The moment method in action

Franck BOYER

Institut de Mathématiques de Toulouse Université Paul Sabatier - Toulouse 3

August, 2024

X Partial differential equations, optimal design and numerics Benasque, Spain

Outline

- 1. Abstract moment problems
- 2. Null-controllability and moment problems
- 3. Solving scalar exponential moment problems
- 3.1 Partial moment problems
- 3.2 Back to parabolic controllability questions
- 4. Further cases and applications
- 4.1 What about non scalar control problems?
- 4.2 Time discrete systems
- 4.3 Boundary controllability of a system with different diffusions

Outline

- 1. Abstract moment problems
- 2. Null-controllability and moment problems
- Solving scalar exponential moment problems
- 3.1 Partial moment problems
- 3.2 Back to parabolic controllability questions
- 4. Further cases and applications
- 4.1 What about non scalar control problems ?
- 4.2 Time discrete systems
- 4.3 Boundary controllability of a system with different diffusions

• H a Hilbert space • $E \subset H \setminus \{0\}$ a family in H • $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$(e,x)_H = \omega_e, \ \forall e \in E.$$
 (P)

Main question

Given the family E, for which data ω is there a solution to (P) ?

Remarks

- Uniqueness \iff $E^{\perp} = \{0\}$ \iff E is complete in H.
- Necessary existence conditions : there exists ${\cal C}>0$ such that

$$\begin{aligned} |\omega_e| \leqslant C \|e\|_H, & \forall e \in E, \\ |\omega_e - \omega_f| \leqslant C \|e - f\|_H, & \forall e, f \in E, \end{aligned}$$

$$\left|\sum_{e\in E}\alpha_e\,\omega_e\right|\leqslant C\left\|\sum_{e\in E}\alpha_e\,e\right\|_H,\qquad\forall(\alpha_e)_{e\in E}\subset\mathbb{R}\text{ finitely supported }.$$

• H a Hilbert space • $E \subset H \setminus \{0\}$ a family in H • $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$(e, x)_H = \omega_e, \ \forall e \in E.$$
 (P)

Main question

Given the family E, for which data ω is there a solution to (P)?

Proposition (Finite case)

If E is finite and linearly independent, then (P) has a solution for every ω .

Sketch of proof

• There exists a biorthogonal family $(q_e)_{e \in E} \subset H$

$$(e, q_f)_H = \delta_{e,f}, \quad \forall e, f \in E.$$

- A solution of (P) is given by $x = \sum_{f \in E} \omega_f q_f$.
- Note that the minimal such family satisfies $||q_e||_H = \frac{1}{d(e, \operatorname{Span}(E \setminus \{e\}))}$.

- H a Hilbert space $E \subset H \setminus \{0\}$ a family in H $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$(e, x)_H = \omega_e, \ \forall e \in E.$$
 (P)

Main question

Given the family E, for which data ω is there a solution to (P)?

Theorem (Infinite case - usual approach)

If E is infinite, there exists a biorthogonal family $(q_e)_{e \in E}$ if and only if

$$d(e, \operatorname{Span}(E \setminus \{e\})) > 0, \quad \forall e \in E.$$

In that case, we have $||q_e||_H = \frac{1}{d(e \cdot \operatorname{Span}(E \setminus \{e\}))}$.

In particular,

$$\sum_{e \in E} |\omega_e| \|q_e\|_H < +\infty \qquad \Longrightarrow \qquad x = \sum_{e \in E} \omega_e q_e \text{ solves (P)} \ .$$

• H a Hilbert space • $E \subset H \setminus \{0\}$ a family in H • $\omega = (\omega_e)_{e \in E} \subset \mathbb{R}$ a family of numbers

Moment problem

We look for an element $x \in H$ such that

$$(e,x)_H = \omega_e, \ \forall e \in E.$$
 (P)

Main question

Given the family E, for which data ω is there a solution to (P)?

Theorem (Infinite case - block moment approach)

Assume $d(e, \operatorname{Span}(E \setminus \{e\})) > 0$, $\forall e \in E$. Let $(q_e)_{e \in E}$ be the minimal biorthogonal family.

