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Introduction The KdV equation

The KdV equation

The Korteweg-de Vries (KdV) equation 0;u + Oxu + 03u + udyu = 0 was introduced
by Diederik Korteweg and Gustav de Vries in 19851 to model the propagation of long
water waves in a channel.

direction of propagation

0 & L

Figure: Solitary waves.

Model a variety of phenomena, including water waves, tsunamis, transmission of elec-
trical signals in nerve fibers, plasma, cosmology, etc.

[1]D. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular channel, and
a new type of long stationary wave”, Phil. Mag 39, 422-443 (1895)
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Introduction The KdV equation

Control of KdV

e First control and stabilization results Russel, Zhang!? (Periodic framework).
@ In the non-periodic framework we have the work of Rosierl3].

@ Several other results, Coron, Crépeau, Cerpa, Nguyen, etc. Nonlinear system

[2]D. L. Russell and B. Y. Zhang, “Controllability and stabilizability of the third-order linear dispersion equation
on a periodic domain”, SIAM journal on control and optimization 31, 659-676 (1993)

[3]L. Rosier, “Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain”, ESAIM:
Control, Optimisation and Calculus of Variations 2, 33-55 (1997)
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Introduction The KdV equation

Control of KdV

o First control and stabilization results Russel, Zhangl?l (Periodic framework).

@ In the non-periodic framework we have the work of Rosierl3].

@ Several other results, Coron, Crépeau, Cerpa, Nguyen, etc. Nonlinear system
Rosier considered the following control problem

Ory + Oxy + 03y + ydxy =0, (t,x)€(0,T)x(0,L),

y(t,0) = y(t, L) =0, te(0,7),
Oxy(t, L) = h(t), te(0,7),
y(0, x) = yo(x), x € (0,L).

The linearized system is exactly controllable if and only if

k% + kI + 12
L¢ Ny= 2m/%;k,/eN*

[2]D. L. Russell and B. Y. Zhang, “Controllability and stabilizability of the third-order linear dispersion equation
on a periodic domain”, SIAM journal on control and optimization 31, 659-676 (1993)

[3]L. Rosier, “Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain”, ESAIM:
Control, Optimisation and Calculus of Variations 2, 33-55 (1997)
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Introduction The KdV equation

Rosier's strategy

Consider the linear equation

Oy +0xy + 03y =0, (t,x) €(0,T) x (0,L),
y(t,0) =y(t,L)=0, te(0,T),
xy(t,L) = h(t), te(0,T),
(0, x) = yo(x), x € (0,L)

Via H.U.M it is possible to show that exact controllability holds if and only if
l20ll 20,y < CllOxz(-,0) 20,7y, V20 € L3(0, L) (Obs)

and z = S(-)z € C([0, T]; L?(0, L)) N L2(0, T; H'(0, L)) solution of

01z + 0xz + 03z =0, (t,x) € (0, T) x (0,L),
z(t,0) = z(t,L) = Oxz(t,L) =0, te(0,T),
z(0,x) = zp(x), x € (0,L).
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Introduction The KdV equation

Overdeterminated system

Using compactness ideas we just focus on the stationary problem Exact controllability
equivalent to study

)\w +¢/ _i_wlll

=0,
v v =vo=vw=o %

3(\, ) € C x H3(0, L)\ {0} {
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Introduction The KdV equation

Overdeterminated system

Using compactness ideas we just focus on the stationary problem Exact controllability
equivalent to study

)\w +¢/ _i_wlll — O,

¥(0) = ¢(L) =¢'(0) =¢'(L) =0

(Paley-Wiener) Extend 9 to R, then A\ + v’ + " = 4"(0) 6o — ¥" (L) 8.
\T T

3(\, ) € C x H3(0, L)\ {0} { (A)
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Introduction The KdV equation

Overdeterminated system

Using compactness ideas we just focus on the stationary problem Exact controllability
equivalent to study

)\w + 17/}/ w/// —
I\, ) € C x H3(0, L)\ {0 A
(A ¥) € Cx H( )\{}{ 5(0) = (L) = () S0 =0 (A)
(Paley-Wiener) Extend 9 to R, then A\ + 1’ + 4" = 4""(0) 6o — ¥" (L) o,
T T
Taking Fourier transform (A) is equivalent to the existence of (p, a, ) € C3 (a, 3 # 0)
such that fe-ite
A ) a— Be™! . )
P(&) = if(§), f(§) = Gt p A= —ip € IR,

@ f is an entire function in C;

o /|f 2(1 4 [¢2)de
Q@ VEeC, |f(E) < ((1+ |£|)Ne“’"’(f>'), C,N > 0.



