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Motivation

• Role of Hyperbolic Systems: Characterize and predict waves with finite propagation speeds (e.g., 
vibrations in rigid bodies or fluid).


• Applications: Used in fluid and solid mechanics, electromagnetism, seismic waves, and optical 
transmission.


• Developing control theories (like controllability, stabilizability, synchronization ) and implementing 
high-performance numerical simulations and computational methods is of profound 
significance for understanding natural phenomena and optimizing the performance of the system.


• To do so, you needs:  
nonlinear functional analysis,  PDEs, networks and graph theory,  
control theory, optimal design, spectral analysis, numerical analysis, …

 
 

 

 

申请人将近年来科研方向与取得的主要学术成绩归纳于下图（图一），并就其中三项代

表性的成果作简单介绍。 

 

代表性成果一. 波动方程及其耦合组具动力学边界条件的精确边界能控性 

对一类混合系统——具有非线性动力学边界/交界面条件的拟线性波动方程耦合组，例如

弦加上尖端质量和(粘)弹性弹簧（如图二），申请人系统且完整地

解决了该系统的数学建模、非线性泛函分析和精确边界能控性问题，

取得以下创新性理论及应用成果：（1）从数学建模角度，归纳了一

类新颖且重要的一般泛函形式的耦合非线性动力学边界/交接面条件，

其数学特征是边界处带有关于时间的高阶微分算子，等价于一类具有(时间)非局部性的积分

型边界；（2）从数学分析角度，提供了处理这类包含高阶时间导数的边界算子的统一框架，

（图 二） 

（图 一） 个人主要学术成绩 
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In this talk, I aim to present some interesting models, controllability properties, numerical realization for coupled 
wave equations, with some key results and research perspectives, and to leave space for future discussion at 

Benasque!



Table of Contents

• Motivation


• Boundary controllability for coupled wave equations (1D, quasilinear case) 


• Synchronization for coupled wave equations  (high dimensional, linear case) 



Controllability of Hyperbolic Type | 5

Some Key Properties.
! Prescribe suitable boundary conditions for IBVP on a bounded domain

> local & global
> internal control & boundary control

! Controllability time (T > 0)
> a finite speed of propagation of the hyperbolic wave

> maximum determinate domains
> T (> 0) should be chosen as small as possible (optimal controllability time).

Yue Wang CoNet_MoLeAp

Boundary Control for hyperbolic wave



Difficulties (interests) may arise in … 
Di�culties may arise in... | 6

I Nonlinearity.
> Weak solutions. [of quasilinear hyperbolic systems æ shock waves æ an irreversible

process æ Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, ’02] æ weaken the definition æ case by case
(the scalar convex conservation law [F. Ancona, A. Marson ’98,’99, T. Horsin, ’98], the
p-system in isentropic gas dynamics [O. Glass, ’07]].

> Classical solution exists only locally in time (P. D. Lax, ’64; F. John, ’90; T. Li, ’94) æ
semi-global classical solution (T > 0 might be suitably large) [M. Cirinà, ’70, T.Li, Y.Jin,
B.Rao, ’00, ’01] æ Local exact controllability in the quasilinear case.

I Networked Structure.
> Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (V, E) may change the controllability results

[Lagnese-Leugeing-Schmidt, ’94]

Control and
Nonlinearity

Jean-Michel Coron

American Mathematical Society
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[Lagnese-Leugeing-Schmidt, ’94] Constructive Method in Nodal Control Problem | 18
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* Optimal controllability time T ∗.
* Minimum number of controls.

* Placement of controls.
* Calculation of controls.

! Nodal Profile Control: Our aim is to fit (a part of) the boundary traces to a given profile after
a suitably long time t = T by means of boundary controls. [Project: Control theory on
planar or spacial string networks: controllability and partial nodal control for quasilinear
hyperbolic systems. (Individual funding & NSFC-1121101.Joint work with T.Li.]

Yue Wang Nodal Control FAU-DCN

Controllability and 
Control Design Problem
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Nonlinearity 

Networked Structure   

New boundary/interface conditions Networks of Nonlinear Strings Coupled by Spring and Mass | 7
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  New boundary/interface conditions 
Modeling 3/3: coupling/interface condition - elastic spring | 9






yi
tt − Ki(yi

x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(0, t) = K1(y1

x(0, t))−κ(y1(0, t) − y2(0, t)),
y2

tt(0, t) = K2(y2
x(0, t))+κ(y1(0, t) − y2(0, t)),

x = L :yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springκ

x = 0 x = L

Controls

Figure: Two strings connected via masses and an elastic spring

Dynamical transmission conditions
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




yi
tt − Ki(yi

x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(0, t) = K1(y1

x(0, t))−κ(y1(0, t) − y2(0, t)),
y2

tt(0, t) = K2(y2
x(0, t))+κ(y1(0, t) − y2(0, t)),

x = L :yi = ui(t), i = 1, 2.

! If the spring stiffness tends to infinity, formally the system tends to the classical string-mass problem. 1

! For spring-mass system it is known that the mass smoothens the waves while crossing the mass-point.2
! If the spring stiffness tends to zero, the strings become uncoupled.
! The spring coupling can be seen as a weakening of the classical transmission conditions at a multiple joint.3

1G. Leugering, 1998; F. Almusallams, 2015; Y.Wang, T.Li, 2018
2S. Hansen, E.Zuazua 1995
3G.Leugering,S.Micu, I.Roventa, Y.Wang, 2022

Yue Wang CoNet_MoLeAp FAU-Erlangen



Example: Networks of vibrating strings
New boundary conditions + coupling Generalization | 12

Consider the following coupled system of 1-D quasilinear wave equations (i = 1, ..., n):

(E)






yi
tt − (Ki(yi, yi

x))x = F (y, yx, yt), x ∈ [0, Li], t ∈ [0, T ]
yi

tt(t, 0) = Gi(t, y(t, 0), yx(t, 0), yt(t, 0))

