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What is a moment problem ?

‚ H a Hilbert space ‚ E Ă Hzt0u a family in H ‚ ω = (ωe)ePE Ă R a family of numbers

Moment problem

We look for an element x P H such that

(e, x)H = ωe, @e P E. (P)

Main question

Given the family E , for which data ω is there a solution to (P) ?

Remarks

• Uniqueness ðñ EK = t0u ðñ E is complete in H .
• Necessary existence conditions : there exists C ą 0 such that

|ωe| ďC}e}H , @e P E,

|ωe ´ ωf | ďC}e ´ f }H , @e, f P E,

¨ ¨ ¨
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePE
αe ωe

ˇ

ˇ

ˇ

ˇ

ˇ

ďC

›

›

›

›

›

ÿ

ePE
αe e

›

›

›

›

›

H

, @(αe)ePE Ă R finitely supported .

4



What is a moment problem ?

‚ H a Hilbert space ‚ E Ă Hzt0u a family in H ‚ ω = (ωe)ePE Ă R a family of numbers

Moment problem

We look for an element x P H such that

(e, x)H = ωe, @e P E. (P)

Main question

Given the family E , for which data ω is there a solution to (P) ?

Proposition (Finite case)

If E is finite and linearly independent, then (P) has a solution for every ω.

Sketch of proof

• There exists a biorthogonal family (qe)ePE Ă H

(e, qf )H = δe,f , @e, f P E.

• A solution of (P) is given by x =
ÿ

f PE
ωf qf .

• Note that the minimal such family satisfies }qe}H =
1

d(e, Span(Ezteu))
.
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What is a moment problem ?

‚ H a Hilbert space ‚ E Ă Hzt0u a family in H ‚ ω = (ωe)ePE Ă R a family of numbers

Moment problem

We look for an element x P H such that

(e, x)H = ωe, @e P E. (P)

Main question

Given the family E , for which data ω is there a solution to (P) ?

Theorem (Infinite case - usual approach)

If E is infinite, there exists a biorthogonal family (qe)ePE if and only if

d(e, Span(Ezteu)) ą 0, @e P E.

In that case, we have }qe}H = 1
d(e,Span(Ezteu))

.

In particular,
ÿ

ePE
|ωe|}qe}H ă +8 ùñ x =

ÿ

ePE
ωeqe solves (P) .
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What is a moment problem ?

‚ H a Hilbert space ‚ E Ă Hzt0u a family in H ‚ ω = (ωe)ePE Ă R a family of numbers

Moment problem

We look for an element x P H such that

(e, x)H = ωe, @e P E. (P)

Main question

Given the family E , for which data ω is there a solution to (P) ?

Theorem (Infinite case - block moment approach)

Assume d(e, Span(Ezteu)) ą 0, @e P E . Let (qe)ePE be the minimal biorthogonal family.

Let E =
Ů

GPG
G be a partition of E into finite subsets. We have

ÿ

GPG

›

›

›

›

›

ÿ

ePG
ωeqe

›

›

›

›

›

ă +8 ùñ x =
ÿ

GPG

(
ÿ

ePG
ωeqe

)
solves (P) .

Remark : qG =
ÿ

ePG
ωeqe solves the partial moment problem (e, qG)H =

$

&

%

ωe, if e P G,
0, otherwise
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Abstract linear time invariant parabolic control problems

• Two Hilbert spaces : the state space (X , x., .y) and the control space (U , (., .)U).
• A : D(A) Ă X ÞÑ X some unbounded operator and such that ´A generates a continuous
semigroup.

• B : U ÞÑ X the (bounded) control operator, B‹ its adjoint.

Our controlled parabolic problem is (S)

$

&

%

Bty +Ay = Bu in ]0,T [,

y(0) = y0,

• y0 P X is the initial data and u P L2(]0,T [,U ) is the control we are looking for.

Theorem (Well-posedness of (S) in a dual sense)

For any y0 P X and u P L2(0,T ;U ), there exists a unique y = yu,y0 P C0([0,T ],X) such that

xy(τ), φy ´

A

y0, e´τA‹

φ
E

=

ż τ

0

(
u(t),B‹e´(τ´t)A‹

φ
)

U
dt, @τ P [0,T ],@φ P X .

