Exponential convergence to steady-states for damped adhesive strings

Nicola De Nitti

(joint work with G. M. Coclite, F. Maddalena, G. Orlando, and E. Zuazua)

EPFL

August 22, 2024

Adhesive strings and reversible decohesion ("unzipping")

Aim

Modelling the (global) dynamics of an elastic string interacting with a rigid substrate through an adhesive layer and studying attachment–detachment regimes.

Figure: [Maddalena-Percivale-Puglisi-Truskinovsky, Cont. Mech. Thermodyn. 2009].

Applications: peeling of polymeric tapes, to rolling of cells, geckos' fibrillar structures, denaturation of DNA...

The model under consideration

Dynamics of a one-dimensional linearly elastic body, whose reference configuration is (0,L), interacting with a rigid substrate through an adhesive material, acting through the force $\Phi'(u)$:

(W)
$$\begin{cases} \frac{\partial_{tt}^{2} u - \partial_{xx}^{2} u + \partial_{t} u + \Phi'(u) = 0, & (t, x) \in (0, +\infty) \times (0, L), \\ \partial_{x} u(t, 0) = \partial_{x} u(t, L) = 0, & t \in (0, +\infty), \\ u(0, x) = u_{0}(x), \ \partial_{t} u(0, x) = v_{0}(x), & x \in (0, L). \end{cases}$$

- wave operator describing the dynamics of an adhesive string;
- a damping term, $\partial_t u$, accounts for the effect of friction;
- forcing term Φ' : if the displacement u is small compared to u_* , the force is purely elastic; otherwise, if $|u| \geq u_*$, the adhesive material ceases to act on the elastic body;
- Neumann boundary conditions.

Figure: The potential Φ and the force Φ' as functions of u.

Main problem

Problem: long-time behavior

The attachment–detachment process ruled by the nonlinear force $\Phi'(u)$ induces the natural question about the *long-time behavior* of such dynamics:

Does the system converge towards a stationary state as $t \to +\infty$? Or does switching between the two states (attached/detached) persist?

The problem contains two tasks:

- study the global-in-time well-posedness of (W) in a suitable function space (more or less standard);
- 2 study the limit of u(t) as $t \to +\infty$.

Study of the long-time behavior of the dynamics

We expect that $u(t) \to u_{\infty}$ as $t \to +\infty$, where u_{∞} is a solution to the stationary problem:

(S)
$$\begin{cases} -\partial_{xx}^2 u_{\infty}(x) + \Phi'(u_{\infty}(x)) = 0, & x \in (0, L), \\ \partial_x u_{\infty}(0) = \partial_x u_{\infty}(L) = 0. \end{cases}$$

Continuous set of possible choices for the limit profiles:

$$\{\Phi'=0\}=(-\infty,-u_*]\cup\{0\}\cup[u_*,+\infty).$$

Part 1: characterization of the limit points. We show that $\{u(t)\}_{t\geq 0}$ converges, as $t\to +\infty$ to a uniquely determined limit profile u_∞ satisfying (S).

Part 2: rate of convergence. We show that the convergence $u(t) \to u_{\infty}$ as $t \to +\infty$ occurs in an exponential fashion: i.e.,

$$||u(t)-u_{\infty}||_{H^{1}((0,L))}+||\partial_{t}u(t)||_{L^{2}((0,L))}\leq Me^{-\kappa t}.$$

Main results

Theorem 1 (Well-posedness)

Given initial data

$$u_0 \in H^1(\Omega)$$
 and $v_0 \in L^2(\Omega)$,

there exists a unique solution $(u, \partial_t u) \in C([0, +\infty); H^1(\Omega) \times L^2(\Omega))$ to (W).

Theorem 2 (Long-time asymptotics)

Given initial data

$$u_0 \in H^1(\Omega)$$
 and $v_0 \in L^2(\Omega)$,

let u be the unique solution to (W). Then there exists u_{∞} constant a.e. in Ω with $u_{\infty} \in \{\Phi' = 0\}$ such that $u(t) \to u_{\infty}$ in $H^1(\Omega)$ and $\partial_t u(t) \to 0$ in $L^2(\Omega)$ for $t \to +\infty$.

NB: Both results hold for a bounded, open, and connected set $\Omega \subset \mathbb{R}^d$, with $d \geq 1$ (assuming also that the boundary is C^2 when $d \geq 2$).

Theorem 3 (Exponential decay rate)

Let $\Omega = (0, L) \subset \mathbb{R}$. Given initial data

$$u_0 \in H^1(\Omega)$$
 and $v_0 \in L^2(\Omega)$,

let u be the unique solution to (W).

Let u_{∞} be as in Theorem 2. Let us assume that $u_{\infty}=0$ or $|u_{\infty}|>u_{*}$.

Then

$$||u(t)-u_{\infty}||_{H^1(\Omega)}+||\partial_t u(t)||_{L^2(\Omega)}\leq M_{\Phi}e^{-\kappa t}$$

for some $M_\Phi>0$ (possibly depending on the Lipschitz constant of Φ') and $\kappa>0$.