+
∫ t

0
Hi(t, s, y(s, 0))ds, t ∈ [0, T ]

yi(t, Li) = ui(t), t ∈ [0, T ]
(yi, yi

t)(0, x) = (φi(x),ψi(x)), x ∈ [0, Li].

where
! y = (y1, ..., yn)T is an unknown vector function of (t, x),
! Ki = Ki(yi, yi

x) are given C2 functions of yi and yi
x,

! ∂
∂yi

x
Ki(yi, yi

x) > 0,
! F i, Gi, Hi are given C1 functions of their arguments and 0 value at null state (i.e. 0 is an

equiblium).
Yue Wang CoNet_MoLeAp FAU-Erlangen

Second-order differential operators


(temporal) non-localityNetworks of Nonlinear Strings Coupled by Spring and Mass | 7
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Exact boundary controllability
Remarks | 19

(E)

Y
__________]

__________[

y
i
tt ≠ (Ki(yi

, y
i
x))x = F (y, yx, yt), x œ [0, Li], t œ [0, T ]

y
i
tt(t, 0) = G

i(t, y(t, 0), yx(t, 0), yt(t, 0))

+
⁄ t

0
H

i(t, s, y(s, 0))ds, t œ [0, T ]

y
i(t, Li) = u

i(t), t œ [0, T ]
(yi

, y
i
t)(0, x) = („i(x), Â

i(x)), x œ [0, Li].

The system (E) is locally exact controllable
I with n controls [G.Leugering, T.Li, Y.Wang, ’18,’19].

I This result can be improved by reducing the number of controls to n ≠ 1, but

the space of controlled initial data is asymmetric [G.Leugering, S.Micu, I.Robenta, Y.Wang,
’22] [G.Leugering, C.Rodriguez, Y.Wang, ’22].

Controllability Time (sharp): T* = max
i=1,...n

2Li

Ki
yx

(0,0)
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Wellposedness | 14

We introduce wi = (wi
1, wi

2, wi
3)T := (yi, yi

x, yi
t)T . Then we get

∂

∂t




wi

1
wi

2
wi

3



+




0 0 0
0 0 −1
0 −Ki

wi
2

0




∂

∂x




wi

1
wi

2
wi

3



 =




wi

2
0

F i(wi) + Ki
wi

1
wi

2





with (t, x) ∈ [0, T ] × [0, Li]. This, in turn, can be rewritten in the form of a quasilinear
hyperbolic system

wi
t + Ai(x, wi)wi

x = F̃ (wi),

where Ai has 3 distinct real eigenvalues:
λ−

i = −
√

Ki
wi

2
(wi

1, wi
2), λ0

i = 0, λ+
i =

√
Ki

wi
2
(wi

1, wi
2).

Yue Wang CoNet_MoLeAp

Key techniques for wellposedness and boundary controllability:  
1. Characteristics

2. Explicit constructive method with modular structure



Difficulties (interests) may arise in … 

Nonlinearity 

Network structures 

New boundary/interface conditions 

Degeneration 

Outlook: Interplay between degeneration and control | 22

! Control of Nonlinear Hyperbolic Systems with Degeneration on Networks [DFG]
1 Lack of controllability/observability for wave equations with degeneration.

! Lack of one-sided exact controllability in ytt − (a(x)yx)x = 0 when a(x) = xα,α ≥ 2.[ F.
Alabau-Boussouira, P. Cannarsa and G. Leugering, ’17] [Macia F, Zuazua E. ’02]

2 Constrained Optimal Control for wave equation with dynamical degeneration (hybrid system)
! min J(y,α, u) s.t 0 ≤ α ≤ 1 and ytt − (xα(t)yx)x = 0, α̇(t) = να(t) + (y2

x(t, 0) − γ)+
3 Some relaxed version of the damage problem?

! Best Locations of the Dampers for Stabilizing a String: ytt − yxx + u(x)yt = 0 [in
discussion with J. Yong, D. Veldman, E. Zuazua];
! Missing springs in the coupling [joint work with G. Leugering, C. Rodriguez].
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Control design and how to compute the control?



Difficulties (interests) may arise in … 
Control design and how to compute the control?

Internship at FAU-MoD (Center for Mathematics of Data) | 18

I Dania Sana (June - September 2022)
Approximating Partial Di�erential Equations via Physical-Informed Neural Networks
Supervisors: Yue Wang, Enrique Zuazua

I https://github.com/DCN-FAU-AvH/PINNs_wave_equation

Simulation, inverse problems, and control for (degenerate) 1-D wave
equations using PINNs

I The accurate and fast prediction of numerical solutions
is of significant interest for many scientific applications,
say, real-time capable methods and algorithms.
[Joint project with Fraunhofer IISB].

Yue Wang CoNet_MoLeAp FAU-Erlangen



Difficulties (interests) may arise in … 
Control design and how to compute the control?

Physics Informed Neural Networks (PINNs) | 19

I Benefits: Data-e�ciency. Explainable ML. Domain Decomposition (XPINN). Open
source [DeepXDE] available.

Yue Wang CoNet_MoLeAp FAU-Erlangen



Difficulties (interests) may arise in … 
Nonlinearity 

Network structures 

New boundary/interface conditions 

Degeneration  

Control Design: How to compute the control? 

Lack of exact controllability, what else we could expect?



Origins: control and control theory | 1

To control means to act, to put things in order to guarantee that the system behaves
as desired.

In 1948, Norbert Wiener defined Cybernetics (or Control Theory) as the science of
control and communication in animals and machines.

"...In a desirable future, engines would obey and imitate human beings.."
Cybernetics by N. Wiener (1894-1964)

Yue Wang CoNet_MoLeAp

 Back to Origins of Control Theory



 Back to Origins of Control Theory

Brain Waves and conditions for synchronization



What is synchronization?
Synchronization is a common phenomenon and has been studied vastly in many subjects, 
including biology, physics, engineering, and mathematics. 

