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Standard computational practice
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Complexity
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Deep learning

Universal approximation theorem I

E. Zuazua (FAU - AvH) Turpike-Control-ML Bachelier, 21.05.2021 17 / 41



?1
How does it work? 

Does it actually work? Convergence? Error estimates? 

Why it works relatively well? 

Can traditional applied mathematics contribute to explain the 
theoretical foundations of this success? 

?2
What can Applied Maths learn from these new tools? 

Merging: PDE+D(ata)

Two different questions



?1

How does it 
work?



Supervised learning

Goal: Find an approximation of a function f⇢ : Rd
! Rm from a dataset

{~xi , ~yi}
N
i=1 ⇢ Rd

⇥ Rm

drawn from an unknown probability measure ⇢ on Rd
⇥ Rm.

Classification: match points (images) to respective labels (cat, dog).

This is typically done by training a neural network. We will do it through the
simultaneous or ensemble control of Neural ODEs.
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Neural di↵erential equations

dx(t)

dt
= w(t) �(a(t) · x(t) + b(t))
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Two neighbouring fields

Control: Dogs-Sheep Supervised Learning

Enrique Zuazua (CoML) CoML 4 / 42



ResNets / Neural ODEs in action (Borjan Geshkovski)

2

ẋ(t) = w(t) �(a(t) · x(t) + b(t))

[1] K. He, X Zhang, S. Ren, J Sun, 2016: Deep residual learning for image recognition
[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.
[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018.
[4] E. Sontag, H. Sussmann, 1997.
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Classification by simultaneous or ensemble control of
Neural ODEs

Theorem (Classification, Domènec Ruiz-Balet & EZ, SIREV, 2023)

In dimension d � 2, in any time horizon [0,T ], a finite number of arbitrary items
can be driven to pre-assigned open subsets of the Euclidean space, corresponding
to its labels, by piece-wise constant controls.

Generative Neural Transport

Neural ODEs ẋ(t) = w(t)�(a(t)·x(t)+b(t)), interpreted as the characteristics
of the transport equation:

@t⇢+ divx [ (w(t)�(a(t) · x + b(t)| {z }
V (x,t)

)⇢] = 0

allow transporting atomic measures and constitute a tool for generative transport.

1
1Related results for smooth sigmoids using Lie brackets: A. Agrachev and A. Sarychev,

arXiv:2008.12702, (2020); Li, Q., Lin, T., & Shen, Z. (2022), JEMS.
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What is the ResNet doing? Basic control actions

ẋ(t) = w(t)�(a(t) · x(t) + b(t)).

Control functions (w, a,b) �! Piecewise constant.
Each time discontinuity ⇠ change of layer.

a(t), b(t) define a hyperplane H(x) = a(t) · x(t) + b(t) = 0 in Rd .
�(z) = max{z , 0} “activates” the halfspace H(x) > 0 and “freezes” H(x)  0.
w(t) determines the direction of the field in the active halfspace.

Figure: Parallel (left); Contraction (center); Expansion (right).
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Classification by Control of ResNets: One step + Induction
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Width versus Depth (A. Álvarez, A. H. Slimane, & E. Z.)

ẋ(t) =
pX

i=1

wi (t)�(ai (t) · x(t) + bi (t))

Increasing the width allows parallelising the consecutive actions of the switching
controls and reducing depth:2

O(N) ! O(1 + N/p) layers.

Approximate simultaneous control can be achieved by means of an au-
tonomous, very wide neural field.
! Linked to Turnpike Theory.

ẋ(t) = V (x(t)) ! V (x) ⇠
pX

i=1

wi �(ai · x+ bi )

2When d � N + 1, the number of layers is O(N/p).
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Neural transport equations

(
ẋ(t) = w(t)�(a(t) · x(t) + b(t))

x(0) = x0

interpreted as the characteristics of the transport equation:
8
><

>:

@t⇢+ divx [ (w(t)�(a(t) · x + b(t)| {z }
V (x,t)

)⇢] = 0

⇢(0) = ⇢0

Atomic initial data can be driven to atomic final targets

Theory of Optimal Transport ! Neural Transport

Chebyshev inequality allows estimating the statistical error of sampling
for normalizing flows
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Tracking dynamical systems
Joint work with Z. Li, K. Liu and L. Liverani
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Semi-autonomous NODEs

