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Adhesive strings and reversible decohesion (“unzipping”)

Aim

Modelling the (global) dynamics of an elastic string interacting with a rigid substrate
through an adhesive layer and studying attachment–detachment regimes.

Figure: [Maddalena–Percivale–Puglisi–Truskinovsky, Cont. Mech. Thermodyn. 2009].

Applications: peeling of polymeric tapes, to rolling of cells, geckos’ fibrillar
structures, denaturation of DNA...
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The model under consideration

Dynamics of a one-dimensional linearly elastic body, whose reference con-
figuration is (0, L) , interacting with a rigid substrate through an adhesive
material, acting through the force Φ′(u) :

(W)


∂2
ttu − ∂2

xxu + ∂tu +Φ′(u) = 0 , (t, x) ∈ (0,+∞)×(0, L) ,

∂xu(t, 0) = ∂xu(t, L) = 0 , t ∈ (0,+∞) ,

u(0, x) = u0(x) , ∂tu(0, x) = v0(x) , x ∈ (0, L) .

wave operator describing the dynamics of an adhesive string;

a damping term, ∂tu , accounts for the effect of friction;

forcing term Φ′ : if the displacement u is small compared to u∗ , the force is
purely elastic; otherwise, if |u| ≥ u∗ , the adhesive material ceases to act on
the elastic body;

Neumann boundary conditions.
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Figure: The potential Φ and the force Φ′ as functions of u .
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Main problem

Problem: long-time behavior

The attachment–detachment process ruled by the nonlinear force Φ′(u) induces
the natural question about the long-time behavior of such dynamics:

Does the system converge towards a stationary state as t → +∞?
Or does switching between the two states (attached/detached) persist?

The problem contains two tasks:

1 study the global-in-time well-posedness of (W) in a suitable function space
(more or less standard);

2 study the limit of u(t) as t → +∞ .
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Study of the long-time behavior of the dynamics

We expect that u(t) → u∞ as t → +∞ , where u∞ is a solution to the
stationary problem:

(S)

{
−∂2

xxu∞(x) + Φ′(u∞(x)) = 0 , x ∈ (0, L) ,

∂xu∞(0) = ∂xu∞(L) = 0 .

Continuous set of possible choices for the limit profiles:

{Φ′ = 0} = (−∞,−u∗] ∪ {0} ∪ [u∗,+∞).

Part 1: characterization of the limit points. We show that {u(t)}t≥0 con-
verges, as t → +∞ to a uniquely determined limit profile u∞ satisfying (S).

Part 2: rate of convergence. We show that the convergence u(t) → u∞ as
t → +∞ occurs in an exponential fashion: i.e.,

∥u(t)− u∞∥H1((0,L)) + ∥∂tu(t)∥L2((0,L)) ≤ Me−κt .
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Main results

Theorem 1 (Well-posedness)

Given initial data
u0 ∈ H1(Ω) and v0 ∈ L2(Ω),

there exists a unique solution (u, ∂tu) ∈ C
(
[0,+∞);H1(Ω)× L2(Ω)

)
to (W).

Theorem 2 (Long-time asymptotics)

Given initial data
u0 ∈ H1(Ω) and v0 ∈ L2(Ω),

let u be the unique solution to (W). Then there exists u∞ constant a.e. in Ω with
u∞ ∈ {Φ′ = 0} such that u(t) → u∞ in H1(Ω) and ∂tu(t) → 0 in L2(Ω) for
t → +∞ .

NB: Both results hold for a bounded, open, and connected set Ω ⊂ Rd , with d ≥ 1
(assuming also that the boundary is C 2 when d ≥ 2).
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Theorem 3 (Exponential decay rate)

Let Ω = (0, L) ⊂ R . Given initial data

u0 ∈ H1(Ω) and v0 ∈ L2(Ω),

let u be the unique solution to (W).

Let u∞ be as in Theorem 2. Let us assume that u∞ = 0 or |u∞| > u∗ .