Thousands of fireflies may twinkle 
at the same time 

Audiences in the theater can 
applaud with a rhythmic beat 

Pacemaker cells of the heart 
function simultaneously 

Alpha-waves in Brain



Introduction of Synchronization
Introduction

Synchronization is a common phenomenon and has been studied vastly in

many subjects, including biology, physics, engineering, and mathematics.

Early studies:

In 1665, Ch. Huygens, two pendulums

In 1961, N. Wiener, systematically studies

Related books:

A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal

Concept in Nonlinear Sciences, 2001

S. Steven, SYNC—How Order Emerges from Chaos in the Universe,

Nature, and Daily Life, 2004

Y.Y. Wang (Sichuan Univ.) Generalized Boundary Synchronization 27 July, 2023 3 / 24

Why? From Randomness to an Order?

 Ch. Huygens, Oeuvres Compl`etes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967. 

 N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 2nd ed.. The M.I.T. Press/John Wiley & Sons, Inc., Cambridge, Mass./New York, 
London,1961. 



Synchronization for ODEs

• The previous studies focused on systems described by ordinary differential equations (ODEs), such as 

8 BOUNDARY SYNCHRONIZATION

1. Introduction and overview

1.1. Introduction. Synchronization is a widespread natural phenom-
enon. Thousands of fireflies may twinkle at the same time; audiences in
the theater can applaud with a rhythmic beat; pacemaker cells of the
heart function simultaneously; and field crickets give out a unanimous
cry. All these are phenomena of synchronization (cf. [69], [72]).

In principle, synchronization happens when di↵erent individuals pos-
sess likeness in nature, that is, they conform essentially to the same
governing equation, and meanwhile, the individuals should bear a cer-
tain coupled relation.

The phenomenon of synchronization was first observed by Huygens
[20] in 1665. The research on synchronization from a mathematical
point of view dates back to Wiener [79] in the 1950s.

The previous studies focused on systems described by ordinary dif-
ferential equations (ODEs), such as

(1.1) X 0

i
= f(t,Xi) +

NX

j=1

AijXj (i = 1, · · · , N),

where Xi(i = 1, · · · , N) are N -dimensional state vectors, “ 0 ” stands
for the time derivative, Aij(i, j = 1, · · · , N) are N ⇥ N matrices,
and f(t,X) is an n-dimensional vector function independent of i =
1, · · · , N . The right-hand side of (1.1) shows that everyXi(i = 1, · · · , N)
possesses two basic features: satisfying a fundamental governing equa-
tion and bearing a coupled relation among one another.
If for any given initial data

(1.2) t = 0 : Xi = X(0)
i

(i = 1, · · · , N),

the solution X = (X1, · · · , XN)T = X(t) to the system satisfies

(1.3) Xi(t)�Xj(t) ! 0 (i, j = 1, · · · , N) as t ! +1,

namely, all the states Xi(t) (i = 1, · · · , N) tend to coincide with each
other as t ! +1, then we say that the system possesses the syn-
chronization in the consensus sense, or, in particular, if the solution
X = X(t) satisfies

(1.4) Xi(t) ! a (i = 1, · · · , N) as t ! +1,

where a is a constant state which is a priori unknown, then we say
that the system possesses the synchronization in the pinning sense.
Obviously, the synchronization in the pinning sense implies that in
the consensus sense. These kinds of synchronizations are all called the

In principle, synchronization happens when different individuals possess likeness in nature, that is, they 
conform essentially to the same governing equation, and meanwhile, the individuals should bear a 
certain coupled relation. 
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In principle, synchronization happens when di↵erent individuals pos-
sess likeness in nature, that is, they conform essentially to the same
governing equation, and meanwhile, the individuals should bear a cer-
tain coupled relation.

The phenomenon of synchronization was first observed by Huygens
[20] in 1665. The research on synchronization from a mathematical
point of view dates back to Wiener [79] in the 1950s.

The previous studies focused on systems described by ordinary dif-
ferential equations (ODEs), such as

(1.1) X 0

i
= f(t,Xi) +

NX

j=1

AijXj (i = 1, · · · , N),

where Xi(i = 1, · · · , N) are N -dimensional state vectors, “ 0 ” stands
for the time derivative, Aij(i, j = 1, · · · , N) are N ⇥ N matrices,
and f(t,X) is an n-dimensional vector function independent of i =
1, · · · , N . The right-hand side of (1.1) shows that everyXi(i = 1, · · · , N)
possesses two basic features: satisfying a fundamental governing equa-
tion and bearing a coupled relation among one another.
If for any given initial data

(1.2) t = 0 : Xi = X(0)
i

(i = 1, · · · , N),

the solution X = (X1, · · · , XN)T = X(t) to the system satisfies

(1.3) Xi(t)�Xj(t) ! 0 (i, j = 1, · · · , N) as t ! +1,

namely, all the states Xi(t) (i = 1, · · · , N) tend to coincide with each
other as t ! +1, then we say that the system possesses the syn-
chronization in the consensus sense, or, in particular, if the solution
X = X(t) satisfies

(1.4) Xi(t) ! a (i = 1, · · · , N) as t ! +1,

where a is a constant state which is a priori unknown, then we say
that the system possesses the synchronization in the pinning sense.
Obviously, the synchronization in the pinning sense implies that in
the consensus sense. These kinds of synchronizations are all called the

•  Synchronization in the consensus sense  

• Synchronization in the pinning sense  (with a priori unknown state )a
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Problem statement

Consider the following coupled system of wave equations:

8
>><

>>:

U
00 ��U +AU = 0 in (0,+1)⇥ ⌦,

U = 0 on (0,+1)⇥ �0,

U = DH on (0,+1)⇥ �1

(1)

with the initial condition

t = 0 : U = Û0, U
0 = Û1 in ⌦, (2)

where U = (u(1)
, · · · , u(N))T is the state variable, H = (h(1)

, . . . , h
(M))T

denotes the applied boundary control (M  N), A 2 MN⇥N (R) is the coupling
matrix, and D 2 MN⇥M (R) is the boundary control matrix;

⌦ is a bounded domain, with smooth boundary � = �1 [ �0 satisfying

�1 \ �0 = ; and mes(�1) > 0.
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or, in particular, if the system states with any given initial data possess
the asymptotic synchronization in the pinning sense:

(1.8) u(i)(t, ·) ! u(t, ·) (i = 1, · · · , N) as t ! +1,

where u = u(t, ·) is called the asymptotically synchronizable state,
which is a priori unknown? If the answer of this question is positive,
these conclusions should be realized spontaneously on an infinite time
interval [0,+1), and is a naturally developed result decided by the
nature of the system itself.