Null-controllability

Let T ą 0 be given. We say that (S) is null-controllable at time T , if

@y0 P X , Du P L2(0,T ;U ), such that yu,y0(T) = 0.
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Null-controllability vs. moment problem

A function u P L2(0,T ;U ) is a null-control for our system and the initial data y0 if and only if
ż T

0

(
u(T ´ t),B‹e´tA‹

φ
)

U
dt = ´

A

y0, e´TA‹

φ
E

, @φ P X . (GMP)

This is a moment problem in L2(0,T ;U ) !

First level of simplification : spectral structure ofA‹

Assume that A‹ possesses a family of eigenfunctions Φ = tφλ, λ P Λu which is complete in X .
Then (GMP) is equivalent to find v = u(T ´ .)

ż T

0

e´λt (v(t),B‹φλ)U dt = ´e´λT
xy0, φλy , @λ P Λ.

Second level of simplification : scalar control

Assume we are dealing with a scalar control problem : U = R, B‹ : U ÞÑ R.
Then (GMP) is equivalent to find v = u(T ´ .) P L2(0,T ;R)

ż T

0

e´λtv(t) dt = ´e´λT xy0, φλy

B‹φλ
, @λ P Λ.
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Remarks

• It is enough to test against the elements of any complete family Φ of elements in X .

• Solving (GMP) is a priori as difficult as solving the initial control problem
or not ... see M. Morancey’s talk.

• (GMP) can be reduced to a more tractable moment problem if we manage to find Φ such that
the “test functions” (

t ÞÑ B‹e´tA‹

φ
)
φPΦ

have simple enough expressions.
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Partial (scalar, exponential) moment problems

Main result

Data

• A family Λ Ă C+

• A finite subset G Ă Λ

• A non trivial ωG = (ωλ)λPG Ă C

• A time T P (0,+8]

Assumptions

• Parabolic sector : Λ Ă Sη for some η P (0, π/2).

• Asymptotics : NΛ(r) ď κrθ for any r ą 0with θ P (0, 1).

• Group size : #G ď n and diam(G) ď ρ.

• Separation : d(conv(G),ΛzG) ě γ .

Notation
e[λ] :=

(
t P (0,+8) ÞÑ e´λt

)
P L2(0,+8).

Partial moment problem

Find q = qG,ω,T P L2(0,T) s.t.

#

(e[λ], q)L2(0,T) = ωλ, for any λ P G,

(e[λ], q)L2(0,T) = 0, for any λ P ΛzG.
(PM)

Theorem

There exists C ą 0 depending only on η, κ, θ,n, ρ, γ such that : (B., ’23+)

for any T ą 0, there exists a solution qG,ω,T to (PM) that satisfies

}qG,ω,T }L2(0,T) ď CeCrθG+CT
´ θ

1´θ max
LĂG

|ω[L]|,

where rG = min
λPG

Reλ and ω[L] denotes the divided difference associated to L and ω.
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Theorem (Necessary condition : the price to pay for orthogonality)

A solution to (PM) exists if and only if
ÿ

λPΛ

1

|λ|
ă +8.

Sketch of proof (Müntz, 1914) (Schwartz, 1943)

dL2(0,8)

(
e[λ],Span(e[µ], µ ‰ λ)

)
=

1
?
2Reλ

ź

µPΛ
µ‰λ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ λ
µ

1 + λ
µ̄

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Partial (scalar, exponential) moment problems

Examples, extensions

• “Usual” bi-orthogonal families : (Dolecki, ’73) (Fattorini-Russel, ’74) (Benabdallah - B. - Gonzalez–Burgos - Olive, ’14)

• Case 1 : The usual gap condition holds

inf
λ,µPΛ
λ‰µ

|λ ´ µ| ě ρ. (Gap)

We recover the known estimates of the literature with “optimal” assumptions on Λ

}qλ,T }L2(0,T) ď CeC(Reλ)θ+CT
´ θ

1´θ
.

• Case 2 : the gap condition (Gap) does not hold (Allonsius - B. - Morancey, ’20) (Gonzalez–Burgos - Ouaili ’21)

}qλ,T }L2(0,T) ď CeC(Reλ)θ+CT
´ θ

1´θ
ź

µPΛ
0ă|λ´µ|ăρ

1

|µ ´ λ|
.