Let $E = \coprod_{G \in \mathcal{G}} G$ be a partition of E into finite subsets. We have

$$\sum_{G \in \mathcal{G}} \left\| \sum_{e \in G} \omega_e q_e \right\| < +\infty \qquad \Longrightarrow \qquad x = \sum_{G \in \mathcal{G}} \left(\sum_{e \in G} \omega_e q_e \right) \text{ solves (P) }.$$

$$\text{Remark}: q_G = \sum_{e \in G} \omega_e q_e \text{ solves the partial moment problem } (e,q_G)_H = \begin{cases} \omega_e, & \text{if } e \in G, \\ 0, & \text{otherwise} \end{cases}$$

4

Outline

- 1. Abstract moment problems
- 2. Null-controllability and moment problems
- Solving scalar exponential moment problems
- 3.1 Partial moment problems
- 3.2 Back to parabolic controllability questions
- 4. Further cases and applications
- 4.1 What about non scalar control problems ?
- 4.2 Time discrete systems
- 4.3 Boundary controllability of a system with different diffusions

Abstract linear time invariant parabolic control problems

- Two Hilbert spaces: the state space $(X, \langle ., . \rangle)$ and the control space $(U, (., .)_U)$.
- $A: D(A) \subset X \mapsto X$ some unbounded operator and such that -A generates a continuous semigroup.
- $\mathcal{B}: U \mapsto X$ the (bounded) control operator, \mathcal{B}^* its adjoint.

Our controlled parabolic problem is

$$\left\{egin{aligned} &\left\{\partial_t y + \mathcal{A} y = \mathcal{B} u & ext{in }]0,\, T[,\ y(0) = y_0, \end{aligned}
ight.$$

• $y_0 \in X$ is the initial data and $u \in L^2(]0, T[, U)$ is the control we are looking for.

Theorem (Well-posedness of (S) in a dual sense)

For any $y_0 \in X$ and $u \in L^2(0, T; U)$, there exists a unique $y = y_{u,y_0} \in C^0([0, T], X)$ such that

$$\langle y(\tau), \phi \rangle - \langle y_0, e^{-\tau \mathcal{A}^{\star}} \phi \rangle = \int_0^{\tau} \left(u(t), \mathcal{B}^{\star} e^{-(\tau - t) \mathcal{A}^{\star}} \phi \right)_U dt, \ \forall \tau \in [0, T], \forall \phi \in X.$$

Null-controllability

Let T > 0 be given. We say that (S) is null-controllable at time T, if

$$\forall y_0 \in X, \exists u \in L^2(0, T; U), \text{ such that } y_{u,y_0}(T) = 0.$$

6

A function $u \in L^2(0, T; U)$ is a null-control for our system and the initial data y_0 if and only if

$$\int_{0}^{T} \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_{U} dt = -\left\langle y_{0}, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \forall \phi \in X.$$
 (GMP)

This is a moment problem in $L^2(0,T;U)$!

7

A function $u \in L^2(0, T; U)$ is a null-control for our system and the initial data y_0 if and only if

$$\int_{0}^{T} \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_{U} dt = -\left\langle y_{0}, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \forall \phi \in \Phi.$$
 (GMP)

This is a moment problem in $L^2(0, T; U)$!

Remarks

- It is enough to test against the elements of any **complete** family Φ of elements in X.
- Solving (GMP) is a priori as difficult as solving the initial control problem or not ... see M. Morancey's talk.
- (GMP) can be reduced to a more tractable moment problem if we manage to find Φ such that the "test functions"

$$\left(t \mapsto \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi\right)_{\phi \in \Phi}$$

have simple enough expressions.

A function $u \in L^2(0, T; U)$ is a null-control for our system and the initial data y_0 if and only if

$$\int_{0}^{T} \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_{U} dt = -\left\langle y_{0}, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \forall \phi \in \Phi.$$
 (GMP)

This is a moment problem in $L^2(0, T; U)$!

First level of simplification : spectral structure of A^*

Assume that \mathcal{A}^{\star} possesses a family of eigenfunctions $\Phi=\{\phi_{\lambda},\lambda\in\Lambda\}$ which is complete in X. Then (GMP) is equivalent to find v=u(T-.)

$$\int_0^T e^{-\lambda t} \left(v(t), \mathcal{B}^* \phi_{\lambda} \right)_U dt = -e^{-\lambda T} \left\langle y_0, \phi_{\lambda} \right\rangle, \ \forall \lambda \in \Lambda.$$

A function $u \in L^2(0, T; U)$ is a null-control for our system and the initial data y_0 if and only if

$$\int_{0}^{T} \left(u(T-t), \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} \phi \right)_{U} dt = -\left\langle y_{0}, e^{-T\mathcal{A}^{\star}} \phi \right\rangle, \ \forall \phi \in \Phi.$$
 (GMP)

This is a moment problem in $L^2(0, T; U)$!