But for systems governed by partial di↵erential equations, as there
are boundary conditions, another possibility exists, i.e., to give artificial
intervention to the evolution of state variables through appropriate
boundary controls, which combines synchronization with control and
introduces the study of synchronization to the field of control. This
is also a new perspective to the investigation of synchronization for
systems of partial di↵erential equations.

Here, the boundary control comes from the boundary condition U =
DH on �1. The elements in H are adjustable boundary controls, the
number of which is M(6 N). To put the boundary control matrix D
before H will provide many possibilities of combining boundary con-
trols.

On the other hand, precisely due to the artificial intervention of
control, we can make a higher demand, i.e., to meet the requirement of
synchronization within a limited time, instead of waiting until t ! +1.

The corresponding question is whether there is a suitably large T >
0, such that for any given initial data (bU0, bU1), through proper bound-
ary controls with compact support in [0, T ] (that is, to exert the bound-
ary control at the time interval [0, T ], and abandon the control from
the time t = T ), the solution U = U(t, x) to the corresponding problem
(1.5)-(1.6) satisfies, as t > T ,

(1.9) u(1)(t, ·) ⌘ u(2)(t, ·) ⌘ · · · ⌘ u(N)(t, ·) := u(t, ·),

that is, all state variables tend to be the same since the time t = T ,
while u = u(t, x) is called the corresponding exactly synchronizable
state which is unknown beforehand. If the above is satisfied, we say
that the system possesses the exact boundary synchronization.
Here, “exact” means that the synchronization of state variables is exact
without error, and the so-called “boundary” indicates the means or
method of control, i.e., to realize the synchronization through boundary
controls.

In the above definition of synchronization, through boundary con-
trols on the time interval [0, T ], we not only demand synchronization

Def. Exact boundary synchronization for  t ≥ T

while   is called the corresponding exactly synchronizable 
state which is unknown beforehand. This final condition is equivalent to 

u = u(t, x)

Initial Data: 
Null Controllability: when  and the usual multiplier geometrical condition  
Question: in the case of partial lack of boundary controls, which kind of 
controllability in a weaker sense can be realized by means of fewer boundary 
controls? 

M = N

Definition (Exact boundary synchronization)

System (1) is called exactly boundary synchronizable, if there exists a time
T > 0, such that for any given initial data (Û0, Û1) 2 (L2(⌦))N ⇥ (H�1(⌦))N ,
there exists a boundary control H 2 L

2
loc(0,+1; (L2(�1))M ) with compact

support in [0, T ], such that the corresponding solution
U = U(t, x) 2 C

0
loc(0,+1; (L2(⌦))N ) \ C

1
loc(0,+1; (H�1(⌦))N ) to problem

(1)-(2) satisfies the following condition

u
(1)(t, ·) ⌘ · · · ⌘ u

(N)(t, ·) def.
= u(t, ·), (3)

where u is a priori unknown, called the exactly synchronizable state.

Condition (3) is equivalent to

t � T : C1U ⌘ 0, (4)

where C1 =

0

B@
1 �1

. . .
. . .

1 �1

1

CA

(N�1)⇥N

.
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T > 0 is, the exact boundary synchronization can never be achieved
for all initial data (bU0, bU1) 2 (L2(⌦))N ⇥ (H�1(⌦))N .

Therefore, the above condition of C1-compatibility is not only su�-
cient but also necessary to ensure the exact boundary synchronization.
Under this condition, for the boundary control matrix D such that
rank(D)= rank(C1D) = N � 1, appropriately chosen (N � 1) bound-
ary controls su�ce to meet the requirement.
We point out that in the study of synchronization for systems gov-

erned by ODEs, the row-sum condition (1.12) is imposed to the system
according to physical meanings as a reasonable su�cient condition.
However, for our systems governed by PDEs and for the synchroniza-
tion on a finite time interval, it is actually a necessary condition, which
makes the theory of synchronization more complete for systems gov-
erned by PDEs.
In the case that system (1.5) possesses the exact boundary synchro-

nization at the time T > 0, as t > T , the exactly synchronizable state
u = u(t, x) satisfies

⇢
u00

��u+ au = 0 in (T,+1)⇥ ⌦,
u = 0 on (T,+1)⇥ �,

(1.19)

where a is given by the row-sum condition (1.12). Thus, the evolution
of the exactly synchronizable state u = u(t, x) with respect to t can be
uniquely determined by its initial data:

t = T : u = bu0, u0 = bu1.(1.20)

However, generally speaking, the value (bu0, bu1) of (u, u0) at t = T should
depend on the original initial data (bU0, bU1) as well as on the boundary
controls H which realize the exact boundary synchronization. More-
over, the value of (bu0, bu1) at t = T for a given initial data (bU0, bU1) can
be determined, and in some special cases it is independent of boundary
controls H which realize the exact boundary synchronization.

The attainable set of all possible values of (bu0, bu1) at t = T is the
whole space L2(⌦)⇥H�1(⌦), when the original initial data (bU0, bU1) vary
in the space (L2(⌦))N ⇥ (H�1(⌦))N . That is to say, any given ( bu0, bu1)
in L2(⌦)⇥H�1(⌦) can be the value of an exactly synchronizable state
(u, u0) at t = T (cf. Chapter 5).

