
Interplay between depth and width for interpolation
in neural ODEs

X Partial differential equations, optimal design and numerics

Antonio Álvarez-López
Joint work with Arselane Hadj Slimane and Enrique Zuazua

Department of Mathematics,
Universidad Autónoma de Madrid

August 22, 2024





Table of contents

1 Introduction
Supervised Learning
Neural ODEs

2 Interpolation of data

3 Interpolation of measures



Introduction Supervised Learning

Supervised Learning

Goal

Input space (X , µ∗) ⊂ Rd F∗

−−−−−−−−−−−−→Output space Y ⊂ Rm

Approximate (learn) F ∗ from a dataset D = {(xn,yn)}N
n=1 ⊂ X × Y:

xn ∼ µ∗, yn = F ∗(xn), n = 1, . . .N.

Dog

Cat



Introduction Supervised Learning

Main paradigms I: Approximation

Fix a hypothesis space H = Hθ.

How close is H to the target F ∗ given a specified bound on θ?

Origin: Expressivity vs overfitting.



Introduction Supervised Learning

Main paradigms II: Optimization

Fix an objective function J (θ) := 1
N

∑N
n=1 L(Fθ(xn),yn) + R(θ).

How can we find F̂ := argmin
Fθ∈H

J (θ)?

Origin: Non-convexity of L with respect to θ.



Introduction Supervised Learning

Main paradigms III: Generalization

Unknown population µ∗.

Can F̂ correctly predict the value of F ∗ in any new point x ∈ X \ D?

Origin: Gap E(x,y)∼µ∗L(Fθ(x),y) vs 1
N

∑N
n=1 L(Fθ(xn),yn).



Introduction Neural ODEs

The hypothesis space of ResNets1

{
xk+1 = xk +

∑p
i=1 wk,iσ (ak,i · xk + bk,i) , k = 0, . . . ,L − 1,

x0 ∈ Rd .

Depth L ≥ 1 (number of hidden layers); Width p ≥ 1 ;
Parameters (wk,i,ak,i,bk,i) ∈ Rd × Rd × R; Activation σ : R → R.

(a) Limiting case 1: p ≫ 1, L = 1 (b) Limiting case 2: p = 1, L ≫ 1

1[1] K. He, X Zhang, S. Ren, J Sun, ‘‘Deep residual learning for image recognition’’ (2016)



Introduction Neural ODEs

Neural ODEs (continuous-time limit)

ẋ(t) =
p∑

i=1

wi(t)σ (ai(t) · x + bi(t)) , t ∈ (0,T ). (1)

Control: θ := (wi ,ai ,bi)
p
i=1, θ(t) ∈ L∞

(
(0,T );

(
Rd × Rd × R

)p
)

.

ReLU activation: σ(z) = (z)+ Lipschitz, nonlinear.
Flow map in time T generated by (1) is well defined:

ΦT (·; θ) : Rd → Rd

x0 7→ x(T ;x0).

Assume θ piecewise constant in (0,T ), L discontinuities︸ ︷︷ ︸
∼ Transitions between layers

ẋ(t) =
p∑

i=1

L∑
j=1

wi,jσ
(
ai,j · x + bi,j

)
1(tj−1,tj )(t), t ∈ (0,T ).
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Interpolation of data

Problem statement
Dataset D := {(xn,yn)} ⊂ Rd × Rd with xn ̸= xm, yn ̸= ym, if n ̸= m.

J (θ) :=
1
N

N∑
n=1

|ΦT (xn, θ)− yn|2 + R(θ).

Problem

For any T > 0, find a control θ s.t. ΦT (xn; θ) = yn for all n, with
minimal complexity (number of switches L × width p).
How can L and p interact with each other to achieve the goal?

Motivation

Theoretical: Understanding dynamics and architecture, measure of
expressivity (the complexity required to interpolate).
Practical: New methods to attack generalization, optimal design of
neural ODEs, initialization of parameters for optimization.
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Interpolation of data

Basic interpretation of the dynamics

p = 1 : ẋ(t) = w(t)σ(a(t) · x(t) + b(t))

a(t),b(t) determine the hyperplane in Rd given by

H(x) = a(t) · x + b(t) = 0.

σ(z) = (z)+ ‘‘activates’’ H(x) > 0 and ‘‘freezes’’ H(x) ≤ 0.

w(t) determines the direction of the field in H(x) > 0.

From left to right: Compression, laminar motion, expansion.



Interpolation of data

Exact control (L vs p)

Theorem (A. Á-L, A. Hadj-Slimane, E. Zuazua)

For any T > 0, there exists a control
θ ∈ L∞

(
(0,T );Rd×p × Rp×d × Rp

)
such that

ΦT (xn; θ) = yn, for all n = 1, . . . ,N.

Moreover, θ is piecewise constant with L = 2 ⌈N/p⌉ − 1 discontinuities.

(a) Step 1: Simultaneous control of d − 1
coordinates x (2), . . . , x (d).

(b) Step 2: Simultaneous control of the
remaining coordinate x (1).



Interpolation of data

More sparsity: Semi-autonomous system

For any T > 0, there exists a control

θ = (wi, ai, bi)
p
i=1 ∈

(
Rd × Rd × L∞ ((0,T );R)

)p

such that
ΦT (xn; θ) = yn, for all n = 1, . . . ,N.