First level of simplification : spectral structure of A^*

Assume that \mathcal{A}^* possesses a family of eigenfunctions $\Phi = \{\phi_\lambda, \lambda \in \Lambda\}$ which is complete in X. Then (GMP) is equivalent to find v = u(T - .)

$$\int_0^T e^{-\lambda t} \left(v(t), \mathcal{B}^{\star} \phi_{\lambda} \right)_U dt = -e^{-\lambda T} \left\langle y_0, \phi_{\lambda} \right\rangle, \ \forall \lambda \in \Lambda.$$

Second level of simplification: scalar control

Assume we are dealing with a scalar control problem : $U = \mathbb{R}$, $\mathcal{B}^* : U \mapsto \mathbb{R}$.

Then (GMP) is equivalent to find $v = u(T - .) \in L^2(0, T; \mathbb{R})$

$$\int_0^T e^{-\lambda t} v(t) \ dt = -e^{-\lambda T} \frac{\langle y_0, \phi_\lambda \rangle}{\mathcal{B}^\star \phi_\lambda}, \ \ \forall \lambda \in \Lambda.$$

7

Outline

- 1. Abstract moment problems
- 2. Null-controllability and moment problems
- 3. Solving scalar exponential moment problems
- 3.1 Partial moment problems
- 3.2 Back to parabolic controllability questions
- 4. Further cases and applications
- 4.1 What about non scalar control problems?
- 4.2 Time discrete systems
- 4.3 Boundary controllability of a system with different diffusions

Partial (scalar, exponential) moment problems

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Notation

$$e[\lambda] := (t \in (0, +\infty) \mapsto e^{-\lambda t}) \in L^2(0, +\infty).$$

Partial (scalar, exponential) moment problems

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Partial moment problem

Find
$$q = q_{G,\omega,T} \in L^2(0,T)$$
 s.t.
$$\begin{cases} (e[\lambda],q)_{L^2(0,T)} = \omega_{\lambda}, & \text{for any } \lambda \in G, \\ (e[\lambda],q)_{L^2(0,T)} = 0, & \text{for any } \lambda \in \Lambda \backslash G. \end{cases}$$
 (PM)

Partial (scalar, exponential) moment problems

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Assumptions

• Parabolic sector : $\Lambda \subset S_{\eta}$ for some $\eta \in (0, \pi/2)$.

Partial moment problem

Find
$$q=q_{G,\omega,\,T}\in L^2(0,\,T)$$
 s.t.
$$\begin{cases} (e[\lambda],q)_{L^2(0,\,T)}=\omega_\lambda, & \text{for any }\lambda\in G,\\ (e[\lambda],q)_{L^2(0,\,T)}=0, & \text{for any }\lambda\in\Lambda\backslash G. \end{cases}$$

(PM)

Theorem (Necessary condition : the price to pay for orthogonality)

A solution to (PM) exists if and only if
$$\sum_{\lambda \in \Lambda} \frac{1}{|\lambda|} < +\infty$$
.

Sketch of proof

(Müntz, 1914) (Schwartz, 1943)

$$d_{L^{2}(0,\infty)}\bigg(e[\lambda],\operatorname{Span}(e[\mu],\mu\neq\lambda)\bigg) = \frac{1}{\sqrt{2\operatorname{Re}\lambda}}\prod_{\substack{\mu\in\Lambda\\ 1+\frac{\lambda}{\mu}}}\left|\frac{1-\frac{\lambda}{\mu}}{1+\frac{\lambda}{\mu}}\right|.$$

Main result

Data

- A family $\Lambda \subset \mathbb{C}^+$
- A finite subset $G \subset \Lambda$
- A non trivial $\omega_G = (\omega_\lambda)_{\lambda \in G} \subset \mathbb{C}$
- A time $T \in (0, +\infty]$

Assumptions

- Parabolic sector: $\Lambda \subset S_{\eta}$ for some $\eta \in (0, \pi/2)$.
- Asymptotics: $N_{\Lambda}(r) \leq \kappa r^{\theta}$ for any r > 0 with $\theta \in (0, 1)$.
- Group size : $\#G \leq n$ and $\operatorname{diam}(G) \leq \rho$.
- Separation : $d(\operatorname{conv}(G), \Lambda \backslash G) \geqslant \gamma$.