1.4. Exact boundary synchronization by p-groups. How will be
the situation if the number of boundary controls is further reduced?
Then we can only further lower the standard to be reached.
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This system is exactly synchronizable iff    
satisfies the row-sum condition  
 
 
 
which is equivalent to  is an eigenvalue of , 
corresponding to the eigenvalue .

A = (aij)

e1 = (1,...,1)T A
a

12 BOUNDARY SYNCHRONIZATION

Then through N boundary controls, when T > 0 is suitably large,
the exact boundary null controllability can surely be realized for all
(bU0, bU1) 2 (L2(⌦))N ⇥ (H�1(⌦))N .

(2) Assume thatM < N , that isif the number of boundary controls is
fewer than N , then no matter how large T > 0 is, the exact boundary
null controllability cannot be achieved for all (bU0, bU1) 2 (L2(⌦))N ⇥

(H�1(⌦))N .
Thus, in the case of partial lack of boundary controls, which kind

of controllability in a weaker sense can be realized by means of fewer
boundary controls? It is a significant problem from both theoretical
and practical points of view, and can be discussed in many di↵erent
cases as will be shown in the sequel.

1.3. Exact boundary synchronization. Really meaningful synchro-
nization should exclude the trivial situation of null controllability, and
thus we get the following results (cf. Chapter 4):

Assume that the system under consideration is exactly synchroniz-
able, but not exactly null controllable, that is to say, assume that the
system is exactly synchronizable with rank(D) < N . Then the coupling
matrix A = (aij) should satisfy the following condition of compatibility:

NX

p=1

akp = a (k = 1, · · · , N),(1.12)

where a is a constant independent of k = 1, · · · , N , namely, the sum of
all elements in every row of A is the same (the row-sum condition).

Let e1 = (1, . . . , 1)T . The condition of compatibility (1.12) is equiv-
alent to that e1 is an eigenvector of A, corresponding to the eigenvalue
a.
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We can establish all the previous results in a similar way after hav-
ing overcome some technical di�culties (see Chapters 6 and 7)). For
instanceif the exact boundary synchronization by p-groups can be real-
ized by means of (N�p) boundary controls, we can get the correspond-
ing condition of Cp-compatibility: There exists a unique reduced
matrix Ap of order (N � p), such that

(1.27) CpA = ApCp,

which actually means that the coupling matrix A satisfies the row-sum
condition by blocks.

Correspondingly, under the condition of Cp-compatibility, we assume
that the domain ⌦ satisfies the usual multiplier geometrical condition,
then there exists a suitably large T > 0, such that for any given bound-
ary control matrix D with rank (CpD) = N � p, the exact bound-
ary synchronization by p-groups of system (1.5) can be realized at the
time t = T . On the contraryif rank(CpD) < N � p, in particular, if
rank(D) < N�p, then no matter how large T > 0 is, the exact bound-
ary synchronization by p-groups can never be achieved for all initial
data (bU0, bU1) 2 (L2(⌦))N ⇥ (H�1(⌦))N .

In summary, we get the following table.

Table 1: The exact boundary synchronization by p-groups

Condition of Minimal number of
Cp-compatibility boundary controls

Exact boundary N
null controllability

Exact boundary C1A = A1C1 N � 1
synchronization

Exact boundary C2A = A2C2 N � 2
synchronization by 2-groups

· · · · · · · · ·

Exact boundary CpA = ApCp N � p
synchronization by p-groups

What can we do when the number of boundary controls that can be
chosen further decreases?

The aforementioned controllability and synchronization should both
be established in the exact sense, however, from the practical point
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Let

C1 =

0

BB@

1 �1
1 �1

. . . . . .
1 �1

1

CCA

(N�1)⇥N

(1.13)

be the corresponding synchronization matrix. C1 is a full row-
rank matrix. Obviously, the synchronization requirement (1.9) can be
written as

(1.14) t > T : C1U(t, x) ⌘ 0.

Moreover, Ker(C1) = Span{e1}, and then the condition of compatibil-
ity (1.12) is equivalent to that Ker(C1) is a one-dimensional invariant
subspace of A:

AKer(C1) ✓ Ker(C1).(1.15)

Then, the condition of compatibility (1.12), often called the condition
of C1-compatibility in what follows, is also equivalent to that there
exists a unique matrix A1 of order (N � 1), such that

C1A = A1C1.(1.16)

Such matrix A1 is called the reduced matrix of A by C1.
Under the condition of C1-compatibility, let

W1 = (w(1), · · · , w(N�1))T = C1U.(1.17)

It is easy to see that the original system (1.5) for the variable U can
be reduced to the following self-closed system for the variable W1:8

<

:

W 00

1 ��W1 + A1W1 = 0 in (0,+1)⇥ ⌦,
W1 = 0 on (0,+1)⇥ �0,
W1 = C1DH on (0,+1)⇥ �1.

(1.18)

Obviously, under the condition of C1-compatibility, the exact bound-
ary synchronization of the original system (1.5) for U is equivalent to
the exact boundary null controllability of the reduced system (1.18) for
W. Hence, we have:
Assume that the condition of C1-compatibility is satisfied and the do-

main ⌦ satisfies the usual multiplier geometrical condition, then there
exists a suitably large T > 0, such that for any boundary control ma-
trix D with rank (C1D) = N � 1, the exact boundary synchronization
of system (1.5) can be realized at the time t = T . On the contraryif
rank(C1D) < N � 1, in particlarif rank(D) < N � 1, i.e., the number
of boundary controls is fewer than (N � 1), then no matter how large
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Null Controllability for Reduced System

where
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Def. Approximate boundary synchronization for  t ≥ T
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cascade system and more generally, the nilpotent system under the
multiplier geometrical condition, etc.

