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Motivation

* Role of Hyperbolic Systems: Characterize and predict waves with finite propagation speeds (e.g.,
vibrations in rigid bodies or fluid).

* Applications: Used in fluid and solid mechanics, electromagnetism, seismic waves, and optical
transmission.

* Developing control theories (like controllability, stabilizability, synchronization ) and implementing
high-performance numerical simulations and computational methods is of profound
significance for understanding natural phenomena and optimizing the performance of the system.

 Jo do so, you needs:
nonlinear functional analysis, PDEs, networks and graph theory,

control theory, optimal design, spectral analysis, numerical analysis, ...



Motivation

* Role of Hyperbolic Systems: Characterize and predict waves with finite propagation speeds (e.g., vibrations in
rigid bodies or fluid).

* Applications: Used in fluid and solid mechanics, electromagnetism, seismic waves, and optical transmission.

* Developing control theories (like controllability, stabilizability, synchronization ) and implementing high-
performance numerical simulations and computational methods is of profound significance for understanding
natural phenomena and optimizing the performance of the system.

* Jo do so, you needs: nonlinear functional analysis, PDEs, Networks and graph theory, control theory, optimal
design, spectral analysis, numerical analysis, ...

In this talk, | aim to present some interesting models, controllability properties, numerical realization for coupled

wave equations, with some key results and research perspectives, and to leave space for future discussion at
Benasque!
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Boundary Control for hyperbolic wave

Some Key Properties.

» Prescribe suitable boundary conditions for IBVP on a bounded domain

> |ocal & global
> internal control & boundary control

» Controllability time (7" > 0) «

> a finite speed of propagation of the hyperbolic wave

L

.:1\

. . . ) L =
> maximum determinate domains *

> T(> 0) should be chosen as small as possible (optimal controllability time).



Difficulties (interests) may arise in ...

» Nonlinearity.

> Weak solutions. [of quasilinear hyperbolic systems — shock waves — an irreversible
process — Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, '02] — weaken the definition — case by case
(the scalar convex conservation law [F. Ancona, A. Marson '98,'99, T. Horsin, '98], the
p-system in isentropic gas dynamics [O. Glass, '07]].

> Classical solution exists only locally in time (P. D. Lax, '64; F. John, '90; T. Li, '94) —
semi-global classical solution (7" > 0 might be suitably large) [M. Cirina, '70, T.Li, Y.Jin,
B.Rao, '00, '01] — Local exact controllability in the quasilinear case.

Control and
Nonlinearity

g o Controllability and
Observability for Quasilinear
Hyperbolic Systems

i
.




Difficulties (interests) may arise in ...

» Nonlinearity.

Mathématigues & Applications S0

> Weak solutions. [of quasilinear hyperbolic systems — ¢ end e
process — |Impossible to get exact boundary controllabi Wave Propagaion,
and final states [A. Bressan, G. M. Coclite, '02] — wea @5 en ~ G Lo

Multi-structures

(the scalar convex conservation law [F. Ancona, A. Mar
p-system in isentropic gas dynamics [O. Glass, '07]].

> Classical solution exists only locally in time (P. D. Lax
semi-global classical solution (7" > 0 might be suitably |
B.Rao, '00, '01] — Local exact controllability in the qu.

» Networked Structure. &) springe

>  Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (1, £) may change the controllability results

[Lagnese-Leugeing-Schmidt, '94]

Modeling, Analysis

and Control of
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Difficulties (interests) may arise in ...

» Networked Structure.

>  Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (V,£) may change the controllability results

[Lagnese-Leugeing-Schmidt, '94]

* Optimal controllability time T

COﬂtrO |ab|||ty a ﬂd * Minimum number of controls.
: . * Placement of controls.
COﬂtI’O DeS'Q” rob\em * Calculation of controls.

» Nodal Profile Control: Our aim is to fit (a part of) the boundary traces to a given profile after
a suitably long time t = T' by means of boundary controls. [Project: Control theory on
planar or spacial string networks: controllability and partial nodal control for quasilinear
hyperbolic systems. (Individual funding & NSFC-1121101.Joint work with T.Li.]



Difficulties (interests) may arise in ...

» Nonlinearity
» Networked Structure

» New boundary/interface conditions
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Difficulties (interests) may arise in ...