A time-independent choice of the parameters leads to a non-autonomous dynamics,
with a trivial time-dependence,

ẋ(t) =
pX

i=1

wi �(a
1
i · x(t) + a2i t + bi )

The structure is motivated by the Universal Approximation property of ReLU
activation functions (Pinkus, 1999)

ẋ(t) = f(x(t), t) ! f(x, t) ⇠
pX

i=1

wi �(a
1
i · x+ a2i t + bi )

The coe�cients are now time-independent, greatly reducing the complexity of
the model

The obtained model can be employed to anticipate future evolution of trajec-
tories.
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Numerical Results: Doswell frontogenesis

SA-NODEs and exact solution of the transport equation modeling Doswell fronto-
genesis

@t⇢(x , y , t) + div (⇢(x , y , t) (�yg(r), xg(r))) = 0,

where (x , y , t) 2 R2 ⇥ [0,T ] and,

g(r) =
1

r
v sech2r tanh r
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Numerical Results: Doswell frontogenesis
Ongoing work with Weiwei Hu on optimal fluid mixing

SA-NODEs and exact solution of the transport equation modeling Doswell fronto-
genesis

@t⇢(x , y , t) + div (⇢(x , y , t) (�yg(r), xg(r))) = 0,

where (x , y , t) 2 R2 ⇥ [0,T ] and,

g(r) =
1

r
v sech2r tanh r
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?2

PDE+D(ata)



?2

PDE+D(ata)





An example: Nelson’s car.

Two controls su�ce to control a four-dimensional dynamical system.1

1E. Sontag, Mathematical control theory, 2nd ed.,Springer-Verlag, NewYork,1998.
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?2

PDE+D(ata)

Hybrid Data driven + PDE modelling + Collapse



Training: 

Curse of 
Dimensionality  

+ Evil of Non-
Convexity



Training & Generalization
joint work with Kang Liu

General architecture of NNs

f : Rd
⇥

PY

i=1

Rdi ! Rm, (x ,⇥) 7! f (x ,⇥),

where

x is the feature (input),

⇥ is the parameter (control),

f (x ,⇥) is the prediction (output).

Three training scenarios

Consider a dataset: {(xi , yi )}Ni=1.

1 Exact representation:

f (xi ,⇥) = yi , for i = 1, . . . ,N.

2 Approximate representation:

kf (xi ,⇥)� yik  ✏, for i = 1, . . . ,N.

3 Regression:

inf⇥
1

N

NX

i=1

`(f (xi ,⇥)� yi ).

Problems: Existence, regularization, generalization property, numerical algorithms,
etc.
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Primal sparsified problems

Let ⌦ be a compact subset of Rd+1. Consider the following three optimization problems: Let
⇥ = (!j , aj , bj )Pj=1.

The sparse exact representation problem:

inf⇥2(R⇥⌦)P k!k`1 , s.t.
PX

j=1

!j�(haj , xi i+ bj ) = yi , for i = 1, . . . ,N. (P0)

The sparse approximate representation problem:

inf⇥2(R⇥⌦)P k!k`1 , s.t.

������

PX

j=1

!j�(haj , xi i+ bj )� yi

������
 ✏, for i = 1, . . . ,N, (P✏)

where ✏ > 0 is a hyperparameter.

The sparse regression problem:

inf⇥2(R⇥⌦)P k!k`1 +
�

N

NX

i=1

`

0

@
PX

j=1

!j�(haj , xi i+ bj )� yi

1

A , (Preg
� )

where � > 0 is a hyperparameter.
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Mean-field relaxation

Primal problems (P0), (P✏), and (Preg
� ) are non-convex optimization problems, where the non-

convexity is from the non-linearity of shallow NNs, e.g.,
8
<

:⇥
��

PX

j=1

!j�(haj , xi i+ bj ) = yi , 8i = 1, . . . ,N

9
=

; is a non-convex set.

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-
Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN

The original Shallow NN writes:

PX

j=1

!j�(haj , xi+ bj ),

where (!j , aj , bj ) 2 R⇥ ⌦ for all j .

