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DYNAMIC CONTROL




Digital Twins & LLM (2024)

First demonstration of predictive
control of fusion plasma by digital
twin




Standard computational practice
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Complexity
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Universal approximation theorem

Math. C | Signals § 989) 2; 303-314 : "
R gasts Sistens (5 Mathematics of Control,

Signals, and Systems

© 1980 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

N
> wo(yjx + 8), A/ (1)
J=1

where y; € R"and «;, # € R are fixed. (y' is the transpose of y so that y"x is the inner
product of y and x.} Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

a(r)—»{l e &

0 as [ - —D.
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Two different guestions
?1

How does it work?
Does it actually work? Convergence” Error estimates?

Why it works relatively well”?

Can traditional applied mathematics contribute to explain the
theoretical foundations of this success?

?2
What can Applied Maths learn from these new tools?
Merging: PDE+D(ata)

Digital Twins: Where Data,
Mathematics, Models, and Decisions
Collide
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Supervised learning

Goal: Find an approximation of a function f, : R — R"™ from a dataset
- =N d m
{Xi,Yi}izy CR xR
drawn from an unknown probability measure p on R x R™,

Classification: match points (images) to respective labels (cat, dog).

33 ;' Bg‘
%@E it sl &

This is typically done :)y training a neural network. We will do it through the
simultaneous or ensemble control of Neural ODEs.

Enrique Zuazua



Neural differential equations

ReLLU

xkT1 = xk + hwko(ak - xk 4+ bK) ' :

f(X) ~ ija(aj-x+bj)

Jj=1




Two neighbouring fields

Control: Dogs-Sheep Supervised Learning

Enrique Zuazua



ResNets / Neural ODEs in action (Borjan Geshkovski)

x(t) = w(t)o(a(t) - x(t) + b(t))

K. He, X Zhang, S. Ren, J Sun, 2016: Deep residual learning for image recognition
E. Weinan, 2017. A proposal on machine learning via dynamical systems.

R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018.

E. Sontag, H. Sussmann, 1997.
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Classification by simultaneous or ensemble control of
Neural ODEs

Theorem (Classification, Domenec Ruiz-Balet & EZ, SIREV, 2023)

In dimension d > 2, in any time horizon [0, T|, a finite number of arbitrary items
can be driven to pre-assigned open subsets of the Euclidean space, corresponding
to its labels, by piece-wise constant controls.

y

Generative Neural Transport

Neural ODEs x(t) = w(t)o(a(t)-x(t)+b(t)), interpreted as the characteristics
of the transport equation:

Orp + divx[Sw(t) og(a(t) - x + b(t)J)p] =0

V(::, t)

allow transporting atomic measures and constitute a tool for generative transport.
4

1

IRelated results for smooth sigmoids using Lie brackets: A. Agrachev and A. Sarychev,
arXiv:2008.12702, (2020); Li, Q., Lin, T., & Shen, Z. (2022), JEMS.
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What is the ResNet doing? Basic control actions

x(t) = w(t)o(a(t) - x(t) + b(t))

Control functions (w, a, b) — Piecewise constant.
Each time discontinuity ~ change of layer.

o a(t), b(t) define a hyperplane H(x) = a(t) - x(t) + b(t) = 0 in R,
@ 0(z) = max{z,0} “activates” the halfspace H(x) > 0 and “freezes” H(x) < 0.
@ w(t) determines the direction of the field in the active halfspace.

’l
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Figure: Parallel (left); Contraction (center); Expansion (right).
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Classification by Control of ResNets: One step + Induction

Enrique Zuazua CoML 20 / 42



Width versus Depth (A. Alvarez, A. H. Slimane, & E. Z.)

(1) = > wile) o(@i(t) - x(t) + bi(1))

@ Increasing the width allows parallelising the consecutive actions ot the switching
controls and reducing depth:?

O(N) — O(1+ N/p) layers.

@ Approximate simultaneous control can be achieved by means of an au-

tonomous, very wide neural field.
— Linked to Turnpike Theory.

x(t) = V(x(t)) = V(x) ~ Zw,- o(a; - x + b;)

(CaY

2When d > N + 1, the number of layers is O(N/p).

Enrique Zuazua CoML
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Generative Neural Transport

x(t) = w(t) o(a(t) - x(t) + b(t))
\X(O) = X0

interpreted as the characteristics of the transport equation:

<

Ocp + divy[ (w(t) o(a(t) - x+ b(t))p] =0 a~

~~ " [
V(x,t) \“\zbﬁ 3

p(0) = p’

Atomic initial data can be driven to atomic final targets

Theory of Optimal Transport — Neural Transport

Chebyshev inequality allows estimating the statistical error of sampling
for normalizing flows

Enrique Zuazua



Tracking dynamical systems

Joint work with Z. Li, K. Liu and L. Liverani
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Semi-autonomous NODEs

A time-independent choice of the parameters leads to a non-autonomous dynamics,
with a trivial time-dependence, /

p
x(t) =Y wio(af - x(t) + a’t + b;)
=1

@ The structure is motivated by the Universal Approximation property of RelLU
activation functions (Pinkus, 1999)

x(t) = f(x(t), t) — f(x,t) ~ Ep: wio(a; - x+ a‘t+ b;)

@ The coefficients are now time-independent, greatly reducing the complexity of
the model

@ The obtained model can be employed to anticipate future evolution of trajec-
tories.