For the exact boundary null controllability of system (1.5), the num-
ber M = rank(D), namely, the number of boundary controls, should be
equal to N , the number of state variables. However, the approximate
boundary null controllability of system (1.5) could be realized if the
number M = rank(D) is substantially small, even if M = rank(D) = 1.
Nevertheless, even if the rank of D might be small, but because of the
existence and influence of the coupling matrix A, in order to realize
the approximate boundary null controllability, the rank of the enlarged
matrix (D,AD, · · · , AN�1D) should be still equal to N , the number of
state variables. From this point of view, we may say that the rank
M of D is the number of ”direct” boundary controls acting on �1,
and rank(D,AD, · · · , AN�1D) denotes the number of ”total” controls.
Di↵erently from the exact boundary null controllability, for the ap-
proximate boundary null controllability, we should consider not only
the number of direct boundary controls, but also the number of
total controls.

1.6. Approximate boundary synchronization. Similarly to the ap-
proximate boundary null controllability, we give the following defini-
tion:

System (1.5) possesses the approximate boundary synchroniza-
tion at the time T > 0 i↵or any given initial data (bU0, bU1) 2 (L2(⌦))N⇥
(H�1(⌦))N , there exist a sequence {Hn} of boundary controls, Hn 2

L2
loc
(0,+1; (L2(�1))M) with compact support in [0, T ], such that the

corresponding sequence {Un} = {(u(1)
n , · · · , u(N)

n )T} of solutions to prob-
lem (1.5)-(1.6) satisfies

u(k)
n

� u(l)
n

! 0 as n ! +1(1.34)

for all 1 6 k, l 6 N in the space

C0
loc
([T,+1);L2(⌦)) \ C1

loc
([T,+1);H�1(⌦)).(1.35)

Obviously, if system (1.5) is exactly synchronizable, then it must be
approximately synchronizable; however, the inverse is not true in gen-
eral.
Moreover, the approximate boundary null controllability obviously

leads to the approximate boundary synchronization. We should exclude
this trivial situation in advance.

(1.5)

(1.6)
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Problem statement

Consider the following coupled system of wave equations:

8
>><

>>:

U
00 ��U +AU = 0 in (0,+1)⇥ ⌦,

U = 0 on (0,+1)⇥ �0,

U = DH on (0,+1)⇥ �1

(1)

with the initial condition

t = 0 : U = Û0, U
0 = Û1 in ⌦, (2)

where U = (u(1)
, · · · , u(N))T is the state variable, H = (h(1)

, . . . , h
(M))T

denotes the applied boundary control (M  N), A 2 MN⇥N (R) is the coupling
matrix, and D 2 MN⇥M (R) is the boundary control matrix;

⌦ is a bounded domain, with smooth boundary � = �1 [ �0 satisfying

�1 \ �0 = ; and mes(�1) > 0.
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20 BOUNDARY SYNCHRONIZATION

Assume that system (1.5) is approximately synchronizable, but not
approximately null controllable. Then, as in the case of exact bound-
ary synchronization, the coupling matrix A should satisfy the same
condition of C1-compatibility (1.12) (cf. Chapter 9).

Then, under the condition of C1-compatibility, setting W1 = C1U
as in (1.17), we get again the reduced system (1.18) and its adjoint
problem (the reduced adjoint problem):

8
<

:

 00

1 �� 1 + A
T
1 1 = 0 in (0,+1)⇥ ⌦,

 1 = 0 on (0,+1)⇥ �,
t = 0 :  1 = b 0,  0

1 = b 1 in ⌦.

(1.36)

Similarly to the D-observability, we say that the reduced adjoint
problem (1.36) is C1D-observable on the interval [0, T ], if

(C1D)T@⌫ ⌘ 0 on [0, T ]⇥ �1 =) (b 0, b 1) ⌘ 0, i.e., ⌘ 0.(1.37)

We can prove that (cf. Chapter 9):
Under the condition of C1-compatibility, system (1.5) is approxi-

mately synchronizable at the time T > 0 if and only if the reduced
adjoint problem (1.36) is C1D-observable on the interval [0, T ].
Then, it is easy to see that under the condition of C1-compatibilityif

rank(C1D) = N � 1 (which implies M > N � 1), then, system (1.5)
is always approximately synchronizable, even without the multiplier
geometrical condition.
We should point out that even if rank(C1D) < N � 1, and in partic-

ular, if we essentially use fewer than (N � 1) boundary controls, it is
still possible to realize the approximate boundary synchronization.
Moreover, as in the case of approximate boundary null controllability,

under the condition of C1-compatibility, we have:
Assume that system (1.5) is approximately synchronizable at the

time T > 0, then we necessarily have

rank(C1D,C1AD, · · · , C1A
N�1D) = N � 1.(1.38)

Condition (1.38) is not su�cient in general for the approximate bound-
ary synchronization, however, it is still su�cient for T > 0 large enough
for some special systems under certain additional assumptions on A.
On the other hand, we can prove:
Assume that system (1.5) is approximately synchronizable under the

action of a boundary control matrix D. No matter whether the condi-
tion of C1-compatibility is satisfied or not, we necessarily have

(1.39) rank(D,AD, · · · , AN�1D) > N � 1,

BOUNDARY SYNCHRONIZATION 13

Let

C1 =

0

BB@

1 �1
1 �1

. . . . . .
1 �1

1

CCA

(N�1)⇥N

(1.13)

be the corresponding synchronization matrix. C1 is a full row-
rank matrix. Obviously, the synchronization requirement (1.9) can be
written as

(1.14) t > T : C1U(t, x) ⌘ 0.

