Quantification of unique continuation for the Laplace operator with rough potentials

Lotfi Thabouti

FST-UTM and IMB-UB

Joint work: Pedro Caro, Sylvain Ervedoza Supervised by: Belhassen Dehman and Sylvain Ervedoza

Benasque Science Center, August 23, 2024

Unique continuation property

Consider a second order elliptic partial differential operator

$$Pu = \operatorname{div}(A(x).\nabla u) + W(x).\nabla u + V(x)u \quad \text{in } \Omega \subset \mathbb{R}^d.$$

$$(Pu = 0 \text{ in } \Omega \text{ and } u = 0 \text{ in } \omega) \xrightarrow{\text{When?}} u = 0 \text{ in } \Omega \text{ (UCP)}.$$

	Α	W	V	Tools		
Holmgren 1901	analytic	analytic	analytic	Analyticity of <i>u</i>		
Carleman39, Hörmander 63	$W^{1,\infty}$	L∞	L∞	L^2 -Carleman estimates		
Jerison-Kenig 1985	ld	0	$L^{\frac{d}{2}}$	$\mathit{L^p} - \mathit{L^{p'}} ext{-}Carleman$		
				$ x ^{-\tau}u _{L^{\frac{2d}{d-2}}} \lesssim x ^{-\tau} \triangle u _{L^{\frac{2d}{d+2}}}$		
Barcelo-Kenig-Ruiz-Sogge87	Id	$L^{\frac{3d-2}{2}}$	$L^{\frac{d}{2}}$	$L^p - L^{p'}$ -Carleman Only		
Wolff 1992	ld	L ^d	$L^{\frac{d}{2}}$	$L^p-L^{p'}$ -Carleman		
Koch-Tataru 2001	$W^{1,\infty}$	L ^d	$L^{\frac{d}{2}}$	+ Wolff's argument		
$V \in L^{d/2}$ and $W \in (L^d)^d$ are the optimal spaces to obtain unique continuation Koch-Tataru 2002.						

Table: Unique continuation results for the operator P.

Unique continuation property

Consider a second order elliptic partial differential operator

$$Pu = \operatorname{div}(A(x).\nabla u) + W(x).\nabla u + V(x)u \quad \text{in } \Omega \subset \mathbb{R}^d.$$

$$(Pu = 0 \text{ in } \Omega \text{ and } u = 0 \text{ in } \omega) \xrightarrow{\text{When?}} u = 0 \text{ in } \Omega \text{ (UCP)}.$$

	Α	W	V	Tools		
Holmgren 1901	analytic	analytic	analytic	Analyticity of <i>u</i>		
Carleman39,Hörmander63	$W^{1,\infty}$	L∞	L∞	L^2 -Carleman estimates		
Jerison-Kenig 1985	ld	0	$L^{\frac{d}{2}}$	$L^p-L^{p'}$ -Carleman		
				$ x ^{-\tau}u _{L^{\frac{2d}{d-2}}} \lesssim x ^{-\tau} \triangle u _{L^{\frac{2d}{d+2}}}$		
Barcelo-Kenig-Ruiz-Sogge87	ld	$L^{\frac{3d-2}{2}}$	$L^{\frac{d}{2}}$	$L^p - L^{p'}$ -Carleman Only		
Wolff 1992	ld	L ^d	$L^{\frac{d}{2}}$	$L^p-L^{p'}$ -Carleman		
Koch-Tataru 2001	$W^{1,\infty}$	L ^d	$L^{\frac{d}{2}}$	+ Wolff's argument		
$V \in I^{d/2}$ and $W \in (I^d)^d$ are the optimal spaces to obtain unique continuation Koch-Tatary 2002						

 $V \in L^{d/2}$ and $W \in (L^d)^d$ are the optimal spaces to obtain unique continuation Koch-Tataru 2002.

Table: Unique continuation results for the operator P.

Global quantitative unique continuation

If Pu is "small" in Ω , and u is "small" in ω , then u is "small" in Ω .

Analytically,
$$\|u\|_{\Omega}\leqslant C(\|Pu\|_{\Omega}\,,\|u\|_{\omega}).$$

Global quantitative unique continuation

Theorem (Dehman-Ervedoza-Thabouti '23)