Moreover, (b1, . . . , bp) is piecewise constant with L = 2 ⌈N/p⌉−1 discontinuities.

(a) Step 1. (b) Step 2.



Interpolation of data

For width ≥ number of data: L = 2 ⌈N/p⌉ − 1 = 2 − 1 = 1.

Is it possible to achieve exact control using L = 0 discontinuities?



Interpolation of data

Autonomous system (L = 0): Approach I

High-dimensional setting

In the conditions of the previous theorem,
if d > N then we can improve to

L = 2 ⌈N/p⌉ − 2 discontinuities.

Change axis x 7→ x ′ s.t. x (1)
n = y (1)

n for
all n in the new vector basis.



Interpolation of data

Autonomous system (L = 0): Approach II

Probabilistic control

Assume that xn, yn ∼ U([0, 1]d ) for all n. Then, with probability P bounded as

1 ≥ P ≥ 1 −
[
1 − 1√

2

( e
2N

)N
]d

→ 1,

there exists θ ∈ Rd×N × RN×d × RN such that ΦT (·, θ) interpolates the dataset.

(a) Step 1: Separation. (b) Step 2: Transversal velocity fields.



Interpolation of data

Autonomous system: Approach III

Relaxation to approximate control

For any T > 0, there exists a constant control θ ∈ Rd×p × Rp×d × Rp such that

sup
n∈{1,...,N}

|yn − ΦT (xn; θ)| ≤ C
log2(κ)

κ1/d ,

where κ = (d + 2)dp and C > 0 is independent of κ.

Lemma (F. Bach, 2014)

Let Ω := [−R,R]d and f ∈ Lip(Ω,R). There exists a shallow network Fp of width p s.t.

supx∈Ω |f (x)− Fp(x)| ≤ Cd,R Lip(f )
log2 κ

κ1/d , where κ = (d + 2)p.



Interpolation of measures

Neural transport equation

 ẋ(t) =
p∑

i=1

wi(t)σ (ai(t) · x + bi(t)) , t ∈ (0,T ),

x(0) = xn ∼ µ0 ∈ P(Rd ), n = 1, . . . ,N.

↓

{
∂tµ+ divx

(
µ
∑p

i=1 wi(t)σ (ai(t) · x + bi(t))
)
= 0

µ(0) = µ0.
(2)
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Interpolation of measures

Space: Pc
ac(Rd ).

Metric: Wq(µ, ν) :=
(
minγ∈Π(µ,ν)

∫
Rd×Rd |x − y|qdγ(x , y)

)1/q
,

where Π(µ, ν) ⊂ Pc
ac(Rd × Rd) is the set of all couplings of µ and ν.

The curve in Pc
ac(Rd) defined by the push-forward measure

µ(t)(·) := Φt(·; θ)#µ0, t ∈ (0,T ),

solves

∂tµ+ divx

(
µ

p∑
i=1

wi(t)σ (ai(t) · x + bi(t))︸ ︷︷ ︸
Lipschitz in x

)
= 0, µ(0) = µ0.

Problem

Fix µ∗ := U([0, 1]d). For any µ0 ∈ Pc
ac(Rd ), find a control θ := (wi, ai, bi)

p
i=1 s.t.

Wq (µ(T ), µ∗(·)) ≈ 0.
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Interpolation of measures

Theorem (A. Á-L, A. Hadj-Slimane, E. Zuazua)

For any d , p ≥ 1, T , ε > 0 and q ∈ [1, d
d−1 ), there exists a piecewise constant control

θ ∈ L∞
(
(0,T );Rd×p × Rp×d × Rp

)
such that the solution µ(t) of (2), taking µ0 as initial condition, satisfies

Wq(µ(T ), µ∗) < ε,

and the number of switches of θ is L = ⌈2d/p⌉+
⌈

1
p−d+1

(
31+d/q√d

ε

) d
1+d/q−d

⌉
− 1.

In particular, if q = 1 then L = ⌈2d/p⌉+
⌈

1
p−d+1

(
31+d√d

ε

)d ⌉
− 1.

Idea of the proof:

Step 1. We compress µ0 into [0, 1]d .



Interpolation of measures

Neural transport equation: Interpolation of measures

Step 2. We define two partitions of [0, 1]d into rectangles Ci,j and Gi,j which contain the
same small mass as distributed by µ0 and µ∗, respectively.

Step 3. Transformation of each rectangle Ci,j into the corresponding rectangle Gi,j

through a sequence of compressions and expansions (from left to right).



Interpolation of measures

Conclusions

Exact interpolation of data and measures can be constructively attained,
showing a trade-off between depth and width.

Error decay for autonomous, wide enough models via universal
approximation.

In high dimensions, the required width scales with the size of the dataset.

Open problems

Minimize the number of switches. Is it sharp?

Explicit control algorithm for the autonomous regime?

Same for the semi-autonomous model with continuous (linear?) bias b(t).

Other activation functions? Which is the optimal one?

Extension to infinite width as the mean-field limit?

ẋ(t) =
∫
R2d+1

wσ(a · x(t) + b)dµ(t).

Interpolation of measures supported in Rd ?
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Thank you for your attention!
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