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Supervised Learning

Input space (X, u*) C RY P, Outputspace Y c R™
Approximate (learn) F* from a dataset D = {(Xp, Yn)}N_; C X x V:

X~ p*, Yn = F*(Xp), n=1,...N.

y1 = (1,0) = Cat
P

y2=(0,1) = Dog




Main paradigms |I: Approximation

Fix a hypothesis space H = Hy.

How close is H to the target F* given a specified bound on 67?

Target
. [ ]
(}‘( 4 . .
. _+ Approximation
Hypothesis space Best model error

Origin: Expressivity vs overfitting.



Introduction Supervised Learning

Main paradigms Il: Optimization

Fix an objective function 7(6) = & SN | L(Fo(Xn), yn) + R(6).

How can we find F := argmin 7(6)?
FoeH

Target
[ J

4
4 . .
_+ Approximation
error

H

Hypothesis space

Best model

Initial guess

Optimization
-
-
error _ -~ Empirical risk

Optimization/ Training

Learned model

Origin: Non-convexity of L with respect to 6.



Introduction Supervised Learning

Main paradigms lll: Generalization

Unknown population p*.
Can F correctly predict the value of F* in any new point x € X' \ D?

Target
[ J

4
4 . .
_+ Approximation
error

H

Hypothesis space

Best model

Initial guess

Optimization
-
-
error _ -~ Empirical risk

Optimization/ Training

Learned model

Origin: Gap  Exy)wu-L(Fo(X),y) Vs 43N . L(Fo(Xn), Yn)-



The hypothesis space of ResNets'

Xkt = Xk + 2o Wiiio (aki - Xk + bij) , k=0,...,L -1,
Xo € RY.

Depth L > 1 (number of hidden layers); Widthp > 1;
Parameters (W, ax i, bk ;) € RY x R x R; Activation o : R — R.
X F(x)
(a) Limitingcase 1: p>1,L =1 (b) Limitingcase2: p=1,L > 1

"[1] K. He, X Zhang, S. Ren, J Sun, “Deep residual learning forimage recognition” (2016)



ion Neural ODEs

Neural ODEs (continuous-time limit)

Zw.u ai(t) - x + bi(t)).

te (0, T).




Neural ODEs (continuous-time limit)

p

x(t) = > wi(t)o (ai(t) - x +bi(t)),  te(0,T) (1)

i=1

e Control: 0 := (wj,a;,b)’,, 6(t)€L> ((o, T): (RY x RY x R)”).
@ RelLU activation: o(z) =(2)1 Lipschitz, nonlinear.

@ Flow map in time T generated by (1) is well defined:

CDT(-;H):Rd — R4
Xo — X(T;Xp).

Assume 6 piecewise constantin (0, T), L discontinuities
—_—

~ Transitions between layers

X(t) = Z ZW”U (a” - X+ b,"/') 1(071’““)7 te (0, T)

i=1 j=1



Problem statement

Dataset D := {(Xn,¥n)} C RY x R with  Xp # Xm, VYn # Ym, if n# m.

N
1
T(0) = 5 D_107(Xn,0) = yl* +
n=1



Problem statement

Dataset D := {(Xn,¥n)} C RY x R with  Xp # Xm, VYn # Ym, if n# m.

N
1
T(0) = 5 D_107(Xn,0) = yl* +
n=1

@ Forany T > 0, find a control 6 s.t. 7(Xn; 8) =y, for all n, with
minimal complexity (number of switches L x width p).

@ How can L and p interact with each other to achieve the goal?

@ Theoretical: Understanding dynamics and architecture, measure of
expressivity (the complexity required to interpolate).

@ Practical: New methods to attack generalization, optimal design of
neural ODEs, initialization of parameters for optimization.




Basic interpretation of the dynamics

p=1: x(t) = w(t) o(a(t) - x(t) + b(1))

@ a(t), b(t) determine the hyperplane in R? given by
H(x) =a(t)-x+ b(t) =0.
@ o(z) = (z), “activates” H(x) > 0 and “freezes” H(x) < 0.

@ w(t) determines the direction of the field in H(x) > 0.
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From left to right: Compression, laminar motion, expansion.



Exact control (L vs p)

Theorem (A. A-L, A. Hadj-Slimane, E. Zuazua)

Forany T > 0, there exists a control

L™ ((o, T);RYP x RP*? x RP)
such that

Or(Xn;0) =Yn, foralln=1,... N.
Moreover, 6 is piecewise constant with L = 2 [N/p] — 1 discontinuities.

Wlt Wzl W3 W3
a-x+b;=0
[o) ° A O<-----mmmmmm- -@ -2
v
' '
a=e E aJ_e11 a-x+b, =0
° i
Yyl & @ @eemmemmemme—=3
o a-x+b; =0 b >0

xl4by =0 x'+by=0 x'+by3=0

(a) Step 1: Simultaneous control of d — 1 (b) Step 2: Simultaneous control of the
coordinates x(®, ... x(9), remaining coordinate x(1).



More sparsity: Semi-autonomous system

For any T > 0, there exists a control
P
0= (wi,ai, b), € (Rd x R? x L™ ((0, T);R))

such that
®r(Xn;0) =yn, foralln=1,... N.