Let $d \geqslant 3$, $\Omega \subset \mathbb{R}^d$ C^3 -bounded domain, $\overline{\omega} \subset \Omega$ a non-empty open subset. $\exists C = C(\Omega, \omega) > 0$ such that for any $V \in L^{q_0}(\Omega)$, $W \in L^{q_1}(\Omega; \mathbb{C}^d)$, the corresponding solution $u \in H^1_0(\Omega)$

$$\Delta u = \mathbf{V}u + \mathbf{W} \cdot \nabla u \quad \text{in } \Omega,$$

satisfies, for $q_0 > d/2$, $q_1 > (3d - 2)/2$

$$||u||_{L^{2}(\Omega)} \leqslant Ce^{C(||V||_{L^{q_0}}^{\gamma(q_0)} + ||W_1||_{L^{q_1}}^{\delta(q_1)})} ||u||_{L^{\frac{2d}{d-2}}(\omega)},$$

with

$$\gamma(q) = \begin{cases} \frac{1}{\frac{3}{2}\left(1 - \frac{d}{2q}\right) + \frac{1}{2q}} & \text{if } q \geqslant d, \\ \frac{1}{\left(\frac{3}{4} + \frac{1}{2d}\right)\left(2 - \frac{d}{q}\right)} & \text{if } q \in \left(\frac{d}{2}, d\right] \end{cases}; \quad \delta(q) = \frac{2}{1 - \frac{3d - 2}{2q}}.$$

Global quantitative unique continuation

Theorem (Dehman-Ervedoza-Thabouti '23)

Let $d \geqslant 3$, $\Omega \subset \mathbb{R}^d$ C^3 -bounded domain, $\overline{\omega} \subset \Omega$ a non-empty open subset. $\exists C = C(\Omega, \omega) > 0$ such that for any $V \in L^{q_0}(\Omega)$, $W \in L^{q_1}(\Omega; \mathbb{C}^d)$, the corresponding solution $u \in H^1_0(\Omega)$

$$\Delta u = \mathbf{V}u + \mathbf{W} \cdot \nabla u \quad \text{in } \Omega,$$

satisfies, for $q_0 > d/2$, $q_1 > (3d - 2)/2$

$$||u||_{L^{2}(\Omega)} \leqslant Ce^{C(||V||_{L^{q_0}}^{\gamma(q_0)} + ||W_1||_{L^{q_1}}^{\delta(q_1)})} ||u||_{L^{\frac{2d}{d-2}}(\omega)},$$

with

$$\gamma(q) = \begin{cases} \frac{1}{\frac{3}{2}\left(1 - \frac{d}{2q}\right) + \frac{1}{2q}} & \text{if } q \geqslant d, \\ \frac{1}{\left(\frac{3}{4} + \frac{1}{2d}\right)\left(2 - \frac{d}{q}\right)} & \text{if } q \in \left(\frac{d}{2}, d\right] \end{cases}; \quad \delta(q) = \frac{2}{1 - \frac{3d - 2}{2q}}.$$

Aim: Handle potentials W in L^{q_1} , where $d < q_1 \leqslant \frac{3d-2}{2}$?

Improved quantitative unique continuation result

Theorem (Caro-Ervedoza-Thabouti '24)

Let $d \geqslant 3$, $\Omega \subset \mathbb{R}^d$ be a C^3 -bounded domain, and ω and \mathcal{O} be non-empty open subsets of Ω with $\omega \subset \overline{\omega} \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \Omega$. Then $\exists C = C(\omega, \mathcal{O}, \Omega) > 0$, $\alpha \in (0,1)$ depending only on ω , \mathcal{O} and Ω that for any solution $u \in H^1(\Omega)$ of

$$\Delta u = W \cdot \nabla u \quad \text{in } \mathcal{D}'(\Omega),$$

$$W \in L^q(\Omega; \mathbb{C}^d), \quad \text{with } q \in (d, \infty].$$

we have

$$||u||_{H^{1}(\mathcal{O})} \leqslant C e^{C||W||_{L^{q}}^{\delta(q)}} ||u||_{H^{1}(\omega)}^{\alpha} ||u||_{H^{1}(\Omega)}^{1-\alpha},$$

with

$$\delta(q) = \frac{2}{1 - \frac{d}{q}}.$$

Improved quantitative unique continuation result

Theorem (Caro-Ervedoza-Thabouti '24)

Let $d \geqslant 3$, $\Omega \subset \mathbb{R}^d$ be a C^3 -bounded domain, and ω and \mathcal{O} be non-empty open subsets of Ω with $\omega \subset \overline{\omega} \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \Omega$. Then $\exists C = C(\omega, \mathcal{O}, \Omega) > 0$, $\alpha \in (0,1)$ depending only on ω , \mathcal{O} and Ω that for any solution $u \in H^1(\Omega)$ of

$$\Delta u = W \cdot \nabla u \quad \text{in } \mathcal{D}'(\Omega),$$
 $W \in L^q(\Omega; \mathbb{C}^d), \quad \text{with } q \in (d, \infty].$

we have

$$\|u\|_{H^{1}(\mathcal{O})} \leqslant Ce^{C\|W\|_{L^{q}}^{\delta(q)}} \|u\|_{H^{1}(\omega)}^{\alpha} \|u\|_{H^{1}(\Omega)}^{1-\alpha},$$

with

$$\delta(q) = \frac{2}{1 - \frac{d}{q}}.$$

Tools:

- Wolff's Lemma.
- A refined version of I^p Carleman estimates.