Enrique Zuazua CoML 9 /16



Numerical Results: Transport Equations

Ongoing work with Weiwei Hu on optimal fluid mixing

t=0 (SA-NODEs) t=1 {SA-NODESs) t=2 (SA-NODES) t=3 (SA-NODEs) t=4 (SA-NODESs)
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SA-NODEs and exact solution of the transport equation modeling Doswell frontogenesis

Aep(x,y,t) +div (p(x,y, t) (—yg(r), xg(r))) = 0,
where (x,y,t) € R? x [0, T] and,

g(r)=cr?

sech’rtanhr, po(x,y) = tanh(y/9).
The exact solution:

y cos(gt) — xsin(gt)
0

p(x,y,t) = tanh

Enrique Zuazua



Trajectory
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DE+D(ata)
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An example: Nelson's car.

\ —_—

Ty
-

Figure 4.1: 4-dimensional car model,

Two controls suffice to control a four-dimensional dynamical system.?

1E. Sontag, Mathematical control theory, 2nd ed.,Springer-Verlag, NewYork,1998.
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Hybrid Data driven + PDE modelling + Collapse

EData

Eechanics




Training:

Curse of
Dimensionality

+  Evil of Non-
Convexity



Training & Generalization

joint work with Kang Liu

General architecture of NNs Three training scenarios
Consider a dataset: {(x;, i)} ;.

P
f: RY x HR"" — R™ (x,0) — f(x,0), @ Exact representation:

=1 f(Xh@):yi) fOri:].,...,N-
where

' - Approximate representation:
@ x is the feature (input), Q App p

@ O is the parameter (control), [f(xi,©) —yill <e fori=1,...,N.

@ f(x,0) is the prediction (output). © Regression:

N
_ 1
lnf@N gé(f(xi, ©) — vi).

Problems: Existence, regularization, generalization property, numerical algorithms,
etc.

Enrique Zuazua CoML 11 / 16




Primal sparsified problems

Let Q be a compact subset of R*t1. Consider the following three optimization problems: Let
@ — (wj, aj, bj)le.
@ The sparse exact representation problem:

P

infoc®rx)P |wl| 1, st ija((aj,x,-> + bj) =y, fori=1,...,N. (Po)
j=1

@ The sparse approximate representation problem:

P
infocmxar @l st |D> wio((a,x)+b)—yi| <e fori=1,...,N, (P)
j=1

where € > 0 is a hyperparameter.

@ The sparse regression problem:

N P

. A r
Infee(RXQ)P ||W||£1 + N § 4 E CUJ'O'(<3_I',X,'> + b_/) —Yi)> (P;g)
i=1 Jj=1

where A > 0 is a hyperparameter.

Enrique Zuazua CoML 12 / 16



Mean-field relaxation

Primal problems (Pg), (P¢), and (P\®) are non-convex optimization problems, where the non-
convexity is from the non-linearity of shallow NNs, e.g.,

P
© ‘ ija(<aj,x;> +bj)) =y, Vi=1,...,N 3 is a non-convex set.
j=1

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-
Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN Mean-field shallow NN

The original Shallow NN writes: The mean-field shallow NN writes:

P
ija((aj,x> + bj), /QU(<3,X> + b)du(a, b),
j=1

where © € M(Q). The outcome is linear with
where (wj, aj, bj) € R x Q for all j. respect to (.

Cost function: ||w||,:. Cost function: ||ul||Tv.

Enrique Zuazua CoML 13 / 16




Lack of relaxation gap

Assume that P > N. Then, there is no gap between the original primal problems

and the relaxed ones.

Moreover, the extreme points of the solution sets of relaxed problems have the

following form:

,LL _ZW*5(3 b*)

Based on the “Representer Theorem” from [S. D. Fisher and J. W.

Jerome. Spline solutions to L' extremal problems in one and several
variables. Journal of Approximation Theory, 13.1 (1975), pp. 73 — 83.]

Enrique Zuazua
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Numerical algorithms and generalization

Two numerical schemes

@ Discretization of Q combined with the simplex method:

o Advantage: Guarantees a global minimizer.
e Limitation: Suffers from the curse of dimensionality.

@ Stochastic Gradient Descent (for overparameterized shallow NNs [Chizat-Bach, 2018]) com-
bined with a sparsification method:

o Advantage: Free from the curse of dimensionality.
e Limitation: Lacks global convergence guarantees.

Conclusion: We apply Scheme 1 for low-dimensional data, while Scheme 2 is more suitable for
high-dimensional data.

Generalization

If the datasets . so o If the datasets have
have clear sepa- - e heavily overlapping

) rable  boundaries, 8 areas, consider the
: consider (Po), - SR regression problem
) (P.) with ¢ — 0, (P5®) with A ~
) or (PY®)  with . O(NY/d).