Partial moment problem

Find
$$q=q_{G,\omega,\,T}\in L^2(0,\,T)$$
 s.t.
$$\begin{cases} (e[\lambda],q)_{L^2(0,\,T)}=\omega_\lambda, & \text{for any }\lambda\in G,\\ (e[\lambda],q)_{L^2(0,\,T)}=0, & \text{for any }\lambda\in\Lambda\backslash G. \end{cases}$$

(PM)

Theorem

There exists C>0 depending only on $\eta, \kappa, \theta, n, \rho, \gamma$ such that : for any T > 0, there exists a solution $q_{G,\omega,T}$ to (PM) that satisfies (B., '23+)

$$||q_{G,\omega,T}||_{L^2(0,T)} \leqslant Ce^{Cr_G^{\theta} + CT^{-\frac{\theta}{1-\theta}}} \max_{L \subset G} |\omega[L]|,$$

where $r_G = \min_{\lambda \in G} \operatorname{Re} \lambda$ and $\omega[L]$ denotes the divided difference associated to L and ω .

Examples, extensions

- "Usual" bi-orthogonal families: (Dolecki, 73) (Fattorini-Russel, 74) (Benabdallah B. Gonzalez-Burgos Olive, 14)
 - · Case 1: The usual gap condition holds

$$\inf_{\begin{subarray}{c} \lambda,\mu\in\Lambda\\ \lambda\neq\mu\end{subarray}} |\lambda-\mu|\geqslant\rho. \tag{Gap}$$

We recover the known estimates of the literature with "optimal" assumptions on Λ

$$||q_{\lambda,T}||_{L^2(0,T)} \leqslant Ce^{C(\operatorname{Re}\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}}.$$

• Case 2: the gap condition (Gap) does not hold (Allonsius - B. - Morancey, '20) (Gonzalez-Burgos - Quaili '21)

$$\|q_{\lambda,T}\|_{L^2(0,T)} \leqslant Ce^{C(\operatorname{Re}\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}} \prod_{\substack{\mu \in \Lambda \\ 0 < |\lambda - \mu| < \rho}} \frac{1}{|\mu - \lambda|}.$$

Examples, extensions

- "Usual" bi-orthogonal families: (Dolecki, '73) (Fattorini-Russel, '74) (Benabdallah B. Gonzalez-Burgos Olive, '14)
 - Case 1: The usual gap condition holds

$$\inf_{\substack{\lambda,\mu\in\Lambda\\\lambda\neq\mu}}|\lambda-\mu|\geqslant\rho. \tag{Gap}$$

We recover the known estimates of the literature with "optimal" assumptions on Λ

$$||q_{\lambda,T}||_{L^2(0,T)} \leqslant Ce^{C(\operatorname{Re}\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}}.$$

Case 2: the gap condition (Gap) does not hold
 (Allonsius - B. - Morancey, '20) (Gonzalez-Burgos - Quaili '21)

$$\|q_{\lambda,T}\|_{L^2(0,T)} \leqslant Ce^{C(\operatorname{Re}\lambda)^{\theta} + CT^{-\frac{\theta}{1-\theta}}} \prod_{\substack{\mu \in \Lambda \\ 0 < |\lambda - \mu| < \rho}} \frac{1}{|\mu - \lambda|}.$$

Taking into account multiplicities :

We get **for free** similar estimates for solutions to

$$\begin{cases} (e[\mu],q_{\lambda,0})_{L^2(0,T)}=\delta_{\lambda,\mu}, \ \forall \mu \in \Lambda, \\ (e[\mu,\mu],q_{\lambda,0})_{L^2(0,T)}=0, \ \forall \mu \in \Lambda, \end{cases} \qquad \text{and} \qquad \begin{cases} (e[\mu],q_{\lambda,1})_{L^2(0,T)}=0, \ \forall \mu \in \Lambda, \\ (e[\mu,\mu],q_{\lambda,1})_{L^2(0,T)}=\delta_{\lambda,\mu}, \ \forall \mu \in \Lambda, \end{cases}$$
 with

$$e[\lambda, \lambda] := \left(t \in (0, +\infty) \mapsto (-t)e^{-\lambda t}\right) \in L^2(0, +\infty).$$

(Benabdallah - B. - Morancey, '20) (B., '23+)

Recall the original moment problem to solve

$$\int_0^T e^{-\lambda t} v(t) dt = \frac{e^{-\lambda T}}{\mathcal{B}^* \phi_{\lambda}}, \ \forall \lambda \in \Lambda.$$

This amount to consider

$$\omega_{\lambda} = e^{-\lambda T} \psi_{\lambda},$$

Lemma (≈ Leibniz rule)

In a group G we have

$$\max_{L \subset G} |\omega[L]| \leqslant C e^{-r_G T} \max_{L \subset G} |\psi[L]|.$$