Wolff's Lemma

Lemma (T.Wolff 1992)

Suppose μ is a positive measure in \mathbb{R}^d which has faster than exponential decay in the following sense

$$\lim_{T \to \infty} T^{-1} \log(\mu\{x \in \mathbb{R}^d, |x| \geqslant T\}) = -\infty.$$

For $k \in \mathbb{R}^d$, define a measure μ_k by $d\mu_k(x) = e^{k \cdot x} d\mu(x)$. Suppose $\mathcal{C} \subset \mathbb{R}^d$ is a compact convex set. Then there is a sequence $\{k_j\} \subset \mathcal{C}$ and disjoint convex sets $\{E_{k_j}\} \subset \mathbb{R}^d$ so that the measures $d\mu_{k_j}$ are concentrated in E_{k_i} ,

$$\mu_{k_j}(\mathbb{R}^d \setminus E_{k_j}) \leqslant \frac{1}{2} \|\mu_{k_j}\|,$$

(concentration property)

and such that

$$\sum_{j} |E_{k_j}|^{-1} \geqslant C_W^{-1} |\mathcal{C}|,$$

(summation property)

where C_W is a positive constant depending only on d.

5 / 14

L^p Carleman-Wolff type estimates

Weight function: Let $\varphi \in C^3(\overline{\Omega})$, $\Omega \subset \mathbb{R}^d$ bounded domain and $\emptyset \neq \overline{\omega} \subset \Omega$, be such that $\exists \alpha, \beta > 0$

- $\inf_{x \in \overline{\Omega} \setminus \omega} |\nabla \varphi(x)| > \alpha$
- $\forall x \in \overline{\Omega} \setminus \omega$, $\forall \xi \in \mathbb{R}^d$ with $|\nabla \varphi(x)| = |\xi|$ and $\nabla \varphi(x) \cdot \xi = 0$, $(D^2\varphi)\nabla\varphi(x)\cdot\nabla\varphi(x)+(D^2\varphi)\xi\cdot\xi\geqslant\beta|\nabla\varphi(x)|^2.$

Theorem (Caro-Ervedoza-Thabouti '24)

Let $d \geqslant 3$. Then $\forall K$ compact subset of Ω , $\exists C = C(\Omega, \omega, \|\varphi\|_{C^3(\overline{\Omega})}) > 0$, $\tau_0 \geqslant 1$ such that

 $\forall u \in H^1(\Omega)$ satisfying supp $u \subset K$ and

$$\Delta u = f_2 + f_{2*'}$$
 in $\mathcal{D}'(\Omega)$,

with $(f_2, f_{2'})$ satisfying

$$f_2 \in L^2$$
, and $f_{2'_*} \in L^{\frac{2d}{d+2}}$, we have $\forall \tau \geq \tau_0$,

$$\tau^{\frac{3}{2}} \| e^{\tau \varphi} u \|_{L^{2}(\Omega)} + \tau^{\frac{1}{2}} \| e^{\tau \varphi} \nabla u \|_{L^{2}(\Omega)} \leqslant C \left(\| e^{\tau \varphi} f_{2} \|_{L^{2}(\Omega)} + \tau^{\frac{3}{4} - \frac{1}{2d}} \| e^{\tau \varphi} f_{2_{*}'} \|_{L^{\frac{2d}{d+2}}(\Omega)} + \tau^{\frac{3}{2}} \| e^{\tau \varphi} u \|_{H^{1}(\omega)} \right),$$

and, for all measurable sets
$$E$$
 of Ω ,
$$\tau^{\frac{3}{4}+\frac{1}{2d}}\|e^{\tau\varphi}u\|_{L^{\frac{2d}{d-2}}(\Omega)} + \tau^{\frac{3}{4}+\frac{1}{2d}}\min\left\{\frac{1}{\tau|E|^{\frac{1}{d}}},1\right\}\|e^{\tau\varphi}\nabla u\|_{L^{2}(E)} \leqslant C\left(\|e^{\tau\varphi}f_{2}\|_{L^{2}(\Omega)} + \tau^{\frac{3}{2}}\|e^{\tau\varphi}u\|_{H^{1}(\omega)}\right).$$

A specific geometric setting

Lemma

Let R > 0 and $d \ge 3$. Under the assumptions of Theorem 1 with the following setting:

$$\Omega = B_0(4R), \ \mathcal{O} = B_0(R), \ \text{and} \ \omega = B_0(4R) \setminus B_{4Re_1}(4R),$$

Figure: This allows to propagate information from the blue to the red region.

 $ightharpoonup \exists C = C(R,d) > 0$ and $\alpha \in (0,1)$ depending only on R and d that for any solution

$$\Delta u = \mathbf{W} \cdot \nabla u$$
 in Ω ,

with $W \in L^q$, $q \in (d, +\infty]$, satisfies

$$||u||_{H^1(\mathcal{O})} \leqslant Ce^{C||W||_{L^q}^{\delta(q)}} ||u||_{H^1(\omega)}^{\alpha} ||u||_{H^1(\Omega)}^{1-\alpha},$$

with $\delta(q) = 2/(1 - d/q)$.