» New boundary/interface conditions

(y), =0, 0<ax<Lt>0 i=1,2,
K1 (y,(0,8))—r(y"(0,1) — y(0,1)), R
ynamical transmission conaitions
= Ka(y5(0,1))+r(y (0,1) — y°(0,1)),
"), i=1,2.
r = 0 string yq(t, x)

Controls

K spring

AN
'

string  y2(t, x)



Difficulties (interests) may arise in ...

» New boundary/interface conditions

If the spring stiffness tends to infinity, formally the system tends to the classical string-mass problem. !

For spring-mass system it is known that the mass smoothens the waves while crossing the mass-point.2

If the spring stiffness tends to zero, the strings become uncoupled.

vV v v Y

The spring coupling can be seen as a weakening of the classical transmission conditions at a multiple joint.>

1G. Leugering, 1998; F. Almusallams, 2015; Y.Wang, T.Li, 2018
25. Hansen, E.Zuazua 1995
3G.Leugering,S.I\/Iicu, |.Roventa, Y.Wang, 2022
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Example: Networks of vibrating strings

New boundary conditions + coupling

Consider the following coupled system of 1-D quasilinear wave equations (¢ = 1, ..., n):

yzt — (Kz(yzvy:zc))w — F(Y7yiv7yt)7 (S [OaL’L]at < [OaT]
yie(t,0) = G'(t,y(t,0),y=(t,0),y:(t,0)) Second-order differential operators
(4
(E) +/ H'(t,s,y(s,0))ds, t € [0,T] (temporal) non-locality
0
y'(t, Li) = u'(t), t € [0,T]
(v, y)(0,2) = (¢'(x),¥" (), € [0, L.

where
» v = (y',...,y™)" is an unknown vector function of (¢, z),
» K'= K"(y",y.) are given C* functions of y* and v,
> ag; K'(y',ys) > 0,
» F',G", H" are given C" functions of their arguments and 0 value at null state (i.e. 0 is an
equiblium).
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Exact boundary controllability

— (K'(y",¥.))e = F(y,¥2,¥t), x€[0,L],t€[0,T]
(£,0) = G'(t,y(t,0), y2(¢,0), y:(£,0))

t
+/ H'(t,s,y(s,0))ds, t €|0,T]
0

T < [O, Lz]

The system (E) is locally exact controllable
» with n controls |G.Leugering, T.Li, Y.Wang, '18,'19].

Controllability Time (sharp): T*

2L,
= .max
i=1,..n \/K)l/x(()’())
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Exact boundary controllability

y;fét o (Kz(yzay;:))fl? — F(Y?YCB?Yt)? T < [OaLZ]vt = [OaT]
y;t(ta O) — Gz(ta Y(ta 0)7 yw(ta 0)7 Yt(ta O))

(E) - /Ot H'(t,s,y(s,0))ds, t €[0,T]

T < [O, Lz]

The system (E) is locally exact controllable
» with n controls |G.Leugering, T.Li, Y.Wang, '18,'19].

» This result can be improved by reducing the number of controls to n — 1, but
the space of controlled initial data is asymmetric [G.Leugering, S.Micu, 1.Robenta, Y.Wang,
'22] [G.Leugering, C.Rodriguez, Y.Wang, '24, submitted]



Key techniques for wellposedness and boundary controllability:
1. Characteristics
2. Explicit constructive method with modular structure

)T

= (¥, ¥z»y;)" - Then we get

We introduce w* = (w}, w, w}

with (t,x) € |0, T| x |0, L;]. This, in turn, can be rewritten in the form of a quasilinear
hyperbolic system

A = — KZ%(wivwé)v



Difficulties (interests) may arise in ...

» Nonlinearity
» Network structures

» New boundary/interface conditions

B> Degeneration 1 Lack of controllability /observability for wave equations with degeneration.
¢ Lack of one-sided exact controllability in y+ — (a(x)ys)s = 0 when a(x) = 2%, a > 2.| F.
Alabau-Boussouira, P. Cannarsa and G. Leugering, '17] [Macia F, Zuazua E. '02]
2 Constrained Optimal Control for wave equation with dynamical degeneration (hybrid system)
ominJ(y,a,u) st 0 < a<1andyy — (2*Pys)e = 0, a&(t) = va(t) + (y2(t,0) — )4
3 Some relaxed version of the damage problem?
¢ Missing springs in the coupling [joint work with G. Leugering, C. Rodriguez].




Difficulties (interests) may arise in ...

» Nonlinearity

» Network structures

» New boundary/interface conditions
» Degeneration

» Control design and how to compute the control?



Difficulties (interests) may arise in ...

» Control design and how to compute the control?