Theorem

With the same assumption above there exists, for any T > 0, a solution to

Find
$$q = q_{G,\psi,T} \in L^2(0,T)$$
 s.t.
$$\begin{cases} (e[\lambda],q)_{L^2(0,T)} = e^{-\lambda T} \psi_{\lambda}, & \text{for any } \lambda \in G, \\ (e[\lambda],q)_{L^2(0,T)} = 0, & \text{for any } \lambda \in \Lambda \backslash G, \end{cases}$$
 (PM)

that satisfies

$$\|q_{G,\psi,T}\|_{L^2(0,T)} \leqslant Ce^{Cr_G^{\theta} + CT^{-\frac{\theta}{1-\theta}}} e^{-r_G T} \max_{L \subset G} |\psi[L]|.$$

Lemma

Let $n \in \mathbb{N}^*$, $\rho > 0$. If Λ satisfies the following weak gap condition

$$\#\Big(\Lambda \cap D(\mu, \rho/2)\Big) \leqslant n, \quad \forall \mu \in \mathbb{C},$$

then we can write

$$\Lambda = \bigsqcup_{G \in \mathcal{G}} G,\tag{1}$$

where each $G \in \mathcal{G}$ is a finite set satisfying the assumptions we considered above

$$\#G\leqslant n,\quad \operatorname{diam}(G)\leqslant \rho,\quad d(\operatorname{Conv}(G),\Lambda\backslash G)\geqslant \gamma.$$

It's time to sum up everything ...

Lemma

Let $n \in \mathbb{N}^*$, $\rho > 0$. If Λ satisfies the following weak gap condition

$$\#\left(\Lambda \cap D(\mu, \rho/2)\right) \leqslant n, \quad \forall \mu \in \mathbb{C},$$

then we can write

$$\Lambda = \bigsqcup_{G \in G} G,\tag{1}$$

where each $G \in \mathcal{G}$ is a finite set satisfying the assumptions we considered above

$$\#G \leq n$$
, diam $(G) \leq \rho$, $d(Conv(G), \Lambda \backslash G) \geq \gamma$.

Theorem (Small time null-controllability)

Let Λ satisfying the assumptions sector/asymptotics/weak gap, and ${\cal G}$ as in (1).

Assume that for some M > 0 we have

$$\max_{L \subset G} |\psi[L]| \leqslant M, \quad \forall G \in \mathcal{G},$$

then for every T > 0, the full moment problem (= the NC problem) has a solution $v \in L^2(0, T)$ s.t.

$$||v||_{L^2(0,T)} \leqslant CMe^{CT^{-\frac{\theta}{1-\theta}}}$$

Boundary control for 1D cascade parabolic systems

(Fernandez-Cara - González-Burgos - de Teresa, '10)

The following system is null-controllable at any time $\,T>0\,$

$$\partial_t y + \begin{pmatrix} \mathcal{A} & 1 \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

with
$$\mathcal{A} = -\partial_x(\gamma(x)\partial_x \cdot)$$
.

Boundary control for 1D cascade parabolic systems

(Fernandez-Cara - González-Burgos - de Teresa, '10)

The following system is null-controllable at any time $\,T>0\,$

$$\partial_t y + \begin{pmatrix} \mathcal{A} & 1 \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

with $\mathcal{A} = -\partial_x(\gamma(x)\partial_x \cdot)$.

Uniform boundary control for discrete 1D cascade parabolic systems

(Allonsius-B.-Morancey, '18)

$$\begin{cases} \partial_t y_h + \begin{pmatrix} \mathcal{A}_h & 1 \\ 0 & \mathcal{A}_h \end{pmatrix} y_h = \mathcal{B}_h \begin{pmatrix} 0 \\ u_h(t) \end{pmatrix} \\ y_h(0) = y_{0,h}, \end{cases}$$

where A_h is the F.D. approximation of A and and B_h is the discrete boundary control operator.

Theorem (Relaxed uniform null-controllability)

There exists C > 0 and $h_0 > 0$ such that : For any $h < h_0$, any initial data $y_{0,h}$, there exists a $u_h \in L^2(0, T, U_h)$ such that

$$||u_h||_{L^2(0,T)} \le C||y_{0,h}||_h,$$

 $||y_h(T)||_h \le Ce^{-C/h^2}||y_{0,h}||_h.$

Back to the full scalar moment problem

Some examples in 2D

The cascade system on a rectangle

$$\partial_t y + \begin{pmatrix} -\Delta & 1\\ 0 & -\Delta \end{pmatrix} y = 0, \quad y(t, .) = \begin{pmatrix} 0\\ 1_{\Gamma} u(t, .) \end{pmatrix}.$$
 (S2)