Introduction The KdV equation

Entire function

o — 5e"1§
S

The roots of a — e~ L€ are simple and periodic. Then we must study the case

F(§) =

o So+&+& =0,

21
Si=fot ke, ema €061 + Eofa + 6162 = —1,
E—E+p=(§—&)E—-&)E - &) €ol16r = —p.
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Introduction The KdV equation

Entire function

a— fe it
E-&+p

The roots of a — e~ L€ are simple and periodic. Then we must study the case

F(§) =

. k27r . /271' So+&+& =0,
é; =Gt L =&t v §oé1 + oo + §162 = —1,
E-¢+p=((—-%)E—-&)E—-&) £ol1&r = —p.

After some calculations we get

(k2 + kI + 2
L=2r % Critical length phenomena
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Introduction The KdV equation

Entire function

a— Be L&
E-E+p

The roots of a — e L€ are simple and periodic. Then we must study the case

F(§) =

27 21 ot+&+&=0,
5; = €O+k_T’ &= gl—HT’ §oé1 + oo + §1&2 = 1,
E-E+p=(—-&)E-&)E—&) €ol1&r = —p.

After some calculations we get

[k + kI + 2
L=2r %, Critical length phenomena

In what follows we focus on the related overderminated systems appearing developing
this strategy. We do not put emphasis in the regularity framework and nonlinear systems.
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KdV on networks

KdV on a star network

The KdV equation in a network, it was proposed to model the pressure on the arterial
tree inl*. We will study this equation on a star shaped network.

L2
o
él *—— .
< Oeyj + Oxy; + O3y + yjOxy; = 0, (deflection)
1
b Vi=Yji— 6)/1'2 + 202y, (velocity)

Figure: Star shaped network for N = 3.

[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg—de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620-1639 (2018)

Hugo Parada Controllability results for KdV-type equations




KdV on networks
KdV on a star network

The KdV equation in a network, it was proposed to model the pressure on the arterial
tree inl*. We will study this equation on a star shaped network.

L2
o
él *—— .
< Oeyj + Oxy; + O3y + yjOxy; = 0, (deflection)
1
b Vi=Yji— 6)/1'2 + 202y, (velocity)

Figure: Star shaped network for N = 3.

Central node conditions
y(t,0) = y1(t,0), (continuity)

N
Zyj(t, 0)vj(t,0) =0, (null sum of the flux).
j=1

[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg—de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620-1639 (2018)
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KdV on networks
LKdV on a star network

We study the linearization around 0

Oryj(t,x) + Oxy;(t,x) + B3y;j(t,x) =0, te (0, T), x€(0,¢), j=1,...N,
(£:0) = 1 (£.0). te(0,T), Vji=2,..N,

Z 2y;(t,0) = —ayi(t,0) + go(t), te(0,T),

yJ(t,EJ) =pj(t), Oxy(t,¢;) =gi(t), te(0,T),j=1,...N,

¥i(0,x) = yP(x), x € Ij,
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KdV on networks
Control on network

Controllability is equivalent to an observability inequality for the adjoint system

—0ppj — Oxpj — D3 =0,
soj(t 0) = ¢1(t,0), Vji=2,...N,

Z (pj t 0 (a - N)Qol(tv 0)7 te (07 T)a

(pj(tagj) = 8X<pj(t70) = Oa
pi(T,x) = o] (x).

=

lo( T x) 22y < € ZH 26; M)HLmﬁZnaxso, (&) oo,y + l01(£, 0 oo, 1)
j=1

Central node

~
Dirichlet Neumann
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KdV on networks

Neumann controls

Observability inequality readsl*

N
lo(T, )2y < € | 2 10x0i(t ) 2oy + o (£.0) o7
j=1

Theorem (Controllability with N + 1 controls)

#{¢; € Ny} < 1. Controls gy, g1, ... &N-

[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg—de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620-1639 (2018)
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KdV on networks
Idea of the proof

This is related to study

(Ngj+¢+9l =0, j=1,..N
eilly) = ¢i() =0, j=1,...N
pi(0) =¢j(0)=0, j=1,...N

N
> ¥f(0)=0.
j=1

Hugo Parada Controllability results for KdV-type equations



KdV on networks
Idea of the proof

This is related to study

(Ngj+¢+9l =0, j=1,..N
eilly) = ¢i() =0, j=1,...N
pi(0) =¢j(0)=0, j=1,...N

N
> g (0)=0.
j=1

o If £; ¢ Ny, wr have ¢;(0) = ¢}(0) = p;(¢;) = ¢;(£;) = 0, thus p; = 0.
o If {1 € Ny. As pj =0, for j =2,... N, then

Ap1 + @ + o1 =0,

¢1(61) = ¢1(41) =0,

¢1(0) = ¢1(0) = ¢7(0) = 0.
Then 1 = 0.