Internship at FAU-MoD (Center for Mathematics of Data)

» Dania Sana (June - September 2022)
Approximating Partial Differential Equations via Physical-Informed Neura/ Networks
Supervisors: Yue Wang, Enrique Zuazua

» https://github.com /DCN-FAU-AvH /PINNs_ wave_equation

Simulation, inverse problems, and control for (degenerate) 1-D wave
equations using PINNSs



Difficulties (interests) may arise in ...

PINN state

» Control design and how to compute the control?

Physics Informed Neural Networks (PINNs)

N\ Measurement Loss
Data: u = u ;
target /
Physics-Informed Part

/ i PDE: d,u +ud, u = va,,u\ _
] | PDE+BC+IC 06
/ X 0.8 0
) |+ Interface Loss /" Total 10
,\ r \ Loss
0.0
A;t;m’atic
\Differentiation / 05 -
Backpropagation
(Update W, b, a) N
-1.0 -
=
-1.5 1
Done.
Y -2.0 1
= Control function u(t)

0.0 05 10 15 20 25 30 35 40
t



Difficulties (interests) may arise in ...

» Nonlinearity

» Network structures

» New boundary/interface conditions

> Degeneration

» Control Design: How to compute the control?

» Lack of exact controllability, what else we could expect?



Back to Origins of Control Theory

To control means to act, to put things in order to guarantee that the system behaves
as desired.

In 1948, Norbert Wiener defined Cybernetics (or Control Theory) as the science of
control and communication in animals and machines.

"...In a desirable future, engines would obey and imitate human beings.."
Cybernetics by N. Wiener (1894-1964)



Brain Waves and conditions for synchronization

ins of Control Theory
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What is synchronization?

Synchronization 1s a common phenomenon and has been studied vastly in many subjects,
including biology, physics, engineering, and mathematics.

Thousands of fireflies may twinkle Audiences 1n the theater can Pacemaker cells of the heart Alpha-waves in Brain
at the same time applaud with a rhythmic beat function simultaneously



Introduction of Synchronization

Why? From Randomness to an Order?

Early studies:
@ In 1665, Ch. Huygens, two pendulums

@ In 1961, N. Wiener, systematically studies

THE EMERGING SCIENCE

Related books:

@ A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal OF SPONTANEOUS ORDER

Concept in Nonlinear Sciences, 2001

@ S. Steven, SYNC—How Order Emerges from Chaos in the Universe,
Nature, and Da||y I_|fe, 2004 Steven Strogatz

Bl Ch. Huygens, Oeuvres Compl etes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967.

B N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 2nd ed.. The M .I.T. Press/John Wiley & Sons, Inc., Cambridge, Mass./New York,
London,1961.



Synchronization for ODEs

In principle, synchronization happens when different individuals possess likeness in nature, that 1s, they
conform essentially to the same governing equation, and meanwhile, the individuals should bear a

certain coupled relation.

* The previous studies focused on systems described by ordinary difterential equations (ODESs), such as
SR N )

* Synchronization in the consensus sense
X;(t)— X;(t) =0 (¢,5=1,---,N) ast — +o0,

e Synchronization in the pinning sense (with a priori unknown state a)

X;(t) >a (i=1,---,N) ast — 4o,



Synchronization for PDEs

@ Since 2012, Li, Rao,... Synchronization for hyperbolic systems

Finite time:

e Exact boundary synchronization

o Approximate boundary synchronization Q.
Wt ZRGE AT R
Boundary : e Synchronization
Synchronization for \IQVLave Elquatlons
for Hyperbolic with Locally
SysthII]]S Distributed Controls
¥ Birkhauser ////% @ Springer

2019 2021 2024
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Consider the following coupled system of wave equations:

(U — AU+ AU =0 in (0,400) x €,
s U=0 on (0,+00) x Iy,
U=DH on (0,+00) x I'y

with the initial condition
t=0: U=Uy, U =0U; inQ,

where U = (uV), .-+, u™))T is the state variable, H = (h(1), ... R(MNT
denotes the applied boundary control (M < N), A € MV *¥(R) is the coupling
matrix, and D € MY *M(R) is the boundary control matrix;

() is a bounded domain, with smooth boundary I' = I'y U T’y satisfying
'y NTo =0 and mes(I'y) > 0.