• Taking into account multiplicities :
We get for free similar estimates for solutions to

#

(e[µ], qλ,0)L2(0,T) = δλ,µ, @µ P Λ,

(e[µ, µ], qλ,0)L2(0,T) = 0, @µ P Λ,
and

#

(e[µ], qλ,1)L2(0,T) = 0, @µ P Λ,

(e[µ, µ], qλ,1)L2(0,T) = δλ,µ, @µ P Λ,

with
e[λ, λ] :=

(
t P (0,+8) ÞÑ (´t)e´λt

)
P L2(0,+8).
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Partial moment problems arising from parabolic controllability questions
(Benabdallah - B. - Morancey, ’20) (B., ’23+)

Recall the original moment problem to solve
ż T

0

e´λtv(t) dt = e´λT ´ xy0, φλy

B‹φλ
, @λ P Λ.

This amount to consider
ωλ = e´λTψλ,

Lemma (« Leibniz rule)

In a group G we have
max
LĂG

|ω[L]| ď Ce´rGTmax
LĂG

|ψ[L]|.

Theorem

With the same assumption above there exists, for any T ą 0, a solution to

Find q = qG,ψ,T P L2(0,T) s.t.

#

(e[λ], q)L2(0,T) = e´λTψλ, for any λ P G,

(e[λ], q)L2(0,T) = 0, for any λ P ΛzG,
(PM)

that satisfies

}qG,ψ,T }L2(0,T) ď CeCrθG+CT
´ θ

1´θ e´rGTmax
LĂG

|ψ[L]|.
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Back to the full scalar moment problem

It’s time to sum up everything ...

Lemma

Let n P N˚, ρ ą 0. If Λ satisfies the followingweak gap condition

#
(
Λ X D(µ, ρ/2)

)
ď n, @µ P C,

then we can write
Λ =

ğ

GPG
G, (1)

where each G P G is a finite set satisfying the assumptions we considered above

#G ď n, diam(G) ď ρ, d(Conv(G),ΛzG) ě γ.

Theorem (Small time null-controllability)

Let Λ satisfying the assumptions sector/asymptotics/weak gap, and G as in (1).
Assume that for some M ą 0we have

max
LĂG

|ψ[L]| ď M , @G P G,

then for every T ą 0, the full moment problem (= the NC problem) has a solution v P L2(0,T) s.t.

}v}L2(0,T) ď CMeCT
´ θ

1´θ
.
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Back to the full scalar moment problem

Some examples in 1D

Boundary control for 1D cascade parabolic systems (Fernandez–Cara - González–Burgos - de Teresa, ’10)

The following system is null-controllable at any time T ą 0

Bty +

(
A 1

0 A

)
y = 0, y(t, 0) =

(
0

u(t)

)
, y(t, 1) =

(
0

0

)
with A = ´Bx(γ(x)Bx ¨).

Uniform boundary control for discrete 1D cascade parabolic systems (Allonsius-B.-Morancey, ’18)
$

’

’

&

’

’

%

Btyh +

(
Ah 1

0 Ah

)
yh = Bh

(
0

uh(t)

)
yh(0) = y0,h,

where Ah is the F.D. approximation ofA and and Bh is the discrete boundary control operator.

Theorem (Relaxed uniform null-controllability)

There exists C ą 0 and h0 ą 0 such that : For any h ă h0, any initial data y0,h , there exists a
uh P L2(0,T ,Uh) such that

}uh}L2(0,T) ď C}y0,h}h,

}yh(T)}h ď Ce´C/h2

}y0,h}h.
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Back to the full scalar moment problem

Some examples in 2D

The cascade system on a rectangle (Benabdallah - B. - Gonzalez–Burgos - Olive, ’14) (Allonsius - B., ’20)

ΩΓ Bty +

(
´∆ 1

0 ´∆

)
y = 0, y(t, .) =

(
0

1Γu(t, .)

)
. (S)

Theorem

For any non empty Γ the system (S) is null-controllable at any time T ą 0, with the estimate

}u}L2((0,T)ˆΓ) ď CeC/T
}y0}.