Mean-field shallow NN

The mean-field shallow NN writes:ˆ
⌦
�(ha, xi+ b)dµ(a, b),

where µ 2 M(⌦). The outcome is linear with
respect to µ
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9
=

; is a non-convex set.

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-
Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN

The original Shallow NN writes:

PX

j=1

!j�(haj , xi+ bj ),

where (!j , aj , bj ) 2 R⇥ ⌦ for all j .

Cost function: k!k`1 .

Mean-field shallow NN

The mean-field shallow NN writes:ˆ
⌦
�(ha, xi+ b)dµ(a, b),

where µ 2 M(⌦). The outcome is linear with
respect to µ.

Cost function: kµkTV.
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Lack of relaxation gap

Theorem
Assume that P � N. Then, there is no gap between the original primal problems
and the relaxed ones.
Moreover, the extreme points of the solution sets of relaxed problems have the
following form:

µ⇤ =
NX

j=1

!⇤
j �(a⇤j ,b⇤

j
).

Based on the “Representer Theorem” from [S. D. Fisher and J. W.
Jerome. Spline solutions to L1 extremal problems in one and several
variables. Journal of Approximation Theory, 13.1 (1975), pp. 73 – 83.]
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Numerical algorithms and generalization

Two numerical schemes

1 Discretization of ⌦ combined with the simplex method:

Advantage: Guarantees a global minimizer.
Limitation: Su↵ers from the curse of dimensionality.

2 Stochastic Gradient Descent (for overparameterized shallow NNs [Chizat-Bach, 2018]) com-

bined with a sparsification method:

Advantage: Free from the curse of dimensionality.
Limitation: Lacks global convergence guarantees.

Conclusion: We apply Scheme 1 for low-dimensional data, while Scheme 2 is more suitable for
high-dimensional data.

Generalization

If the datasets
have clear sepa-
rable boundaries,
consider (P0),
(P✏) with ✏ ! 0,
or (Preg

� ) with
� ! 1.

If the datasets have
heavily overlapping
areas, consider the
regression problem
(Preg

� ) with � ⇠

O(N1/d ).
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Our recent contributions

E. Zuazua, Control and Machine Learning, SIAM News, October 2022

D. Ruiz-Balet, E. Zuazua, Neural ODE control for classification, approximation and transport,
SIAM Review, 65 (3)3 (2023), 735-773.

B. Geshkovski, E. Zuazua, Turnpike in optimal control of PDEs, ResNets, and beyond, Acta
Numer., 31 (2022), 135–263

D. Ruiz-Balet, E. Zuazua, Control of neural transport for normalizing flows, Journal de

mathématiques pures et appliquées, JMPA, 181 (2024), 58-90.

Z. Li, K. Liu, L. Liverani, E. Zuazua,Universal Approximation of Dynamical Systems by Semi-
Autonomous Neural ODEs and Applications, arXiv:2407.17092v2, (2024).

A. Alcalde, G. Fantuzzi, E. Zuazua, Clustering in pure-attention hardmax transformers,
arXiv:2407.01602, (2024).

K. Liu, E. Zuazua, Representation and regression problems in neural networks: relaxation, gener-
alization and numerics, in progress.
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Clustering versus Complexity
A. Álvarez, R. Orive, & E. Z., 2023

Clustering of data allows to diminish the number of switches

Increasing the space dimension d diminishes the number of switches:

N ! N/d .
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Federated Learning
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Transformers
Joint work with A. Alcalde &G. Fantuzzi
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Self-attention mechanism

Enrique Zuazua (CoML) CoML 24 / 42



Promising Field



Lots to do

Enrique Zuazua (CoML) CoML 8 / 42



Enrique Zuazua CoDeFeL 10







Conclusions and Perspectives

Fantastic horizon for mathematical research and in particular for the fields of
Control and Optimization:

Training
Generalization
Generation
Complexity: Width/Depth
Dimensionality and probabilities and statistics.
Federated Learning
....

Digital Twins Methodologies pose specific challenges:
Scalability / Adaptivity / Personalized / Goal oriented
(Model Predictive Control?)
Control of control for DT modelling
Reliability / generalization / synthetic data
Merging with Physics and Mechanics

Thank you for the invitation and attention
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