Boundary sync. for wave equations

Def. Exact boundary synchronization for r > T
u(1>(t, ) = (2 (t,)=---= u) (t,-) = u(t, ),

while u = u(?, x) is called the corresponding exactly synchronizable
state which 1s unknown beforehand. This final condition 1s equivalent to

tZT: ClUEO,

where C7 = _
1 -1 (N—1)x N
Initial Data: (Uo, 1) = (LQ(Q))N X (H_l(Q))N
Null Controllability: when M = N and the usual multiplier geometrical condition
Question: 1n the case of partial lack of boundary controls, which kind of

controllability in a weaker sense can be realized by means of fewer boundary
controls?
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Consider the following coupled system of wave equations:

(U — AU+ AU =0 in (0,400) x €,
s U=0 on (0,+00) x Iy,
U=DH on (0,+00) x I'y

with the initial condition
t=0: U=Uy, U =0U; inQ,

where U = (uV), .-+, u™))T is the state variable, H = (h(1), ... R(MNT
denotes the applied boundary control (M < N), A € MV *¥(R) is the coupling
matrix, and D € MY *M(R) is the boundary control matrix;

() is a bounded domain, with smooth boundary I' = I'y U T’y satisfying
'y NTo =0 and mes(I'y) > 0.

Boundary sync. for wave equations

1 -1 (N—=1)x N

This system is exactly synchronizable iff A = (q;;)

satisfies the row-sum condition
N

Zakp:a (k=1,---,N),

p=1
which is equivalent to e¢; = (1,...,1)" is an eigenvalue of A,
corresponding to the eigenvalue a.

Table 1: The exact boundary synchronization by p-groups

Condition of | Minimal number of
C,-compatibility | boundary controls

Exact boundary N
null controllability

Exact boundary CLA = ACY N —1

synchronization

Exact boundary CyA = A0, N —2

synchronization by 2-groups

Exact boundary C,A=A,C, N—p
synchronization by p-groups
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Consider the following coupled system of wave equations:

(U — AU+ AU =0 in (0,400) x €,
s U=0 on (0,+00) x Iy,
U=DH on (0,+00) x I'y

with the initial condition
t=0: U=Uy, U =U; inQ,

where U = (uV), .-+, u™))T is the state variable, H = (h(1), ... R(MNT
denotes the applied boundary control (M < N), A € MV *¥(R) is the coupling
matrix, and D € MY *M(R) is the boundary control matrix;

() is a bounded domain, with smooth boundary I' = I'y U T’y satisfying
'y NTo =0 and mes(I'y) > 0.

Boundary sync. for wave equations

Null Controllability for Reduced System
W — AW, + AW, =0 in (0, +o00) x Q,

Wy =0 on (0,+00) x Iy,
Wy, =CiDH on (0,+o00) x I'y.
where

W, = (w(l), . 7w(N—l))T — O,U.
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Consider the following coupled system of wave equations:

(U — AU+ AU =0 in (0,400) x €,
(1.5) s U=0 on (0,+00) x Iy,
U=DH on (0,+00) x I'y

with the initial condition

(1.6) t=0: U=Uy, U =U; inQ,
where U = (uV), .- ulM)) T is the state variable, H = (h(1), ... B(M)HT

denotes the applied boundary control (M < N), A € MV *¥(R) is the coupling
matrix, and D € MY *M(R) is the boundary control matrix;

() is a bounded domain, with smooth boundary I' = I'y U T’y satisfying
'y NTo =0 and mes(I'y) > 0.

Boundary sync. for wave equations

Def. Approximate boundary synchronization for r > T

System (1.5) possesses the approximate boundary synchroniza-
tion at the time 7' > 0 iffor any given initial data (Up, U;) € (L2(£2))V x
(H=1(Q))", there exist a sequence {H,} of boundary controls, H, €
L? (0, 4o00; (L*(I'y))™) with compact support in [0, T], such that the
corresponding sequence {U,, } = {(u,,(q,l), e u,,(q,N))T} of solutions to prob-
lem (1.5)-(1.6) satisfies

u,,(f)—u,,(f) — 0 asn— +o0
for all 1 < k,{ < N in the space

Croe([T,+00); L*(22)) N Cy ([T, +00); H(Q2)).
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Consider the following coupled system of wave equations:

(U — AU+ AU =0 in (0,400) x €,
LU =0
\U=DH

on (O, —I-OO) X F(),
on (O, —I-OO) x 1"

with the initial condition
t=0: U=Uy, U =0U; inQ,

where U = (uV), .-+, u™))T is the state variable, H = (h(1), ... R(MNT
denotes the applied boundary control (M < N), A € MV *¥(R) is the coupling
matrix, and D € MY *M(R) is the boundary control matrix;

() is a bounded domain, with smooth boundary I' = I'y U T’y satisfying
'y NTo =0 and mes(I'y) > 0.