Moreover, (b, . .., bp) is piecewise constant with L = 2 [N/p] —1 discontinuities.




Interpolation of data

For width > number of data: L=2[N/p]-1=2-1=1.

Is it possible to achieve exact control using L = 0 discontinuities?



Autonomous system (L = 0): Approach |

High-dimensional setting

In the conditions of the previous theorem,
if d > N then we can improve to

L=2[N/p] —2 discontinuities.
Change axis x — x’ s.t. x,(71) = y,(,1)
all nin the new vector basis.

for

wif Wzl w,\
(] [ A
a=e
- e
v o

by =0 x'+by=0 x'+by=0

(a) Step 1: Simultaneous control of d — 1
coordinates x®@, . .., x(9), gAaining coordinate x(1).




Autonomous system (L = 0): Approach |l

Probabilistic control

Assume that X,, y» ~ U([0, 1]9) for all n. Then, with probability P bounded as

12P21—[1—\}§(;\/)Nr—> 1,

there exists § € RN x RV*? x RN such that &1(-, §) interpolates the dataset.

Wy wp w. Wy
xl+b; =0 xl4by=0 xl+b3=0 x'+b,=0

(a) Step 1: Separation. (b) Step 2: Transversal velocity fields.



Autonomous system: Approach Il

Relaxation to approximate control

Forany T > 0, there exists a constant control § € R%*P x RP*9 x RP such that

log,(~)
—dr(xp;0)| < C 2,
ne{i'i’f’”N} |yn T( n )| = w1/d

where k = (d + 2)dp and C > 0 is independent of .

Lemma (F. Bach, 2014)

LetQ = [-R, R]° and f € Lip(Q, R). There exists a shallow network F, of width p s.t.

. log, x
SuPcen [f(X) — Fo(X)| < Ca.n Lip(f) —527,

where k = (d + 2)p.

= . — — — e



Neural transport equation

P
x(1) = " wi(t)o (ait) - x+ bi(1)).
i=1

X(0) = X ~ 1o € P(R),



Neural transport equation

i=1

p
{ X(1) =Y _wi(t)o (a(t) - x+bi(t),  te(0,T),
X(0) = X, ~ 1o € P(RY), n=1,...,

1

{&u + divy (4 Sy wi(t)o (@(1) - X+ bi(D)) ) =0
1(0) = po.




Interpolation of measures

Interpolation of measures

@ Space: PZ(RY).
. . g 1/q

® Metric: Wy(p,v) i= ( minyengun) frza (X = ¥I97(x, )

where M(p, v) C PS(R? x RY) is the set of all couplings of 1. and v.
@ The curve in P (RY) defined by the push-forward measure

u(t)(-) = S 0)#p0,  te(0,T),
solves
6t,u+divx( Zw. x+b,(t))) 0,  u(0) = po.

Lipschitz in x



Interpolation of measures

Interpolation of measures

@ Space: PZ(RY).
. . g 1/q

® Metric: Wy(p,v) i= ( minyengun) frza (X = ¥I97(x, )

where M(p, v) C PS(R? x RY) is the set of all couplings of 1. and v.
@ The curve in P (RY) defined by the push-forward measure

u(t)(-) = S 0)#p0,  te(0,T),
solves
Oupr+ dive (1> wilt)o (ai(t) - x+bi(1) ) =0, u(0) = po.

Lipschitz in x

Problem

Fix 1. == U([0, 1]%). For any po € PS5 (R?), find a control 6 := (w;, ai, bj)?_, s.t.

Wa (u(T), ju.()) ~ 0.




Interpolation of measures

Theorem (A. A-L, A. Hadj-Slimane, E. Zuazua)

Foranyd,p>1,T,e>0andqgec[1, %), there exists a piecewise constant control
9L ((o, T);R9P x RP? x Rp)
such that the solution pu(t) of (2), taking uo as initial condition, satisfies
Wo(u(T), ps) <ee,

d
and the number of switches of 0 is L = [2d/p] + [pfjm (%) rrafee W —1.

d
In particular, if g =1 then L = [2d/p] + ’Vp711+1 (SHZ‘/E) w -1

Idea of the proof: 8

Step 1. We compress i into [0, 1]°.




Neural transport equation: Interpolation of measures

61(Cig) = Gig Sk b

Ci Ci41 Ci Cit1

Step 2. We define two partitions of [0, 1] into rectangles C;,; and G;; which contain the
same small mass as distributed by o and p., respectively.

. - * ,

B EEE o [l H e &
Step 3. Transformation of each rectangle C;; into the corresponding rectangle G ;
through a sequence of compressions and expansions (from left to right).




Interpolation of measures

Conclusions

@ Exact interpolation of data and measures can be constructively attained,
showing a trade-off between depth and width.

@ Error decay for autonomous, wide enough models via universal
approximation.

@ In high dimensions, the required width scales with the size of the dataset.

Open problems

Minimize the number of switches. Is it sharp?

Explicit control algorithm for the autonomous regime?

°
°
@ Same for the semi-autonomous model with continuous (linear?) bias b(t).
@ Other activation functions? Which is the optimal one?

°

Extension to infinite width as the mean-field limit?

x(1) = /}R . wola-x(t) + b)du(t).

Interpolation of measures supported in R9?




Interpolation of measures
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Thank you for your attention!
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