Then
∥u(t)− u∞∥H1(Ω) + ∥∂tu(t)∥L2(Ω) ≤ MΦe

−κt

for some MΦ > 0 (possibly depending on the Lipschitz constant of Φ′ ) and κ > 0 .
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Main tool: energy balances

The energy functional

E (u, v) :=
1

2
∥v∥2L2(Ω) +

1

2
∥∇u∥2L2(Ω) + ∥Φ(u)∥L1(Ω)

satisfies

E (u(t), ∂tu(t)) +

∫ t

0

∥∂tu(s)∥2L2(Ω) ds = E (u0, v0) , for every t ∈ [0,+∞) .

In particular, E is non-negative and decreasing on trajectories.

This suggests the appropriate function space (the energy space) to look for
(global) solutions of (W).
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The auxiliary functional

J(u, v) :=
1

2
∥u∥2L2(Ω) + ⟨u, v⟩L2(Ω)

(cf. [Haraux, Bol. Soc. Bras. Mat. 1986]) satisfies

J(u(t), ∂tu(t)) +

∫ t

0

(
∥∇u(s)∥2L2(Ω) + ⟨u(s),Φ′(u(s))⟩L2(Ω)

)
ds

= J(u0, v0) +

∫ t

0

∥∂tu(s)∥2L2(Ω) ds , for every t ∈ [0,+∞) .

In particular,

J(u(t), ∂tu(t)) +

∫ +∞

t

∥∂tu(s)∥2L2(Ω) ds

is non-negative and decreasing on trajectories.
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Outline of the proof of the qualitative convergence result

1 Compactness argument (via energy functional). Accumulation points of the
trajectories {u(t)}t≥0 satisfy (S).

!! The compactness argument alone does not suffice to infer convergence of
the whole trajectory as t → +∞ to a uniquely determined limit profile.

Why? Because there is a continuous set of possible choices for the limit profiles:
the set of solutions to (S) is given by constant functions valued in

{Φ′ = 0} = (−∞,−u∗] ∪ {0} ∪ [u∗,+∞).

2 Selection of a unique limit profile. The auxiliary functional J is a Lyapunov
functional for the system and allows us to conclude the convergence u(t) → u∞
as t → +∞ .

NB: the initial datum enforces the selection of a unique limit profile u∞ ∈
{Φ′ = 0} .
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Outline of the proof of the exponential decay rate

1 Compact embedding H1((0, L)) ⊂⊂ C ([0, L]) (true only in 1D).

This allows us to single out only one of the two possible attachment–
detachment regimes (for time large enough) and study separately

∂2
ttu + ∂tu − ∂2

xxu = 0, (t, x) ∈ (0,+∞)×(0, L) ,

or

∂2
ttu + ∂tu − ∂2

xxu + 2u = 0, (t, x) ∈ (0,+∞)×(0, L) .

2 Grönwall-type inequalities for perturbed energy functionals.

[Haraux–Zuazua, ARMA 1988]:

Gλ(u, v) :=
1

2
∥v∥2L2(Ω)+

1

2
∥∇u∥2L2(Ω)+

∫
Ω

(Φ(u)−Φ(u∞)) dx+λ⟨u−u∞, v⟩L2(Ω)

(perturbation, depending on λ ∈ (0, 1), of E (u, v)− E (u∞, 0)).
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Further questions

Abrupt attachment–detachment. If the rate of the exponential decay
Me−κt is uniform w.r.t. the slope of the decreasing part of the force Φ′(u),
then we may consider a discontinuous force:

Φ′(u) :=

{
2u for |u| < u∗ ,

0 for |u| ≥ u∗ .

We already have positive results for an ODE model!

System of thermoelasticity. The temperature gradient acts as a force on the
wave equation governing the elastic component and the pressure waves act as
a heat-source on the diffusion equation governing the temperature:{

∂2
ttu − ∂2

xxu − ∂xθ +Φ′(u) = 0 , (t, x) ∈ (0,+∞)× (0, L) ,

∂tθ − ∂2
xxθ − ∂2

txu = 0 , (t, x) ∈ (0,+∞)× (0, L) .
(T)
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Thank you for your attention!
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