KdV on networks
N Neumann controls.

Theorem (Controllability with N controls.)

Ui ¢ Ny, for j=2,...N. Controls gy, g, ...8N-

What about no central node control?
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KdV on networks
N Neumann controls.

Theorem (Controllability with N controls.)

lj & Ny, forj=2,...N. Controls go, g, .. .&gN-

What about no central node control?

This case was considered inl%], and the following result was proved.

Theorem (Controllability with N controls.)

There exist Ly, To > 0, such that if

max {; < Lo, and T > Ty.
Jj=1,...N

Exact controllability with controls g1, ...gn.

Exact controllability with N Neumann controls if ¥}, {; ¢ Ny?

[5]E. Cerpa et al., “On the boundary controllability of the Korteweg—de Vries equation on a star-shaped network”,
IMA Journal of Mathematical Control and Information 37, 226-240 (2020)
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KdV on networks
N Neumann controls.

This ask us to study the solutions of

/\J<PJ+¢,+<pj” 0, i=1...N

©j(0) = ¥1(0), Jj=2,...N Rosier’'s approach arises

pi(6) = () =¢;(0) =0, j=1,...N o KEZ+ BT 4y
)j

> @ (0) = (@ = N)pr.

\Jj=1
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KdV on networks
N Neumann controls.

N
| pass now to an easier case, ¢; = L,V;. Now, we can define i) = Z ©j-
j=1

Proposition

Let L ¢ Nn. Then v =0 if and only if pj =0 forall j=1,...N.
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KdV on networks
N Neumann controls.

N
| pass now to an easier case, {; = L,V;. Now, we can define i) = Zc,oj.
j=1

Proposition

Let L ¢ Ny. Thent =0 if and only if o; =0 forall j=1,...N.

If 1 = 0, we have )(0) = N¢;(0) = 0 then ¢; solves

Apj + ¢ + ¢ =0,
(L) = ¢j(L) =0,
;j(0) = ¥3(0) = 0.

As L ¢ Ny, ¢; = 0.
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KdV on networks
N Neumann controls.

By definition v solves

A+ 4" + 4" =0,
¥(L) =¢'(L) = 4'(0) =0,

o —

v(0) = * M u(0).

Consider the case o = N
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KdV on networks
N Neumann controls.

By definition 1) solves

A+ 49" =0,

U(L) = V() = v/(0) =0
¥(0) = == (0):

Consider the case o = N

)\Qﬁ-f-w/—i—wm:(), ; :\9+9/+9///=0,
P(L) =4'(L) =0, 5 6(0) = 6'(0) = 0,
¥'(0) = 4"(0) = 0. (L) =6"(L) = 0.
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KdV on networks
N Neumann controls.

By definition 1) solves

X+ 9+ 9" =0,
$(L) =¢'(L) = ¢'(0) =0,

— N
¥(0) = = —(0).
Consider the case a = N
M+ + 9" =0, N +0 +0" =0,
0(x) = (L — x), ,
Y(L) =4'(L) =0, X(i)_;/)( X) 0(0) = 0'(0) = 0,
¥'(0) = ¢"(0) = 0. ¢(L)=0"(L) =0,

0=0<=L¢ Np
Exact controllability with N controls if L & Ny U Np.
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KdV on networks
Dirichlet controls

Theorem (Controllability with N + 1 controls.)
#{¢; € Np} < 1. Controls gy, p1,. .- PN-

Theorem (Controllability with N controls.)

lj ¢ Np, for j =2,...N. Controls gy, p2,...pn
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KdV on networks
Dirichlet controls

Theorem (Controllability with N + 1 controls.)
#{¢; € Np} < 1. Controls gy, p1,. .- PN-

Theorem (Controllability with N controls.)

lj ¢ Np, for j =2,...N. Controls gy, p2,...pn

No central node control ?
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KdV on networks
Dirichlet controls

Theorem (Controllability with N + 1 controls.)