The cascade system on a disk (Trabut, ’24)

Ω

Γ

Theorem

For any non empty Γ the system (S) is null-controllable at any time T ą 0, with the estimate

}u}L2((0,T)ˆΓ) ď CeC/T
}y0}.

14



Back to the full scalar moment problem

Minimal null-control time issues

(Benabdallah - B. - Morancey, ’20) (B., ’23+)

Theorem

Let Λ satisfying the assumptions sector/asymptotics/weak gap, and G as in (1).
Assume that for some M ą 0 and some T˚

ą 0, we have

max
LĂG

|ψ[L]| ď MerGT˚

, @G P G, (2)

then for every T ą T˚, the full moment problem (= the NC problem) has a solution v P L2(0,T) s.t.

}v}L2(0,T) ď CT˚ MeC(T´T˚)
´ θ

1´θ
.

Remark : Conversely if the NC at time T has a solution, then (2) holds for T˚ = T .

The minimal null control time for this problem is thus the quantity

T0 = lim sup
GPG

ln
(

max
LĂG

|ψ[L]|
)

rG
.
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Back to the full scalar moment problem

Some examples

1D boundary control - non constant coupling (Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, ’16)

Bty +

(
A a(x)
0 A

)
y = 0, y(t, 0) =

(
0

u(t)

)
, y(t, 1) =

(
0

0

)

 There exists functions a such that the minimal null-control time T0,a is any a priori given number.

A two diffusion case - constant coupling (Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, ’14)

Bty +

(
A 1

0 ´dA

)
y = 0, y(t, 0) =

(
0

u(t)

)
, y(t, 1) =

(
0

0

)

 There exists (many) coefficients d ą 0 such that the minimal null-control time T0,d is any a priori
given number.

Less involved (yet interesting) example (B. - Benabdallah - Morancey, ’20)

Bty +

(
A 1

0 A+ b(x)

)
y = 0, y(t, 0) =

(
0

u(t)

)
, y(t, 1) =

(
0

0

)

 For b small enough in L2 the system is null-controllable at any time T ą 0 despite the spectral
condensation that occurs in the system.
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Fewwords about some non scalar moment problem

Reminder

For a non scalar control : the moment problem to solve is more involved

Find v P L2(0,T ;U ) such that
ż T

0

e´λt (v(t),B‹φλ)U dt = ´e´λT
xy0, φλy , @λ P Λ.

Abstract problem

Given a family (bλ)λPΛ Ă Uzt0u, a family of scalars (ωλ)λPΛ Ă C, can we find v P L2(0,T ;U ) such
that

(e[λ]bλ, v)L2(0,T;U) = ωλ, @λ P Λ.

Partial version

Given G Ă Λ, find q = qG,b,ω,T such that
#

(e[λ]bλ, q)L2(0,T;U) = ωλ, @λ P G,

(e[λ], q)L2(0,T) = 0U , @λ P ΛzG.

18



Fewwords about some non scalar moment problems

Resolution

Partial version

Given G Ă Λ, find q = qG,b,ω,T such that
#

(e[λ]bλ, q)L2(0,T;U) = ωλ, @λ P G,

(e[λ], q)L2(0,T) = 0U , @λ P ΛzG.
(VPM)

Two particular limiting cases

Case 1: All the (bλ)λPG are colinear
(VPM) is equivalent to a scalar moment problem
ñ same estimates as before depending on the divided differences ω[L] for L Ă G.

Case 2: All the (bλ)λPG are pairwise orthogonal
The eigenvalues in G do not see each other

q(t) =
ÿ

µPG
ωµ

bµ
}bµ}2

q̃µ(t),

where q̃µ is the biorthogonal in L2(0,T) to e[µ] among the family (ΛzG) Y tµu.

Fifty shades of grey (B. - Morancey, ’23)

Theorem

Consider the same assumptions as before on Λ and G.

For each G, we can build:

‚ an explicit n ˆ n matrix MG depending only on G and (bλ)λPG

‚ an explicit vector ξG P Cn depending only on the divided differences ω[L]with L Ă G

such that there exists a solution to (VPM) that satisfies

}qG,b,ω,T }L2(0,T;U) ď CeCrθG+CT
´ θ

1´θ
(MGξG, ξG)

1
2 .