Moreover, Ker(C1) = Span{e1}, and then the condition of compatibil-
ity (1.12) is equivalent to that Ker(C1) is a one-dimensional invariant
subspace of A:

AKer(C1) ✓ Ker(C1).(1.15)

Then, the condition of compatibility (1.12), often called the condition
of C1-compatibility in what follows, is also equivalent to that there
exists a unique matrix A1 of order (N � 1), such that

C1A = A1C1.(1.16)

Such matrix A1 is called the reduced matrix of A by C1.
Under the condition of C1-compatibility, let

W1 = (w(1), · · · , w(N�1))T = C1U.(1.17)

It is easy to see that the original system (1.5) for the variable U can
be reduced to the following self-closed system for the variable W1:8

<

:

W 00

1 ��W1 + A1W1 = 0 in (0,+1)⇥ ⌦,
W1 = 0 on (0,+1)⇥ �0,
W1 = C1DH on (0,+1)⇥ �1.

(1.18)

Obviously, under the condition of C1-compatibility, the exact bound-
ary synchronization of the original system (1.5) for U is equivalent to
the exact boundary null controllability of the reduced system (1.18) for
W. Hence, we have:
Assume that the condition of C1-compatibility is satisfied and the do-

main ⌦ satisfies the usual multiplier geometrical condition, then there
exists a suitably large T > 0, such that for any boundary control ma-
trix D with rank (C1D) = N � 1, the exact boundary synchronization
of system (1.5) can be realized at the time t = T . On the contraryif
rank(C1D) < N � 1, in particlarif rank(D) < N � 1, i.e., the number
of boundary controls is fewer than (N � 1), then no matter how large
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Approximate Null Controllability for Reduced System

where

Approximate -Observability for Reduced Adjoint ProblemC1D

20 BOUNDARY SYNCHRONIZATION

Assume that system (1.5) is approximately synchronizable, but not
approximately null controllable. Then, as in the case of exact bound-
ary synchronization, the coupling matrix A should satisfy the same
condition of C1-compatibility (1.12) (cf. Chapter 9).

Then, under the condition of C1-compatibility, setting W1 = C1U
as in (1.17), we get again the reduced system (1.18) and its adjoint
problem (the reduced adjoint problem):
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 00
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T
1 1 = 0 in (0,+1)⇥ ⌦,

 1 = 0 on (0,+1)⇥ �,
t = 0 :  1 = b 0,  0

1 = b 1 in ⌦.

(1.36)

Similarly to the D-observability, we say that the reduced adjoint
problem (1.36) is C1D-observable on the interval [0, T ], if

(C1D)T@⌫ ⌘ 0 on [0, T ]⇥ �1 =) (b 0, b 1) ⌘ 0, i.e., ⌘ 0.(1.37)

We can prove that (cf. Chapter 9):
Under the condition of C1-compatibility, system (1.5) is approxi-

mately synchronizable at the time T > 0 if and only if the reduced
adjoint problem (1.36) is C1D-observable on the interval [0, T ].
Then, it is easy to see that under the condition of C1-compatibilityif

rank(C1D) = N � 1 (which implies M > N � 1), then, system (1.5)
is always approximately synchronizable, even without the multiplier
geometrical condition.
We should point out that even if rank(C1D) < N � 1, and in partic-

ular, if we essentially use fewer than (N � 1) boundary controls, it is
still possible to realize the approximate boundary synchronization.
Moreover, as in the case of approximate boundary null controllability,

under the condition of C1-compatibility, we have:
Assume that system (1.5) is approximately synchronizable at the

time T > 0, then we necessarily have

rank(C1D,C1AD, · · · , C1A
N�1D) = N � 1.(1.38)

Condition (1.38) is not su�cient in general for the approximate bound-
ary synchronization, however, it is still su�cient for T > 0 large enough
for some special systems under certain additional assumptions on A.
On the other hand, we can prove:
Assume that system (1.5) is approximately synchronizable under the

action of a boundary control matrix D. No matter whether the condi-
tion of C1-compatibility is satisfied or not, we necessarily have

(1.39) rank(D,AD, · · · , AN�1D) > N � 1,
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Consider the following coupled system of wave equations:
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0 = Û1 in ⌦, (2)

where U = (u(1)
, · · · , u(N))T is the state variable, H = (h(1)

, . . . , h
(M))T

denotes the applied boundary control (M  N), A 2 MN⇥N (R) is the coupling
matrix, and D 2 MN⇥M (R) is the boundary control matrix;

⌦ is a bounded domain, with smooth boundary � = �1 [ �0 satisfying

�1 \ �0 = ; and mes(�1) > 0.
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20 BOUNDARY SYNCHRONIZATION

Assume that system (1.5) is approximately synchronizable, but not
approximately null controllable. Then, as in the case of exact bound-
ary synchronization, the coupling matrix A should satisfy the same
condition of C1-compatibility (1.12) (cf. Chapter 9).

Then, under the condition of C1-compatibility, setting W1 = C1U
as in (1.17), we get again the reduced system (1.18) and its adjoint
problem (the reduced adjoint problem):

8
<

:

 00

1 �� 1 + A
T
1 1 = 0 in (0,+1)⇥ ⌦,

 1 = 0 on (0,+1)⇥ �,
t = 0 :  1 = b 0,  0

1 = b 1 in ⌦.

(1.36)

Similarly to the D-observability, we say that the reduced adjoint
problem (1.36) is C1D-observable on the interval [0, T ], if

(C1D)T@⌫ ⌘ 0 on [0, T ]⇥ �1 =) (b 0, b 1) ⌘ 0, i.e., ⌘ 0.(1.37)

We can prove that (cf. Chapter 9):
Under the condition of C1-compatibility, system (1.5) is approxi-

mately synchronizable at the time T > 0 if and only if the reduced
adjoint problem (1.36) is C1D-observable on the interval [0, T ].
Then, it is easy to see that under the condition of C1-compatibilityif

rank(C1D) = N � 1 (which implies M > N � 1), then, system (1.5)
is always approximately synchronizable, even without the multiplier
geometrical condition.
We should point out that even if rank(C1D) < N � 1, and in partic-

ular, if we essentially use fewer than (N � 1) boundary controls, it is
still possible to realize the approximate boundary synchronization.
Moreover, as in the case of approximate boundary null controllability,

under the condition of C1-compatibility, we have:
Assume that system (1.5) is approximately synchronizable at the

time T > 0, then we necessarily have

rank(C1D,C1AD, · · · , C1A
N�1D) = N � 1.(1.38)