Main tool: energy balances

The energy functional

$$E(u,v) := \frac{1}{2} \|v\|_{L^2(\Omega)}^2 + \frac{1}{2} \|\nabla u\|_{L^2(\Omega)}^2 + \|\Phi(u)\|_{L^1(\Omega)}$$

satisfies

$$E(u(t),\partial_t u(t))+\int_0^t\|\partial_t u(s)\|_{L^2(\Omega)}^2\,ds=E(u_0,v_0)\,,\quad ext{for every }t\in[0,+\infty)\,.$$

In particular, E is non-negative and decreasing on trajectories.

This suggests the appropriate function space (the energy space) to look for (global) solutions of (W).

The auxiliary functional

$$J(u,v):=\frac{1}{2}\|u\|_{L^2(\Omega)}^2+\langle u,v\rangle_{L^2(\Omega)}$$

(cf. [Haraux, Bol. Soc. Bras. Mat. 1986]) satisfies

$$\begin{split} J(u(t),\partial_t u(t)) + \int_0^t \left(\|\nabla u(s)\|_{L^2(\Omega)}^2 + \langle u(s),\Phi'(u(s))\rangle_{L^2(\Omega)} \right) ds \\ &= J(u_0,v_0) + \int_0^t \|\partial_t u(s)\|_{L^2(\Omega)}^2 \, ds \,, \quad \text{for every } t \in [0,+\infty) \,. \end{split}$$

In particular,

$$J(u(t),\partial_t u(t)) + \int_t^{+\infty} \|\partial_t u(s)\|_{L^2(\Omega)}^2 ds$$

is non-negative and decreasing on trajectories.

Outline of the proof of the qualitative convergence result

- **Ompactness argument** (via energy functional). Accumulation points of the trajectories $\{u(t)\}_{t\geq 0}$ satisfy (S).
 - !! The compactness argument alone *does not suffice* to infer convergence of the whole trajectory as $t \to +\infty$ to a uniquely determined limit profile.
 - Why? Because there is a *continuous set* of possible choices for the limit profiles: the set of solutions to (S) is given by *constant functions* valued in

$$\{\Phi'=0\}=(-\infty,-u_*]\cup\{0\}\cup[u_*,+\infty).$$

9 Selection of a unique limit profile. The auxiliary functional J is a Lyapunov functional for the system and allows us to conclude the convergence $u(t) \to u_{\infty}$ as $t \to +\infty$.

NB: the initial datum enforces the selection of a unique limit profile $u_{\infty} \in \{\Phi' = 0\}$.

Outline of the proof of the exponential decay rate

Output Compact embedding $H^1((0,L)) \subset\subset C([0,L])$ (true only in 1D).

This allows us to single out only one of the two possible attachment—detachment regimes (for time large enough) and study separately

$$\begin{split} \partial_{tt}^2 u + \partial_t u - \partial_{xx}^2 u &= 0, \\ \partial_{tt}^2 u + \partial_t u - \partial_{xx}^2 u + 2u &= 0, \\ \end{split} \quad (t, x) \in (0, +\infty) \times (0, L), \end{split}$$

@ Grönwall-type inequalities for perturbed energy functionals.

[Haraux-Zuazua, ARMA 1988]:

or

$$G_{\lambda}(u,v) := \frac{1}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\nabla u\|_{L^{2}(\Omega)}^{2} + \int_{\Omega} (\Phi(u) - \Phi(u_{\infty})) dx + \lambda \langle u - u_{\infty}, v \rangle_{L^{2}(\Omega)}$$

(perturbation, depending on $\lambda \in (0,1)$, of $E(u,v) - E(u_{\infty},0)$).

Further questions

• **Abrupt attachment–detachment.** If the rate of the exponential decay $Me^{-\kappa t}$ is *uniform* w.r.t. the slope of the decreasing part of the force $\Phi'(u)$, then we may consider a *discontinuous force*:

$$\Phi'(u) := \begin{cases} 2u & \text{for } |u| < u_*, \\ 0 & \text{for } |u| \ge u_*. \end{cases}$$

- We already have positive results for an ODE model!
- System of thermoelasticity. The temperature gradient acts as a force on the wave equation governing the elastic component and the pressure waves act as a heat-source on the diffusion equation governing the temperature:

(T)
$$\begin{cases} \partial_{tt}^2 u - \partial_{xx}^2 u - \partial_x \theta + \Phi'(u) = 0, & (t, x) \in (0, +\infty) \times (0, L), \\ \partial_t \theta - \partial_{xx}^2 \theta - \partial_{tx}^2 u = 0, & (t, x) \in (0, +\infty) \times (0, L). \end{cases}$$

Thank you for your attention!

References

Giuseppe Maria Coclite, Nicola De Nitti, Francesco Maddalena, Gianluca Orlando, Enrique Zuazua. Exponential convergence to steady-states for trajectories of a damped dynamical system modelling adhesive strings. *Mathematical Models and Methods in Applied Sciences* 34, No. 08, 1445–1482 (2024).