Theorem

For any non empty Γ the system (S) is null-controllable at any time T>0, with the estimate

$$||u||_{L^2((0,T)\times\Gamma)} \le Ce^{C/T}||y_0||.$$

The cascade system on a disk

(Trabut, '24)

Theorem

For any non empty Γ the system (S) is null-controllable at any time T>0, with the estimate

$$||u||_{L^2((0,T)\times\Gamma)} \le Ce^{C/T}||y_0||.$$

(Benabdallah - B. - Morancey, '20) (B., '23+)

Theorem

Let Λ satisfying the assumptions **sector/asymptotics/weak gap**, and \mathcal{G} as in (1).

Assume that for some M > 0 and some $T^* > 0$, we have

$$\max_{L \subset G} |\psi[L]| \leqslant M e^{r_G T^*}, \quad \forall G \in \mathcal{G}, \tag{2}$$

then for every $T > T^*$, the full moment problem (= the NC problem) has a solution $v \in L^2(0,T)$ s.t.

$$||v||_{L^2(0,T)} \leqslant C_{T^*} M e^{C(T-T^*)^{-\frac{\theta}{1-\theta}}}.$$

Remark: Conversely if the NC at time T has a solution, then (2) holds for $T^* = T$.

The minimal null control time for this problem is thus the quantity

$$T_0 = \limsup_{G \in \mathcal{G}} \frac{\ln \left(\max_{L \subset G} |\psi[L]| \right)}{r_G}.$$

1D boundary control - non constant coupling

(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & \mathbf{a}(x) \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \sim There exists functions a such that the minimal null-control time $T_{0,a}$ is any a priori given number.

1D boundary control - non constant coupling

(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & \mathbf{a}(x) \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \sim There exists functions a such that the minimal null-control time $T_{0,a}$ is any a priori given number.

A two diffusion case - constant coupling

(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '14)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & 1 \\ 0 & -\mathbf{d} \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \leadsto There exists (many) coefficients d>0 such that the minimal null-control time $T_{0,d}$ is any a priori given number.

1D boundary control - non constant coupling

(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '16)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & \mathbf{a}(\mathbf{x}) \\ 0 & \mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \sim There exists functions a such that the minimal null-control time $T_{0,a}$ is any a priori given number.

A two diffusion case - constant coupling

(Ammar-Khodja - Benabdallah - González-Burgos - de Teresa, '14)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & 1\\ 0 & -\mathbf{d}\mathcal{A} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0\\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

 \leadsto There exists (many) coefficients d > 0 such that the minimal null-control time $T_{0,d}$ is any a priori given number.

Less involved (yet interesting) example

(B. - Benabdallah - Morancey, '20)

$$\partial_t y + \begin{pmatrix} \mathcal{A} & 1\\ 0 & \mathcal{A} + \frac{b(x)}{u(t)} \end{pmatrix} y = 0, \quad y(t,0) = \begin{pmatrix} 0\\ u(t) \end{pmatrix}, \quad y(t,1) = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

 \leadsto For b small enough in L^2 the system is null-controllable at any time T>0 despite the spectral condensation that occurs in the system.

Outline

- 1. Abstract moment problems
- 2. Null-controllability and moment problems
- Solving scalar exponential moment problems
- 3.1 Partial moment problems
- 3.2 Back to parabolic controllability questions
- 4. Further cases and applications
- 4.1 What about non scalar control problems?
- 4.2 Time discrete systems
- 4.3 Boundary controllability of a system with different diffusions

For a non scalar control: the moment problem to solve is more involved

$$\text{Find }v\in L^{2}(0,\,T;\,U)\text{ such that }\int_{0}^{T}e^{-\lambda t}\left(v(t),\mathcal{B}^{\star}\phi_{\lambda}\right)_{U}\,dt=-e^{-\lambda\,T}\left\langle y_{0},\phi_{\lambda}\right\rangle ,\ \forall\lambda\in\Lambda.$$

Abstract problem

Given a family $(b_{\lambda})_{\lambda \in \Lambda} \subset U \setminus \{0\}$, a family of scalars $(\omega_{\lambda})_{\lambda \in \Lambda} \subset \mathbb{C}$, can we find $v \in L^{2}(0, T; U)$ such that

$$(e[\lambda]b_{\lambda}, v)_{L^{2}(0, T; U)} = \omega_{\lambda}, \ \forall \lambda \in \Lambda.$$