#{¢; € Np} < 1. Controls gy, p1,. .- PN-

Theorem (Controllability with N controls.)

lj ¢ Np, for j =2,...N. Controls gy, p2,...pn

No central node control ?

Proposition

N
lj=L¢ Np. Thenp) = ;=0 if and only if p; =0 forall j = 1,... N.
j=1
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KdV on networks
N Dirichlet controls.

For aa = N, 1 solves

)\¢+¢/+7/)///:0’ )\T/}+¢l+w/1/:0’
(L) =4¢"(L) =0, , Change of variables ¥(0) = ¥"(0) = 0,
¥'(0) = 4"(0) = 0. ¢(L) =" (L) = 0.

(6]
(7]
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KdV on networks
N Dirichlet controls.

For aa = N, 1 solves

)\’(Z)+’¢/+’l/)///:0’ )\T/}+¢l+w/1/:0’
(L) =4¢"(L) =0, , Change of variables ¥(0) = ¥"(0) = 0,
¥'(0) = 4"(0) = 0. ¢(L) =" (L) = 0.

(6]
(7]
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KdV on networks

N Dirichlet controls.

For a = N, ¥ solves

)\¢+¢/+w///:0’ )\¢+¢/+¢HIZO,
P(L) =v"(L) =0, , Change of variables ¥(0) =¢"(0) =0,
¥'(0) = ¢"(0) = 0. ¢'(L) =v"(L) = 0.

In this case the critical lengths are not known (yet).Following Glass-Guerrerol® (Dirich-
let) and Cerpal” (Neumann).

[6]0. Glass and S. Guerrero, “Controllability of the Korteweg—de Vries equation from the right dirichlet boundary
condition”, Systems & Control Letters 59, 390-395 (2010)

[7]E. Cerpa, “Control of a Korteweg-de Vries equation: a tutorial”, Mathematical Control & Related Fields 4,
45-99 (2014)
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KdV on networks
N Dirichlet controls.

For aa = N, 1 solves

)\¢+¢/+7/)///:0’ )\T/}+¢l+w/1/:0’
(L) =4¢"(L) =0, , Change of variables ¥(0) = ¥"(0) = 0,
¥'(0) = 4"(0) = 0. ¢(L) =" (L) = 0.

Following Glass-Guerrerol® (Dirichlet) and Cerpal” (Neumann).

NneW: {L>Ova7becv L2:_(a2+ab+b2); a2ea:bzeb:(a+b)26—(a+b)}.

[6]0. Glass and S. Guerrero, “Controllability of the Korteweg—de Vries equation from the right dirichlet boundary
condition”, Systems & Control Letters 59, 390-395 (2010)

[7]E. Cerpa, “Control of a Korteweg-de Vries equation: a tutorial”, Mathematical Control & Related Fields 4,
45-99 (2014)
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Kawahara

Critical lengths for Kawahara (with S. Majumdar)

Generalization of KdV (high order dispersive effects).

afu_axu+83u_a)?u:07 (t,X)G(O, T)X(O?L)a
U(t,O) = U(t, L) = 8Xu(ta 0) = aXu(t7 L) =0, te (Oa T)7
Q2u(t, L) = 0%u(t,0) =0, t € (0, T).

V.
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Kawahara

Critical lengths for Kawahara (with S. Majumdar)

Generalization of KdV (high order dispersive effects).

afu_axu+83u_a)?u:07 (t,X)G(O, T)X(O?L)a
U(t,O) = U(t, L) = 8Xu(ta 0) = aXu(t7 L) =0, te (Oa T)7
Q2u(t, L) = 0%u(t,0) =0, t € (0, T).

There exists 1 not trivial such that ¢/ — " —¢"" =0 and ¢(0) = (L) = ¢’(0) =
Y'(L) =4¢"(0)=¢"(L)=0. If L N*.

V.
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Kawahara

Critical lengths for Kawahara (with S. Majumdar)

Generalization of KdV (high order dispersive effects).

afu_axu+83u_8)§u:07 (t,X)G(O, T)X(O?L)a
U(t,O) = U(t, L) = 8Xu(ta 0) = aXu(t7 L) =0, te (Oa T)7
Q2u(t, L) = 0%u(t,0) =0, t € (0, T).

There exists 1 not trivial such that ¢/ — " —¢"" =0 and ¢(0) = (L) = ¢’(0) =
Y'(L) =4¢"(0)=¢"(L)=0. If L N*.

For our system there is no critical length phenomena.

