de Teresa, '16) (Ammar-Khodja - Benabdallah - Gonzalez–Burgos - de Teresa, '16) (B. - Morancey, '24)

1D distributed control - non constant coupling

$$
\partial_t y + \begin{pmatrix} A & a(x) \\ 0 & A \end{pmatrix} y = \begin{pmatrix} 0 \\ 1_\omega u(t,x) \end{pmatrix},
$$

- \bullet If $\omega \cap \text{Supp}(a) \neq \emptyset$, the system is null-controllable at any time *T*.
- \bullet There exists a coupling term α and two non trivial control domains ω_1 and ω_2 that do not intersect Supp(*a*)such that
	- If $\omega = \omega_1$, the system is null-controllable at any time $T > 0$.
	- If $\omega = \omega_2$, the system is not even approximately controllable.

Time discrete systems

(B. - Hernandez–Santamaria, '24)

Consider a discretization of the time interval [0, *T*] with time step τ . Set $M = T/\tau$.

$$
\frac{y^{n+1} - y^n}{\tau} + \begin{pmatrix} -\partial_x^2 & 1 \\ 0 & -\partial_x^2 \end{pmatrix} y^{n+1} = 0, \quad y^{n+1}(0) = \begin{pmatrix} 0 \\ u^{n+1} \end{pmatrix}, \quad y^{n+1}(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{S_\tau}
$$

Moment formulation : Instead of exponentials, use this family of time discrete functions

$$
p[\lambda] := \left(n \in [0, M] \mapsto \left(1 + \lambda \tau \right)^{-n} \right) \in L^2(\mathbf{0}, T).
$$

Theorem

 A ssume $\Lambda \subset (0, +\infty)$, the gap condition and $N_\Lambda(r) \leqslant \kappa r^\theta$ *.*

There exists $\varpi > 0$, τ_0 *depending only on* ρ , κ , θ , such that: ϵ *For any* $\tau < \tau_0$ *there exists a family* $(q_{\lambda,\,T})_{\substack{\lambda \in \Lambda \ \lambda \tau \leqslant \varpi}}$

$$
\begin{aligned} (p[\mu], q_{\lambda, T})_{L^2_\tau(0,T)} &= \delta_{\lambda, \mu}, \quad \forall \lambda, \mu \in \Lambda, \text{ with } \lambda \tau \leq \varpi, \mu \tau \leq \varpi, \\ & \|q_{\lambda, T}\|_{L^2_\tau(0,T)} \leqslant C_T e^{C\lambda^\theta}. \end{aligned}
$$

Same result with multiplicities ...

Time discrete systems

(B. - Hernandez–Santamaria, '24)

Consider a discretization of the time interval [0, *T*] with time step τ . Set $M = T/\tau$.

$$
\frac{y^{n+1} - y^n}{\tau} + \begin{pmatrix} -\partial_x^2 & 1 \\ 0 & -\partial_x^2 \end{pmatrix} y^{n+1} = 0, \quad y^{n+1}(0) = \begin{pmatrix} 0 \\ u^{n+1} \end{pmatrix}, \quad y^{n+1}(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{S_\tau}
$$

Theorem

For any initial data $y^0 \in L^2(\Omega)$, for any $\tau < \tau_0$ there exists a time-discrete control $v_\tau = (v^n)_{n\in\llbracket 0,M\rrbracket}$ *such that*

$$
\|v_{\tau}\|_{L^{2}_{\tau}(0,T)} \leq C \|y^{0}\|_{L^{2}(\Omega)},
$$

$$
\|y^{M}\| \leq C e^{-\frac{C}{\tau^{2}}} \|y^{0}\|_{L^{2}(\Omega)}
$$

We have a similar result for fully discrete case.

Boundary controllability of a system with different diffusions

Let Ω be a rectangle and $\Gamma \subset \partial \Omega$.

$$
\partial_t y + \begin{pmatrix} -\Delta & 1 \\ 0 & -d\Delta \end{pmatrix} y = 0, \quad y(t,.) = \begin{pmatrix} 0 \\ 1_{\Gamma} u(t,.) \end{pmatrix}
$$

Theorem

If Γ *intersects two* **non parallel** *sides of* $\partial\Omega$ *, then the system is null-controllable at any time* $T > 0$ *,* **for any value of** *d.*

Boundary controllability of a system with different diffusions

Let Ω be a rectangle and $\Gamma \subset \partial \Omega$.

$$
\partial_t y + \begin{pmatrix} -\Delta & 1 \\ 0 & -d\Delta \end{pmatrix} y = 0, \quad y(t,.) = \begin{pmatrix} 0 \\ 1_{\Gamma} u(t,.) \end{pmatrix}
$$

Theorem

If Γ *intersects two* **non parallel** *sides of* $\partial\Omega$ *, then the system is null-controllable at any time* $T > 0$ *,* **for any value of** *d.*

Everything boils down to a (very) weird family of moment-like problems Here $\Omega = (0, \pi)^2$

Find two families $(u_k)_k,(v_l)_l\subset L^2(0,\,T)$ such that

$$
\begin{cases} \int_0^T e^{-(k^2+l^2)t} u_k(t) dt + \int_0^T e^{-(k^2+l^2)t} v_l(t) dt = \omega_{k,l}, \quad \forall k, l \ge 1, \\ \int_0^T e^{-d(k^2+l^2)t} u_k(t) dt + \int_0^T e^{-d(k^2+l^2)t} v_l(t) dt = \tilde{\omega}_{k,l}, \quad \forall k, l \ge 1. \end{cases}
$$

Thanks for your attention ! Any questions ?

� A. BENABDALLAH, F.B., M. MORANCEY, *A block moment method to handle spectral condensation phenomenon in parabolic control problems*, Annales Henri Lebesgue, Vol. 3, pp. 717-793 (2020)

� F.B., *Controllability of linear parabolic equations and systems*, Lecture Notes, (2023+)

<https://hal.archives-ouvertes.fr/hal-02470625>

� F.B., V. HERNáNDEZ-SANTAMARíA, *Boundary controllability of time-discrete parabolic systems: a moments method approach*, preprint, (2024) <https://hal.archives-ouvertes.fr/hal-04628708>

[�] F.B., M. Morancey, *Analysis of non scalar control problems for parabolic systems by the block moment method, Comptes Rendus. Mathématique, Volume 361, pp.* 1191-1248 (2023)

A F.B., G. OLIVE, *Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method, to appear in Annales Institut Fourier, (2024)* <https://aif.centre-mersenne.org/articles/10.5802/aif.3639/>