Condition (1.38) is not su�cient in general for the approximate bound-
ary synchronization, however, it is still su�cient for T > 0 large enough
for some special systems under certain additional assumptions on A.
On the other hand, we can prove:
Assume that system (1.5) is approximately synchronizable under the

action of a boundary control matrix D. No matter whether the condi-
tion of C1-compatibility is satisfied or not, we necessarily have

(1.39) rank(D,AD, · · · , AN�1D) > N � 1,

Main results: A necessary but not sufficient rank condition for 
approximate boundary synchronization,
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Assume that system (1.5) is approximately synchronizable, but not
approximately null controllable. Then, as in the case of exact bound-
ary synchronization, the coupling matrix A should satisfy the same
condition of C1-compatibility (1.12) (cf. Chapter 9).

Then, under the condition of C1-compatibility, setting W1 = C1U
as in (1.17), we get again the reduced system (1.18) and its adjoint
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We can prove that (cf. Chapter 9):
Under the condition of C1-compatibility, system (1.5) is approxi-

mately synchronizable at the time T > 0 if and only if the reduced
adjoint problem (1.36) is C1D-observable on the interval [0, T ].
Then, it is easy to see that under the condition of C1-compatibilityif

rank(C1D) = N � 1 (which implies M > N � 1), then, system (1.5)
is always approximately synchronizable, even without the multiplier
geometrical condition.
We should point out that even if rank(C1D) < N � 1, and in partic-

ular, if we essentially use fewer than (N � 1) boundary controls, it is
still possible to realize the approximate boundary synchronization.
Moreover, as in the case of approximate boundary null controllability,

under the condition of C1-compatibility, we have:
Assume that system (1.5) is approximately synchronizable at the

time T > 0, then we necessarily have

rank(C1D,C1AD, · · · , C1A
N�1D) = N � 1.(1.38)

Condition (1.38) is not su�cient in general for the approximate bound-
ary synchronization, however, it is still su�cient for T > 0 large enough
for some special systems under certain additional assumptions on A.
On the other hand, we can prove:
Assume that system (1.5) is approximately synchronizable under the

action of a boundary control matrix D. No matter whether the condi-
tion of C1-compatibility is satisfied or not, we necessarily have

(1.39) rank(D,AD, · · · , AN�1D) > N � 1,

1. with the condition of  -compatibility condition :C1

2. with/without the condition of  -compatibility condition :C1

More discussion of the approximately synchronizable state, and 
of Neumann, Robin boundary controls can be found in the book.
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Part I 
System of Wave Equations with Internal 

Controls 

Let ! ⊂ Rm be a bounded domain with smooth boundary " and ω be a subdomain 
of !. Let  A be a matrix of order N and D be a full column-rank matrix of order N × 
M(M ! N ), both with constant elements. Consider the following system with the 
state variable U = (u(1) , . . . ,  u(N ) )T and the internal control H = (h(1) , . . . ,  h(M) )T :

{
U ′′ − $U + AU = Dχω H in (0, +∞) × !, 
U = 0 on  (0, +∞) × "

(I ) 

associated with the initial condition: 

t = 0 : U = U
∧

0, U ′ = U
∧

1 in!, (I0) 

where χω denotes the characteristic function of ω, the symbol ′ stands for the time-
derivative, and $ = ∑m 

k=1 
∂2 

∂ x2 k 
is the Laplacian operator. 

Accordingly, let us consider the corresponding adjoint system for the variable
' = (φ(1) , . . . ,φ(N ) )T :

{
'′′ − $' + AT' = 0 in  (0, T ) × !,

' = 0 on  (0, T ) × "
(I ∗) 

associated with the initial data 

t = 0 : ' = '
∧

0, '′ = '
∧

1 in! (I ∗0 ) 

and the internal observation 

DT χω' ≡ 0 in [0, T ] × !. (I ∗1 ) 

In this part, we first show that Kalman’s rank condition 

rank(D, AD, . . . ,  AN−1 D) = N

Part II 
System of Wave Equations with Mixed 

Internal and Boundary Controls 

Let ! ⊂ Rm be a bounded domain with smooth boundary " and ω ⊂ ! be a 
neighborhood of ". Let  A be a matrix of order N ; D1 and D2 be full column-
rank matrices of order N × M1 and N × M2, respectively; and all the matrices 
are of constant elements. Consider the following system for the state variable U = 
(u(1) , . . . ,  u(N ) )T , the internal control H = (h(1) , . . . ,  h(M1) )T , and the boundary 
control G = (g(1) , . . . ,  g(M2) )T :

{
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and the Neumann boundary observation
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A necessary and sufficient rank condition for approximate internal synchronization.



Perspectives in Sync for PDEs

• Nonlinear case. 

• The exact and approximate boundary synchronizations of nodal profile and on networks


• The phenomena of synchronization through coupling among individuals with possibly different motion laws (governing equations), 
whose nature is yet to be explored. The research on the existence of the exactly synchronizable state for a coupled system of 
wave equations with different wave speeds has been initiated.


• Generalized exact boundary synchronization.


• Other linear or nonlinear evolution equations (such as beam equations, plate equations, heat equations, etc.) .


• To extend the concept of synchronization to the case of components with different time delay will be more challenging and may 
expose quite different features.


•

• L. Hu; T. T. Li; P. Qu, Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations, ESAIM: Control, Optimisation and 
Calculus of Variations, 22 (2016), 1136-1183.  
X. Lu, Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems, Chin. Ann. Math., Ser. B, 40 (2019), 79-96. 



Summary

• Motivation


• Boundary controllability for coupled wave equations (1D, quasilinear case) 


• Synchronization for coupled wave equations  (high dimensional, linear case) 



Thank you!  Benasque, August 22, 2024