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$\begin{cases} (e[\lambda]b_{\lambda},q)_{L^{2}(0,T;U)} = \omega_{\lambda}, & \forall \lambda \in G, \\ (e[\lambda],q)_{L^{2}(0,T)} = \mathbf{0}_{\underline{\boldsymbol{v}}}, & \forall \lambda \in \Lambda \backslash G. \end{cases}$$

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$\begin{cases} (e[\lambda]b_{\lambda}, q)_{L^{2}(0, T; U)} = \omega_{\lambda}, & \forall \lambda \in G, \\ (e[\lambda], q)_{L^{2}(0, T)} = \mathbf{0}_{U}, & \forall \lambda \in \Lambda \backslash G. \end{cases}$$

(VPM)

Two particular *limiting* cases

Case 1: All the $(b_{\lambda})_{\lambda \in G}$ are **colinear**

(VPM) is equivalent to a scalar moment problem

 \Rightarrow same estimates as before depending on the divided differences $\omega[L]$ for $L \subset G$.

Case 2: All the $(b_{\lambda})_{\lambda \in G}$ are **pairwise orthogonal**

The eigenvalues in G do not see each other

$$q(t) = \sum_{\mu \in G} \omega_{\mu} \frac{b_{\mu}}{\|b_{\mu}\|^2} \tilde{q}_{\mu}(t),$$

where \tilde{q}_{μ} is the biorthogonal in $L^{2}(0,T)$ to $e[\mu]$ among the family $(\Lambda \backslash G) \cup \{\mu\}$.

Resolution

Partial version

Given $G \subset \Lambda$, find $q = q_{G,b,\omega,T}$ such that

$$\begin{cases} (e[\lambda]b_{\lambda},q)_{L^{2}(0,T;U)} = \omega_{\lambda}, & \forall \lambda \in G, \\ (e[\lambda],q)_{L^{2}(0,T)} = \mathbf{0}_{\mathbf{U}}, & \forall \lambda \in \Lambda \backslash G. \end{cases}$$

(VPM)

Fifty shades of grey

(B. - Morancey, '23)

Theorem

Consider the same assumptions as before on Λ and G.

For each G, we can build:

- an **explicit** $n \times n$ matrix M_G depending only on G and $(b_{\lambda})_{\lambda \in G}$
- an **explicit** vector $\xi_G \in \mathbb{C}^n$ depending only on the divided differences $\omega[L]$ with $L \subset G$

such that there exists a solution to (VPM) that satisfies

$$||q_{G,b,\omega,T}||_{L^2(0,T;U)} \le Ce^{Cr_G^{\theta}+CT^{-\frac{\theta}{1-\theta}}} (M_G\xi_G,\xi_G)^{\frac{1}{2}}.$$

The red factor is optimal.

(Gonzalez-Burgos - de Teresa, '16) (Ammar-Khodja - Benabdallah - Gonzalez-Burgos - de Teresa, '16) (B. - Morancey, '24)

1D distributed control - non constant coupling

$$\partial_t y + \begin{pmatrix} \mathcal{A} & \mathbf{a}(\mathbf{x}) \\ 0 & \mathcal{A} \end{pmatrix} y = \begin{pmatrix} 0 \\ 1_{\omega} u(t, \mathbf{x}) \end{pmatrix},$$

- If $\omega \cap \operatorname{Supp}(a) \neq \emptyset$, the system is null-controllable at any time T.
- There exists a coupling term a and two non trivial control domains ω_1 and ω_2 that do not intersect $\mathrm{Supp}(a)$ such that
 - If $\omega = \omega_1$, the system is null-controllable at any time T > 0.
 - If $\omega = \omega_2$, the system is not even approximately controllable.

Consider a discretization of the time interval [0, T] with time step τ . Set $M = T/\tau$.

$$\frac{y^{n+1} - y^n}{\tau} + \begin{pmatrix} -\partial_x^2 & 1\\ 0 & -\partial_x^2 \end{pmatrix} y^{n+1} = 0, \quad y^{n+1}(0) = \begin{pmatrix} 0\\ u^{n+1} \end{pmatrix}, \quad y^{n+1}(1) = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 (S_{\tau})

Moment formulation: Instead of exponentials, use this family of time discrete functions

$$p[\lambda] := \left(n \in [0, M] \mapsto (1 + \lambda \tau)^{-n}\right) \in L^2_{\tau}(0, T).$$

Theorem

Assume $\Lambda \subset (0, +\infty)$, the gap condition and $N_{\Lambda}(r) \leqslant \kappa r^{\theta}$.