7 / 14

Family of weight functions

Lemma

Within the same setting as in the previous Lemma, there exist $\epsilon > 0$, a family of weight functions $\{\varphi_k\}$, where $k \in \mathbb{R}^d$, such that

- **1** The functions $\{\varphi_k\}$, for all $k \in \Sigma_{\epsilon} = \{k \in \mathbb{R}^d \setminus \{0\} \text{ with } | \frac{k}{|k|} e_1| \leq \varepsilon\}$, satisfy the sub-ellipticity conditions with some uniform positive constants $\alpha > 0$ and $\beta > 0$.
- ② The functions $\{\varphi_k\}$ satisfy the Wolff's Lemma in the following sense : If $d\mu$ is a positive compactly supported measure in Ω , we define the family $d\mu_k(x) = e^{\varphi_k(x)}d\mu$, then for $\mathcal{C} \subset \mathbb{R}^d$ there exist $\{k_j\} \subset \mathcal{C}$ and disjoint sets $E_{k_j} \subset \mathbb{R}^d$ so that measures $d\mu_{k_j}$ satisfy the (concentration property) and $\{E_{k_i}\}$ satisfy (summation property).

Proof: Step 1: Application of the Carleman estimates.

For $u \in H^1(B_0(4R))$ with $\Delta u = W \cdot \nabla u$, in $B_0(4R)$, we set $v = \eta u$, where η is a cut-off that takes 1 in $B_0(3R)$ and vanishes in a neighbourhood of $B_0(4R)$, so that we have

$$\Delta v = W \cdot \nabla v + f_{\eta}$$
 in $B_0(4R)$,

where $supp(f_{\eta}) \subset \mathcal{A}_0(3R, 4R)$.

Proof: Step 1: Application of the Carleman estimates.

For $u \in H^1(B_0(4R))$ with $\Delta u = W \cdot \nabla u$, in $B_0(4R)$, we set $v = \eta u$, where η is a cut-off that takes 1 in $B_0(3R)$ and vanishes in a neighbourhood of $B_0(4R)$, so that we have

$$\Delta v = W \cdot \nabla v + f_{\eta}$$
 in $B_0(4R)$,

where supp
$$(f_{\eta}) \subset \mathcal{A}_0(3R,4R)$$
. For $W \in L^q(B_0(4R);\mathbb{C}^d), q > d$

$$W = W_d + W_\infty$$
, with $W_d \in L^d(B_0(4R); \mathbb{C}^d)$, $W_\infty \in L^\infty(B_0(4R); \mathbb{C}^d)$.

Proof: Step 1: Application of the Carleman estimates.

For $u \in H^1(B_0(4R))$ with $\Delta u = W \cdot \nabla u$, in $B_0(4R)$, we set $v = \eta u$, where η is a cut-off that takes 1 in $B_0(3R)$ and vanishes in a neighbourhood of $B_0(4R)$, so that we have

$$\Delta v = W \cdot \nabla v + f_{\eta}$$
 in $B_0(4R)$,

where supp $(f_{\eta}) \subset \mathcal{A}_0(3R,4R)$. For $W \in L^q(B_0(4R); \mathbb{C}^d)$, q > d

$$W = W_d + W_\infty$$
, with $W_d \in L^d(B_0(4R); \mathbb{C}^d)$, $W_\infty \in L^\infty(B_0(4R); \mathbb{C}^d)$.

Applying L^p Carleman estimates with $f_{2'_*} = W_d \cdot \nabla v$, and $f_2 = W_\infty \cdot \nabla v + f_\eta$,

$$||W_{\infty}||_{L^{\infty}} \ll |k|^{\frac{1}{2}}, \tag{1}$$

that for all $k \in \Sigma_{\varepsilon}$ with $|k| \geqslant \tau_0$,

$$\begin{aligned} \bullet |k|^{\frac{3}{2}} \|e^{|k|\varphi_{k}}v\|_{L^{2}(B_{0}(4R))} + |k|^{\frac{1}{2}} \|e^{|k|\varphi_{k}}\nabla v\|_{L^{2}(B_{0}(4R))} \\ & \leq C_{0} \left(\|e^{|k|\varphi_{k}}f_{\eta}\|_{L^{2}(B_{0}(4R))} + |k|^{\frac{3}{4} - \frac{1}{2d}} \|e^{|k|\varphi_{k}}W_{d} \cdot \nabla v\|_{L^{\frac{2d}{d+2}}(B_{0}(4R))} + |k|^{\frac{3}{2}} \|e^{|k|\varphi_{k}}v\|_{H^{1}(\omega)} \right). \end{aligned}$$