Approximate Null Controllability for Reduced System

W/ — AW, 4+ A, W; =0 in (0, 400) x €,

Wy =0 on (0,4o00) x Iy,
W, =C\DH on (0,4o00) x I'y.
where

W, = (w(l)7 e 7w(N—l))T — C,U.

Approximate C;D-Observability for Reduced Adjoint Problem

U — AU, + A, U, =0 in (0, 4+00) x {2,
U, =0 on (0,400) x T,
t:OI\Iflz\Ifo, ,1:\111 in €.

(C1D)',U =0 on [0,T] x '} => (U, ¥;) =0, ie., ¥ =0.



Boundary sync. for wave equations
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Main results: A necessary but not sufficient rank condition for

approximate boundary synchronization,

Consider the following coupled system of wave equations:

1. with the condition of C; -compatibility condition :
U'— AU+ AU =0 in (0,400) x €,

U=90 on (0, +00) x To, rank(C,D,C1AD, - ,CLAN'D) = N — 1.
U= DH on (0, +00) x Ty
2. with/without the condition of C; -compatibility condition :

with the initial condition

t=0: U=Uy, U =0 in9, ra,nk(D,AD,---,AN_lD)>N—1
where U = (uM), ... 4T is the state variable, H = (D), ... pR(MNHT

denotes the applied boundary control (M < N), A € MY*¥(R) is the coupling

matrix, and D € MY *M(R) is the boundary control matrix; : : : :
More discussion of the approximately synchronizable state, and

(2 is a bounded domain, with smooth boundary I' = 1"y U Ty satisfying . .
of Neumann, Robin boundary controls can be found in the book.

fl ﬂfo = () and meS(Fl) > 0.



Internal SYNC for wave equations with locally distributed controls

Part I Let 2 C R™ be a bounded domain with smooth boundary I' and w be a subdomain

System of Wave Equations with Intem‘i'l of Q. Let A be a matrix of order N and D be a full column-rank matrix of order N x
Controls M (M < N), both with constant elements. Consider the following system with the
state variable U = (uV, ..., u™)! and the internal control H = (hV, ..., k)T,

"

U’ — AU + AU
{ (1)

U=0

Syn Ch ro n izati O n associated with the initial condition:
for Wave Equations (=0 U =0y U'=0ying2 )

With LO C a | | where x, denotes the characteristic function of w, the symbol * stands for the time-
. . derivative, and A = > 7", 88—; 1s the Laplacian operator.
DlStrlbUtEd COntrOls A necessary and sufficient rank condition for approximate internal synchronization.
Part I1 Let 2 C R™ be a bounded domain with smooth boundary I' and w C €2 be a

System of Wave Equations with Mixed

Internal and Boundary Controls neighborhood of I'. Let A be a matrix of order N; D; and D; be full column-

rank matrices of order N x M| and N x M,, respectively; and all the matrices
are of constant elements. Consider the following system for the state variable U =

@D, ..., u™)T the internal control H = (", ..., hA™V)! and the boundary
control G = (g, ..., gM))HT.
@) Springer U’ — AU + AU = Dy x,H in (0, +00) x Q. o
U=DG on (0, 4+00) x I

2024



Perspectives in Sync for PDEs

* Nonlinear case.

e L.Hu; T.T. L1; P. Qu, Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations, ESAIM: Control, Optimisation and
Calculus of Variations, 22 (2016), 1136-1183.

X. Lu, Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems, Chin. Ann. Math., Ser. B, 40 (2019), 79-96.
* The exact and approximate boundary synchronizations of nodal profile and on networks

 The phenomena of synchronization through coupling among individuals with possibly different motion laws (governing equations),
whose nature is yet to be explored. The research on the existence of the exactly synchronizable state for a coupled system of
wave equations with different wave speeds has been initiated.

* Generalized exact boundary synchronization.
* Other linear or nonlinear evolution equations (such as beam equations, plate equations, heat equations, etc.) .

* To extend the concept of synchronization to the case of components with different time delay will be more challenging and may
expose quite different features.



Summary

e Motivation
e Boundary controllability for coupled wave equations (1D, quasilinear case)

e Synchronization for coupled wave equations (high dimensional, linear case)
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