The red factor is optimal.
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Fewwords about some non scalar moment problems

Example

(Gonzalez–Burgos - de Teresa, ’16) (Ammar-Khodja - Benabdallah - Gonzalez–Burgos - de Teresa, ’16) (B. - Morancey, ’24)

1D distributed control - non constant coupling

Bty +

(
A a(x)
0 A

)
y =

(
0

1ωu(t, x)

)
,

‚ If ω X Supp(a) ‰ H, the system is null-controllable at any time T .

‚ There exists a coupling term a and two non trivial control domains ω1 and ω2 that do not
intersect Supp(a)such that

• If ω = ω1, the system is null-controllable at any time T ą 0.
• If ω = ω2, the system is not even approximately controllable.
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Time discrete systems

(B. - Hernandez–Santamaria, ’24)

Consider a discretization of the time interval [0,T ]with time step τ . Set M = T/τ .

yn+1
´ yn

τ
+

(
´B

2
x 1

0 ´B
2
x

)
yn+1 = 0, yn+1(0) =

(
0

un+1

)
, yn+1(1) =

(
0

0

)
(Sτ )

Moment formulation : Instead of exponentials, use this family of time discrete functions

p[λ] :=
(

n P J0,MK ÞÑ
(
1 + λτ

)´n
)

P L2
τ (0,T).

Theorem

Assume Λ Ă (0,+8), the gap condition and NΛ(r) ď κrθ .

There exists$ ą 0, τ0 depending only on ρ, κ, θ, such that :
For any τ ă τ0 there exists a family (qλ,T) λPΛ

λτď$

(p[µ], qλ,T)L2
τ (0,T) = δλ,µ, @λ, µ P Λ, with λτ ď $,µτ ď $,

}qλ,T }L2
τ (0,T) ď CTeCλθ

.

Same result with multiplicities ...

Theorem

For any initial data y0
P L2(Ω), for any τ ă τ0 there exists a time-discrete control vτ = (vn)nPJ0,MK

such that
}vτ }L2

τ (0,T) ď C}y0
}L2(Ω),

}yM
} ď Ce´ C

τ2 }y0
}L2(Ω)

We have a similar result for fully discrete case.
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Boundary controllability of a systemwith different diffusions

(B.-Olive, ’24)

Let Ω be a rectangle and Γ Ă BΩ.

Bty +

(
´∆ 1

0 ´d∆

)
y = 0, y(t, .) =

(
0

1Γu(t, .)

)
Ω

Γ

Γ

Theorem

If Γ intersects two non parallel sides of BΩ, then the system is null-controllable at any time T ą 0,
for any value of d .

Everything boils down to a (very) weird family of moment-like problems Here Ω = (0, π)2

Find two families (uk)k, (vl)l Ă L2(0,T) such that

$

’

’

’

&

’

’

’

%

ż T

0

e´(k2+l2)tuk(t) dt +
ż T

0

e´(k2+l2)tvl(t) dt = ωk,l, @k, l ě 1,

ż T

0

e´d(k2+l2)tuk(t) dt +
ż T

0

e´d(k2+l2)tvl(t) dt = rωk,l, @k, l ě 1.
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Thanks for your attention !
Any questions ?

� A. BENABDALLAH, F.B., M. MORANCEY, A block moment method to handle spectral condensation phenomenon in parabolic control problems, Annales Henri Lebesgue, Vol. 3,
pp. 717-793 (2020)

� F.B., Controllability of linear parabolic equations and systems, Lecture Notes, (2023+)
https://hal.archives-ouvertes.fr/hal-02470625

� F.B., V. HERNáNDEZ-SANTAMARíA, Boundary controllability of time-discrete parabolic systems: a moments method approach, preprint, (2024)
https://hal.archives-ouvertes.fr/hal-04628708

� F.B., M. MORANCEY, Analysis of non scalar control problems for parabolic systems by the block moment method, Comptes Rendus. Mathématique, Volume 361, pp.
1191-1248 (2023)

� F.B., G. OLIVE, Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method, to appear in Annales Institut Fourier, (2024)
https://aif.centre-mersenne.org/articles/10.5802/aif.3639/
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