and

$$\begin{split} \bullet |k|^{\frac{3}{4} + \frac{1}{2d}} \|e^{|k|\varphi_{k}}v\|_{L^{\frac{2d}{d-2}}(B_{0}(4R))} + |k|^{\frac{3}{4} + \frac{1}{2d}} \min \left\{ \frac{1}{|k||E|^{\frac{1}{d}}}, 1 \right\} \|e^{|k|\varphi_{k}} \nabla v\|_{L^{2}(E)} \leqslant C_{0} \left(\|e^{|k|\varphi_{k}} f_{\eta}\|_{L^{2}(B_{0}(4R))} + |k|^{\frac{3}{4} + \frac{1}{2d}} \|e^{|k|\varphi_{k}} W_{d} \cdot \nabla v\|_{L^{\frac{2d}{d+2}}(B_{0}(4R))} + \|W_{\infty} \cdot \nabla v\|_{L^{2}(B_{0}(4R))} + |k|^{\frac{3}{2}} \|e^{|k|\varphi_{k}}v\|_{H^{1}(\omega)} \right). \end{split}$$

Let $n \in \mathbb{N}$ be large, set $C_n = \{k \in \mathbb{R}^d : |k - ne_1| \leq \gamma n\}$, γ small enough so that for all $k \in C_n$, $k \in \Sigma_{\varepsilon}$, applying Wolff's Lemma with the measure

$$d\mu_k(x) = |e^{|k|\varphi_k(x)} W_d(x) \cdot \nabla v(x)|^{\frac{2d}{d+2}} 1_{B_0(4R)}(x) dx.$$

 $\Rightarrow \exists C_W > 0$; $\forall n \in \mathbb{N}, \exists I_n, (k_{i,n})_{i \in I_n} \subset C_n$ and corresponding family of pairwise disjoint sets $(E_{k_{i,n}})_{i \in I_n}$ such that $\forall i \in I_n$, we have

Let $n \in \mathbb{N}$ be large, set $C_n = \{k \in \mathbb{R}^d : |k - ne_1| \leq \gamma n\}$, γ small enough so that for all $k \in C_n$, $k \in \Sigma_{\varepsilon}$, applying Wolff's Lemma with the measure

$$d\mu_k(x) = |e^{|k|\varphi_k(x)} W_d(x) \cdot \nabla v(x)|^{\frac{2d}{d+2}} 1_{B_0(4R)}(x) dx.$$

 $\Rightarrow \exists C_W > 0$; $\forall n \in \mathbb{N}, \exists I_n, (k_{i,n})_{i \in I_n} \subset C_n$ and corresponding family of pairwise disjoint sets $(E_{k_{i,n}})_{i \in I_n}$ such that $\forall i \in I_n$, we have

$$\bullet \|e^{|k_{i,n}|\varphi_{k_{i,n}}} W_d \cdot \nabla v\|_{L^{\frac{2d}{d+2}}(B_0(4R))} \leq 2\|e^{|k_{i,n}|\varphi_{k_{i,n}}(x)} W_d(x) \cdot \nabla v(x)\|_{L^{\frac{2d}{d+2}}(E_{k_{i,n}})},$$

Let $n \in \mathbb{N}$ be large, set $C_n = \{k \in \mathbb{R}^d : |k - ne_1| \leq \gamma n\}$, γ small enough so that for all $k \in C_n$, $k \in \Sigma_{\varepsilon}$, applying Wolff's Lemma with the measure

$$d\mu_k(x) = |e^{|k|\varphi_k(x)} W_d(x) \cdot \nabla v(x)|^{\frac{2d}{d+2}} 1_{B_0(4R)}(x) dx.$$

 $\Rightarrow \exists C_W > 0$; $\forall n \in \mathbb{N}, \exists I_n, (k_{i,n})_{i \in I_n} \subset C_n$ and corresponding family of pairwise disjoint sets $(E_{k_{i,n}})_{i \in I_n}$ such that $\forall i \in I_n$, we have

- $\|e^{|k_{i,n}|\varphi_{k_{i,n}}}W_d \cdot \nabla v\|_{L^{\frac{2d}{d+2}}(B_0(4R))} \leq 2\|e^{|k_{i,n}|\varphi_{k_{i,n}}(x)}W_d(x) \cdot \nabla v(x)\|_{L^{\frac{2d}{d+2}}(E_{k_{i,n}})}$
- $\bullet \sum_{i \in I_n} |E_{k_{i,n}}|^{-1} \geqslant C_W^{-1} n^d.$

Let $n \in \mathbb{N}$ be large, set $C_n = \{k \in \mathbb{R}^d : |k - ne_1| \leq \gamma n\}$, γ small enough so that for all $k \in C_n$, $k \in \Sigma_{\varepsilon}$, applying Wolff's Lemma with the measure

$$d\mu_k(x) = |e^{|k|\varphi_k(x)} W_d(x) \cdot \nabla v(x)|^{\frac{2d}{d+2}} 1_{B_0(4R)}(x) dx.$$