There exists $\varpi > 0$, τ_0 depending only on ρ , κ , θ , such that :

For any $\tau < \tau_0$ there exists a family $(q_{\lambda,T})_{\substack{\lambda \in \Lambda \\ \lambda \tau \leqslant \varpi}}$

$$(p[\mu], q_{\lambda, T})_{L^{2}_{\tau}(0, T)} = \delta_{\lambda, \mu}, \quad \forall \lambda, \mu \in \Lambda, \text{ with } \lambda \tau \leqslant \varpi, \mu \tau \leqslant \varpi,$$
$$\|q_{\lambda, T}\|_{L^{2}_{\tau}(0, T)} \leqslant C_{T} e^{C\lambda^{\theta}}.$$

Same result with multiplicities ...

(B. - Hernandez-Santamaria, '24)

Consider a discretization of the time interval [0, T] with time step τ . Set $M = T/\tau$.

$$\frac{y^{n+1} - y^n}{\tau} + \begin{pmatrix} -\partial_x^2 & 1\\ 0 & -\partial_x^2 \end{pmatrix} y^{n+1} = 0, \quad y^{n+1}(0) = \begin{pmatrix} 0\\ u^{n+1} \end{pmatrix}, \quad y^{n+1}(1) = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 (S_{\tau})

Theorem

For any initial data $y^0 \in L^2(\Omega)$, for any $\tau < \tau_0$ there exists a time-discrete control $v_\tau = (v^n)_{n \in [\![0,M]\!]}$ such that

$$||v_{\tau}||_{L^{2}_{\tau}(0,T)} \leqslant C||y^{0}||_{L^{2}(\Omega)},$$
$$||y^{M}|| \leqslant Ce^{-\frac{C}{\tau^{2}}}||y^{0}||_{L^{2}(\Omega)}$$

We have a similar result for fully discrete case.

(B.-Olive, '24)

Let Ω be a rectangle and $\Gamma \subset \partial \Omega$.

$$\partial_t y + \begin{pmatrix} -\Delta & 1 \\ 0 & -d\Delta \end{pmatrix} y = 0, \quad y(t, .) = \begin{pmatrix} 0 \\ 1_{\Gamma} u(t, .) \end{pmatrix}$$

Theorem

If Γ intersects two **non parallel** sides of $\partial\Omega$, then the system is null-controllable at any time T>0, for any value of d.

(B.-Olive, '24)

Let Ω be a rectangle and $\Gamma \subset \partial \Omega$.

$$\partial_t y + \begin{pmatrix} -\Delta & 1 \\ 0 & -\mathbf{d}\Delta \end{pmatrix} y = 0, \quad y(t,.) = \begin{pmatrix} 0 \\ 1_{\Gamma} u(t,.) \end{pmatrix}$$

Theorem

If Γ intersects two **non parallel** sides of $\partial\Omega$, then the system is null-controllable at any time T>0, for any value of d.

Everything boils down to a (very) weird family of moment-like problems

Here $\Omega = (0, \pi)^2$

Find two families $(u_k)_k, (v_l)_l \subset L^2(0, T)$ such that

$$\begin{cases} \int_0^T e^{-(k^2+l^2)t} u_k(t) dt + \int_0^T e^{-(k^2+l^2)t} v_l(t) dt = \omega_{k,l}, & \forall k, l \geqslant 1, \\ \int_0^T e^{-d(k^2+l^2)t} u_k(t) dt + \int_0^T e^{-d(k^2+l^2)t} v_l(t) dt = \widetilde{\omega}_{k,l}, & \forall k, l \geqslant 1. \end{cases}$$

Thanks for your attention! Any questions?

- A. BENABDALLAH, F.B., M. MORANCEY, A block moment method to handle spectral condensation phenomenon in parabolic control problems, Annales Henri Lebesgue, Vol. 3, pp. 717-793 (2020)
- F.B., Controllability of linear parabolic equations and systems, Lecture Notes, (2023+)

https://hal.archives-ouvertes.fr/hal-02470625

🔼 F.B., V. HERNÁNDEZ-SANTAMARÍA, Boundary controllability of time-discrete parabolic systems: a moments method approach, preprint, (2024)

https://hal.archives-ouvertes.fr/hal-04628708

- E.B., M. MORANCEY, Analysis of non scalar control problems for parabolic systems by the block moment method, Comptes Rendus. Mathématique, Volume 361, pp. 1191-1248 (2023)
- F.B., G. OLIVE, Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method, to appear in Annales Institut Fourier, (2024) https://aif.centre-mersenne.org/articles/10.5802/aif.3639/