Proposition

If X, 1 € C x H3(0, L) satisfies
{)\¢ — ) " — i = 0, x € (0, L)
P(0) = ¢(L) = ¢'(0) = ¢/(L) = ¢"(0) = ¢"(L) =0,
then ¢ = 0.

V.
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Kawahara
Critical lengths Kawahara

Taking Fourier

a1i€ — apife ™t + a3 —aze™ . N(E, L)

_/ﬁ(g):f(g,L): S+B 147 g6’

(8]
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Kawahara
Critical lengths Kawahara

Taking Fourier

- ié — agite €t 4 a3 — age €t N(E, L)
— = f ,L = = 5 r E R
Denote by &;, i = 1,...,5 the roots of g(+), then m = e /&L, We can introduce
i+ o4

the M&bius transformation M(&;) = e, From[®] we have

o Let @ € C*\ {0} with d(d@) = aja3 — azay = 0 and L > 0. Then, the set of the
imaginary parts of the zeros of N(-, L) has at most two elements.

@ For L > 0, there is no Mébius transformation M, such that

M(&) = e—iLf’ 5 € {§1a§27£_17§_2}7 517‘5275?5_2 different.

It is enough to prove that the set of imaginary parts of zeros of g(-) has three elements.

v

[8]JA. L. C. d. Santos et al., “Entire functions related to stationary solutions of the kawahara equation”, (2016)
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Kawahara
Some perspectives

Take o # N in the controllability results for the network?

Neumann case

M+ + " =0, M+ + " =0,
(L) =v'(L) - ¥'(0) =0, (L) = ¢/ (L) = ¢/(0) =0
¥(0) = == v(0), ¥(0) + T14(0) = 0.
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Kawahara
Some perspectives

Take o # N in the controllability results for the network?

Neumann case

M+ + " =0, A+ 4" =0, N
V) =D =00 =0 Lyl = (L) = w/(0) =0 {T v i e

_ o1 LdF
¥(0) = (), 4(0) + 76(0) = 0.
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Kawahara
Some perspectives

Take o # N in the controllability results for the network?

Neumann case

M+ + " =0, A+ 4" =0, e len
YO =V =0 =0 L) = (1) = ¥/(0) =0 { =0 LgND,

a—N ) r=1,1¢F.
¥(0) = ——¥(0), ¢”(0) + 71(0) = 0.

Recover Np via Fourier? (7 =0).

af? + Be ¢k —af —ap _ o itl
B—-&—p’ BE '

Mobius transform uniquely defined by the values &; — e 6t j=0,1,2.

() =
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Kawahara
Some perspectives

Relation with delay differential equation??
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Kawahara
Some perspectives

Relation with delay differential equation??

y("(t) —I—Zajy (t) —i—ZaJy (t—71)=0

Characteristic function
n—1 ) n—1 )
="+> gd+e > i, tecC
j=0 j=0

Asymptotic behavior related to roots of A.......
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Kawahara
A funny situation

Consider the systems

Oy + (14 B)dxy + 93y =0 Oy + (14 B)dxy + 93y =0

)(;(1.’,0) :):(tv L) =0, (A) aﬁy(t,O)iaﬁy(t, L) =0, (B)
x.y(tv L) - h(t)7 aXy(t': L)_ h(t)7

y(0,x) = yo(x) y(0,x) = yo(x)
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Kawahara
A funny situation

Consider the systems

Oy + (14 B)dxy + 93y =0 Oy + (14 B)dxy + 93y =0

)(;(1.’,0) :):(tv L) =0, (A) aﬁy(t,O)iaﬁy(t, L) =0, (B)
x.y(tv L) - h(t)7 aXy(t': L)_ h(t)7

y(0,x) = yo(x) y(0,x) = yo(x)

Critical lengths
e =0, (A) critical lengths Ny
e 3 =0, (B) critical lengths Ny U {km, k € N*}.

Hugo Parada Controllability results for KdV-type equations



Kawahara
A funny situation

Consider the systems

Oy + (14 B)dxy + 93y =0 Oy + (14 B)dxy + 93y =0

)(;(1.’,0) :):(tv L) =0, (A) aﬁy(t,O)iaﬁy(t, L) =0, (B)
x.y(tv L) - h(t)7 aXy(t': L)_ h(t)7

y(0,x) = yo(x) y(0,x) = yo(x)

Critical lengths
e 8 =0, (A) critical lengths Ny
e 3 =0, (B) critical lengths Ny U {km, k € N*}.
e 3= —1, (A) critical lengths 0.
o 3= —1, (B) critical lengths R..
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Thank you for your attention
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