 $\Rightarrow \exists C_W > 0$; $\forall n \in \mathbb{N}, \exists I_n, (k_{i,n})_{i \in I_n} \subset C_n$ and corresponding family of pairwise disjoint sets $(E_{k_{i,n}})_{i \in I_n}$ such that $\forall i \in I_n$, we have

•
$$\|e^{|k_{i,n}|\varphi_{k_{i,n}}}W_d \cdot \nabla v\|_{L^{\frac{2d}{d+2}}(B_0(4R))} \leq 2\|e^{|k_{i,n}|\varphi_{k_{i,n}}(x)}W_d(x) \cdot \nabla v(x)\|_{L^{\frac{2d}{d+2}}(E_{k_{i,n}})}$$

 $\bullet \sum_{i \in I_n} |E_{k_{i,n}}|^{-1} \geqslant C_W^{-1} n^d.$

Hence, if the condition,

$$\|W_d\|_{L^d(B_0(4R))}^d < C_W^{-1}(8C_0(1+\gamma))^{-d},$$

is satisfied, then for all $n \in \mathbb{N}$, there exists $i_* \in I_n$ such that

$$8C_0\|W_d\|_{L^d(E_{k_{i_*,n}})} \leqslant \frac{1}{|k_{i_*,n}||E_{k_{i_*,n}}|^{\frac{1}{d}}}.$$

10 / 14

Quantification

Appling the last two estimates for *n* larger than $\tau_0/(1-\gamma)$, with $k=k_{i_*,n}$ denoted by k_n

$$\begin{split} \bullet |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{L^{2}(B_{0}(4R))} + |k_{n}|^{\frac{1}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(B_{0}(4R))} \leqslant C_{1} \|e^{|k_{n}|\varphi_{k_{n}}}f_{\eta}\|_{L^{2}(B_{0}(4R))} \\ + C_{1} \left(4|k_{n}|^{\frac{3}{4}-\frac{1}{2d}} \| W_{d}\|_{L^{d}(E_{k_{n}})} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(E_{k_{n}})} + |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{H^{1}(\omega)}\right) \end{split}$$

similarly, we have

$$\begin{split} \bullet |k_{n}|^{\frac{3}{4} + \frac{1}{2d}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{L^{\frac{2d}{d-2}}(B_{0}(4R))} + |k_{n}|^{\frac{3}{4} + \frac{1}{2d}} \min \left\{ \frac{1}{|k_{n}||E_{k_{n}}|^{\frac{1}{d}}}, 1 \right\} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(E_{k_{n}})} \\ \leqslant C_{1} \left(\|e^{|k_{n}|\varphi_{k_{n}}}f_{\eta}\|_{L^{2}(B_{0}(4R))} + \|e^{|k_{n}\varphi_{k_{n}}}W_{\infty} \cdot \nabla v\|_{L^{2}(B_{0}(4R))} + |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{H^{1}(\omega)} \right). \end{split}$$

Quantification

Appling the last two estimates for *n* larger than $\tau_0/(1-\gamma)$, with $k=k_{i_*,n}$ denoted by k_n

$$\begin{split} \bullet |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{L^{2}(B_{0}(4R))} + |k_{n}|^{\frac{1}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(B_{0}(4R))} \leqslant C_{1} \|e^{|k_{n}|\varphi_{k_{n}}}f_{\eta}\|_{L^{2}(B_{0}(4R))} \\ + C_{1} \left(4|k_{n}|^{\frac{3}{4}-\frac{1}{2d}} \|W_{d}\|_{L^{d}(E_{k_{n}})} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(E_{k_{n}})} + |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{H^{1}(\omega)}\right) \end{split}$$

similarly, we have

$$\begin{split} \bullet |k_{n}|^{\frac{3}{4} + \frac{1}{2d}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{L^{\frac{2d}{d-2}}(B_{0}(4R))} + |k_{n}|^{\frac{3}{4} + \frac{1}{2d}} \min \left\{ \frac{1}{|k_{n}||E_{k_{n}}|^{\frac{1}{d}}}, 1 \right\} \|e^{|k_{n}|\varphi_{k_{n}}}\nabla v\|_{L^{2}(E_{k_{n}})} \\ \leqslant C_{1} \left(\|e^{|k_{n}|\varphi_{k_{n}}}f_{\eta}\|_{L^{2}(B_{0}(4R))} + \|e^{|k_{n}\varphi_{k_{n}}}W_{\infty} \cdot \nabla v\|_{L^{2}(B_{0}(4R))} + |k_{n}|^{\frac{3}{2}} \|e^{|k_{n}|\varphi_{k_{n}}}v\|_{H^{1}(\omega)} \right). \end{split}$$