A — 00.

-1.5 -1.0 =05 0.0 0.5 1.0 1.5 2.0 -2 -1 0 1 2 3
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Our recent contributions

E. Zuazua, Control and Machine Learning, SIAM News, October 2022 )

D. Ruiz-Balet, E. Zuazua, Neural ODE control for classification, approximation and transport,
SIAM Review, 65 (3)3 (2023), 735-773.

Numer., 31 (2022), 135-263

D. Ruiz-Balet, E. Zuazua, Control of neural transport for normalizing flows, Journal de

B. Geshkovski, E. Zuazua, Turnpike in optimal control of PDEs, ResNets, and beyond, ActaJ
mathématiques pures et appliquées, JMPA, 181 (2024), 58-90. J

Z. Li, K. Liu, L. Liverani, E. Zuazua,Universal Approximation of Dynamical Systems by Semi-
Autonomous Neural ODEs and Applications, arXiv:2407.17092v2, (2024).

arXiv:2407.01602, (2024).

K. Liu, E. Zuazua, Representation and regression problems in neural networks: relaxation, gener-

A. Alcalde, G. Fantuzzi, E. Zuazua, Clustering in pure-attention hardmax transformers,J
alization and numerics, in progress. J

Enrique Zuazua CoML 4 /16



Clustering versus Complexity

A. Alvarez, R. Orive, & E. Z. 2023

@ Clustering of data allows to diminish the number of switches

@ Increasing the space dimension d diminishes the number of switches:

N — N/d.

Enrique Zuazua CoML 37 / 42




Federated Learning

joint work with K. Liu, Y. Song & Z. Wang

Server

Adaptive aggregation or
ensemble distillation

Downloading
parameters

Uploading
parameters

\

\ Client 1 j \ Client 2 /

E)ataseta E)ataseti
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38 / 42



Transformers

Behold, a wild pi creature,
foraging in its native habitat of
mathematical formulas and
computer code! With its infinite
digits and irrational

tendencies, this

these | 0%

Pi | 0%
Transformer =» . .

%«:} spotting | 0%
| few | 0%
3Bluel Brown G P T 3 t |o%

1ts
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Self-attention mechanism

The pure-attention hardmax transformer is
given by

ket k@ 1 (2 - 2)
2N =d ey 2 (s

JECi(Z¥)
where
Ci(Z) = {j = e 2?3](< Z;;Zg>}-

Theorem (Emergence and identification of clusters)

Let Z0,...,2° € RY be nonzero. There exists a

finite set S = {s1,..., s,} CRY, p < n, such that

zf' 55 as K— .

Moreover, the first m < p elements of S are the
vertices of a convex polytope which are the leaders,
and the remaining elements are the projections of
the origin onto the faces of such polytope.

Enrique Zuazua CoML

Joint work with A. Alcalde & G. Fantuzzi
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romising Field
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Bridging two neighbouring fields
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HOME THE CHAIR + RESEARCH -~ JOIN US! «

Fredoch- Alesander -Urvweruthe Q
DYNAMICS, CONTROL

MACHINE LEARNING RESOURCES -
AND NUMERICS

READ MORE

EAU———

Meet us! Dynamics, Control, Machine Upcoming events Math to go!
About us, our team Learmning and Numerics Join our next FAU DCN-AvH Looking to re-play or missed
Mathematics is everywhere; seminar, workshop, ... an event? Find it here!

we show you how!

We are the Chair for Dynamics, Control, Machine Leamning and Numerics — Alexander
von Humboldt Professorship.

Located at Friedrich-Alexander-Universitat, Erlangen-Niurnberg, a beautiful bavarian region in
Germany, FAU DON-AVH is co-funded by Alexander von Humbolkdt Foundation and led by Prof. Dr.
DhC. Enrique Zuazua

Read more about us

Working actively in the broad area of Applied Mathematics and Machine Learing, we are
passionate people developing and applying methods of Mathematical and Computational
Mathematics to model, understand, design and control the dynamics of various phenomena
arising in the interface of Mathematics with Engineering, Physics, Biology and Social Sciences.

Maths to the World!

M. Our Team
Prof. Enrique Zuazua is the Head of the We believe in people and the unlimitiess We do research to make a better world.

Chair for Dynamics, Control, Machine nesser of 3 mulicsdharal. anen and Our passion led us here to give Society




Conclusions and Perspectives

@ Fantastic horizon for mathematical research and in particular for the fields of
Control and Optimization:

e Training

Generalization

Generation

Dimensionality and probabilities and statistics.

Federated Learning

@ Digital Twins Methodologies pose specific challenges:
o Scalability / Adaptivity / Personalized / Goal oriented

o
o
o Complexity: Width/Depth
o
o
o

(Model Predictive Control?)

o Control of control for DT modelling
o Reliability / generalization / synthetic data
e Merging with Physics and Mechanics

Enrique Zuazua
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