Combining two inequalities gives

$$\bullet |k_n|^{\frac{3}{2}} \|e^{|k_n|\varphi_{k_n}}v\|_{L^2} + |k_n|^{\frac{1}{2}} \|e^{|k_n|\varphi_{k_n}}\nabla v\|_{L^2} \leqslant C\left(\|e^{|k_n|\varphi_{k_n}}f_{\eta}\|_{L^2} + |k_n|^{\frac{3}{2}} \|e^{|k_n|\varphi_{k_n}}v\|_{H^1(\omega)}\right),$$

Step 3: Quantification. To quantify the unique continuation property, we simply need to choose appropriate values for n (recall that k_n is of the order of n), such that:

$$\|W_d\|_{L^d} \ll 1, \qquad \|W_\infty\|_{L^\infty} \ll n^{\frac{1}{2}}.$$

3-balls type estimate

Lemma

Let R > 0 and $d \ge 3$. Under the assumptions of Theorem 1 with the following setting:

$$\Omega = B_0(4R), \ \mathcal{O} = B_0(2R), \ \text{and} \ \omega = B_0(R);$$

Figure: Geometry of the three balls. This allows to propagate information from the blue to the red region.

$$ightharpoonup \exists C = C(R,d) > 0$$
 and $\alpha \in (0,1)$ depending only on R and d that for any solution

$$\Delta u = \mathbf{W} \cdot \nabla u$$
 in Ω ,

with $W \in L^q(\Omega; \mathbb{C}^d)$ and $q \in (d, \infty]$, satisfies

$$||u||_{H^1(\mathcal{O})} \leqslant Ce^{C||W||_{L^q}^{\delta(q)}} ||u||_{H^1(\omega)}^{\alpha} ||u||_{H^1(\Omega)}^{1-\alpha},$$

$$\delta(q) = 2/(1 - d/q).$$

12 / 14

The general case: Proof of Theorem 1

Step 1: Compactness argument. Because of the compactness of $\overline{\mathcal{O}}$, it suffices to prove our quantitative estimate with $B_v(r)$ in place of \mathcal{O} where $y \in \overline{\mathcal{O}}$ and r > 0 will be chosen sufficiently small.

The general case: Proof of Theorem 1

Step 1: Compactness argument. Because of the compactness of $\overline{\mathcal{O}}$, it suffices to prove our quantitative estimate with $B_y(r)$ in place of \mathcal{O} where $y \in \overline{\mathcal{O}}$ and r > 0 will be chosen sufficiently small.

Step 2: Propagation of smallness within the ball $B_y(r)$. Let $x_{(0)}$ be in ω and $r_0>0$ such that $B_{x_{(0)}}(r_0) \in \omega$. As Ω is open and connected, there exists a path $\Gamma \subset \Omega$ from $x_{(0)} = \Gamma(0)$ to $y = \Gamma(1)$. Set $r_1 = \operatorname{dist}(\Gamma, \partial \Omega)$. We have $r_1 > 0$ by compactness.

Setting now $r = \inf(R, r_0, r_1/4)$, where $R = \operatorname{dist}(\mathcal{O}, \partial\Omega)/4$, we define a sequence $(x_{(j)})_j$, for $j \geqslant 0$, by $x_{(j)} = \Gamma(t_j)$ where $t_0 = 0$ and

$$t_{j} = \left\{ \begin{array}{ll} \inf A_{j} & \text{if } A_{j} \neq \emptyset, \\ 1 & \text{if } A_{j} = \emptyset, \end{array} \right. \quad \text{where } A_{j} = \left\{ \sigma \in (t_{j-1}, 1] \, ; \Gamma(\sigma) \notin B_{\mathsf{x}_{(j-1)}}(r) \right\}.$$

The sequence $(x_{(j)})_j$ is finite by a compactness argument. Let $(x_{(0)}, \dots, x_{(N)})$ be such a sequence with $x_{(N)} = y$. Note that we have $B_{x_{(j+1)}}(r) \subset B_{x_{(j)}}(2r) \in \Omega$ for $j = 0, \dots, N-1$, because of the choice we made for r above. By Lemma 7 there exist C > 0 and $\alpha \in (0,1)$ such that

$$\|u\|_{H^{1}\left(B_{x_{(j+1)}}(r)\right)} \leqslant \|u\|_{H^{1}\left(B_{x_{(j)}}(2r)\right)} \leqslant Ce^{C\|W\|_{L^{q}(\Omega)}^{\delta(q)}} \|u\|_{H^{1}(\Omega)}^{1-\alpha} \|u\|_{H^{1}(B_{x_{(j)}}(r))}^{\alpha},$$

for j = 0, ..., N - 1. By consequence, we have

$$||u||_{H^{1}(B_{y}(r))} \leqslant Ce^{C||W||_{L^{q}(\Omega)}^{\delta(q)}} ||u||_{H^{1}(\Omega)}^{1-\alpha^{N}} ||u||_{H^{1}(B_{x_{(0)}}(r))}^{\alpha^{N}}.$$

This concludes the proof of the theorem.

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_j \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_j \in (d, \infty]$ with $j \in \{1, 2\}$.

Main result of quantitative unique continuation holds with

$$\Delta u = \mathbf{V}u + \mathbf{W_1} \cdot \nabla u + \operatorname{div}(\mathbf{W_2}u) \quad \text{in } \Omega,$$

where
$$V \in L^{q_0}(\Omega)$$
, $W_j \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_j \in (d, \infty]$ with $j \in \{1, 2\}$.

• More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_i \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_i \in (d, \infty]$ with $j \in \{1, 2\}$.

- More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?
- Global quantitative unique continuation as in [Dehman-Ervedoza-Thabouti '23] but with $W_i \in L^{q_i}$, where $q_i > d$.

14 / 14

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_i \in L^{q_i}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_i \in (d, \infty]$ with $j \in \{1, 2\}$.

- More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?
- Global quantitative unique continuation as in [Dehman-Ervedoza-Thabouti '23] but with $W_i \in L^{q_i}$, where $q_i > d$.
- Global L^p Carleman estimates for the Heat, Schrödinger, and wave equations? Local L^p Carleman estimates by Sogge [1991-1992], Ionescu-Kenig [2004], and Koch-Tataru [2009].

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_i \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_i \in (d, \infty]$ with $j \in \{1, 2\}$.

- More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?
- Global quantitative unique continuation as in [Dehman-Ervedoza-Thabouti '23] but with $W_i \in L^{q_i}$, where $q_i > d$.
- Global L^p Carleman estimates for the Heat, Schrödinger, and wave equations? Local L^p Carleman estimates by Sogge [1991-1992], Ionescu-Kenig [2004], and Koch-Tataru [2009].
- Unique continuation for the Stokes system

$$\begin{cases}
-\Delta u + \mathbf{a} \cdot \nabla u + \nabla p = 0 \text{ in } \Omega, \\
\operatorname{div}(u) = 0, \text{ in } \Omega,
\end{cases} \tag{S}$$

[Fabre-Lebeau, 1996] with $a \in L^{\infty}(\Omega)$ (If u solution of (S) and u = 0 in $\omega \subset \Omega$, then u = 0 in Ω). $a \in L^{d}(\Omega)$?

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_i \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_i \in (d, \infty]$ with $j \in \{1, 2\}$.

- More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?
- Global quantitative unique continuation as in [Dehman-Ervedoza-Thabouti '23] but with $W_i \in L^{q_i}$, where $q_i > d$.
- Global L^p Carleman estimates for the Heat, Schrödinger, and wave equations? Local L^p Carleman estimates by Sogge [1991-1992], Ionescu-Kenig [2004], and Koch-Tataru [2009].
- Unique continuation for the Stokes system

$$\begin{cases}
-\Delta u + \mathbf{a} \cdot \nabla \mathbf{u} + \nabla p = 0 \text{ in } \Omega, \\
\operatorname{div}(u) = 0, \text{ in } \Omega,
\end{cases} \tag{S}$$

[Fabre-Lebeau, 1996] with $a \in L^{\infty}(\Omega)$ (If u solution of (S) and u = 0 in $\omega \subset \Omega$, then u = 0 in Ω). $a \in L^{d}(\Omega)$?

Thank you for your attention!

Main result of quantitative unique continuation holds with

$$\Delta u = Vu + \frac{W_1}{V_1} \cdot \nabla u + \operatorname{div}(\frac{W_2}{V_2}u) \quad \text{in } \Omega,$$

where $V \in L^{q_0}(\Omega)$, $W_i \in L^{q_j}(\Omega; \mathbb{C}^d)$, and $q_0 \in (d/2, \infty]$, $q_i \in (d, \infty]$ with $j \in \{1, 2\}$.

- More applications of global L^p Carleman Estimates, [Dehman-Ervedoza-Thabouti '23], in Control and Inverse Problems. The Lebeau-Robbiano strategy, control for the heat equation with rough potentials, but time-independent?
- Global quantitative unique continuation as in [Dehman-Ervedoza-Thabouti '23] but with $W_j \in L^{q_j}$, where $q_j > d$.
- Global L^p Carleman estimates for the Heat, Schrödinger, and wave equations? Local L^p Carleman estimates by Sogge [1991-1992], Ionescu-Kenig [2004], and Koch-Tataru [2009].
- Unique continuation for the Stokes system

$$\begin{cases}
-\Delta u + \mathbf{a} \cdot \nabla u + \nabla p = 0 \text{ in } \Omega, \\
\operatorname{div}(u) = 0, \text{ in } \Omega,
\end{cases} \tag{S}$$

[Fabre-Lebeau, 1996] with $a \in L^{\infty}(\Omega)$ (If u solution of (S) and u = 0 in $\omega \subset \Omega$, then u = 0 in Ω). $a \in L^{d}(\Omega)$?

Thank you for your attention!

Any questions or comments are welcomed.