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The KdV equation

The Korteweg-de Vries (KdV) equation ∂tu + ∂xu + ∂3xu + u∂xu = 0 was introduced
by Diederik Korteweg and Gustav de Vries in 1985[1] to model the propagation of long
water waves in a channel.

Figure: Solitary waves.

Model a variety of phenomena, including water waves, tsunamis, transmission of elec-
trical signals in nerve fibers, plasma, cosmology, etc.

[1]D. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular channel, and
a new type of long stationary wave”, Phil. Mag 39, 422–443 (1895)
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Control of KdV

First control and stabilization results Russel, Zhang[2] (Periodic framework).

In the non-periodic framework we have the work of Rosier[3] .

Several other results, Coron, Crépeau, Cerpa, Nguyen, etc. Nonlinear system

[2]D. L. Russell and B. Y. Zhang, “Controllability and stabilizability of the third-order linear dispersion equation
on a periodic domain”, SIAM journal on control and optimization 31, 659–676 (1993)

[3]L. Rosier, “Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain”, ESAIM:
Control, Optimisation and Calculus of Variations 2, 33–55 (1997)
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Control of KdV

First control and stabilization results Russel, Zhang[2] (Periodic framework).

In the non-periodic framework we have the work of Rosier[3] .

Several other results, Coron, Crépeau, Cerpa, Nguyen, etc. Nonlinear system

Rosier considered the following control problem
∂ty + ∂xy + ∂3xy + y∂xy = 0, (t, x) ∈ (0,T )× (0, L),

y(t, 0) = y(t, L) = 0, t ∈ (0,T ),

∂xy(t, L) = h(t), t ∈ (0,T ),

y(0, x) = y0(x), x ∈ (0, L).

The linearized system is exactly controllable if and only if

L /∈ NN =

{
2π

√
k2 + kl + l2

3
; k , l ∈ N∗

}
[2]D. L. Russell and B. Y. Zhang, “Controllability and stabilizability of the third-order linear dispersion equation

on a periodic domain”, SIAM journal on control and optimization 31, 659–676 (1993)

[3]L. Rosier, “Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain”, ESAIM:
Control, Optimisation and Calculus of Variations 2, 33–55 (1997)
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Rosier’s strategy

Consider the linear equation
∂ty + ∂xy + ∂3xy = 0, (t, x) ∈ (0,T )× (0, L),

y(t, 0) = y(t, L) = 0, t ∈ (0,T ),

∂xy(t, L) = h(t), t ∈ (0,T ),

y(0, x) = y0(x), x ∈ (0, L).

Via H.U.M it is possible to show that exact controllability holds if and only if

∥z0∥L2(0,L) ≤ C∥∂xz(·, 0)∥L2(0,T ), ∀z0 ∈ L2(0, L) (Obs)

and z = S(·)z0 ∈ C ([0,T ]; L2(0, L)) ∩ L2(0,T ;H1(0, L)) solution of
∂tz + ∂xz + ∂3x z = 0, (t, x) ∈ (0,T )× (0, L),

z(t, 0) = z(t, L) = ∂xz(t, L) = 0, t ∈ (0,T ),

z(0, x) = z0(x), x ∈ (0, L).
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Overdeterminated system

Using compactness ideas we just focus on the stationary problem Exact controllability
equivalent to study

∃(λ, ψ) ∈ C× H3(0, L) \ {0}

{
λψ + ψ′ + ψ′′′ = 0,

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0
(A)

(Paley-Wiener) Extend ψ to R, then λψ + ψ′ + ψ′′′ = ψ′′(0)︸ ︷︷ ︸
α

δ0 − ψ′′(L)︸ ︷︷ ︸
β

δL.
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Overdeterminated system

Using compactness ideas we just focus on the stationary problem Exact controllability
equivalent to study

∃(λ, ψ) ∈ C× H3(0, L) \ {0}

{
λψ + ψ′ + ψ′′′ = 0,

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0
(A)

(Paley-Wiener) Extend ψ to R, then λψ + ψ′ + ψ′′′ = ψ′′(0)︸ ︷︷ ︸
α

δ0 − ψ′′(L)︸ ︷︷ ︸
β

δL.

Taking Fourier transform (A) is equivalent to the existence of (p, α, β) ∈ C3 (α, β ̸= 0)
such that

ψ̂(ξ) = if (ξ), f (ξ) =
α− βe−iLξ

ξ3 − ξ + p
, λ = −ip ∈ iR,

1 f is an entire function in C;
2

∫
R
|f (ξ)|2(1 + |ξ|2)dξ;

3 ∀ξ ∈ C, |f (ξ)| ≤ ((1 + |ξ|)NeL|Im(ξ)|), C ,N > 0.
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Entire function

f (ξ) =
α− βe−iLξ

ξ3 − ξ + p

The roots of α− βe−iLξ are simple and periodic. Then we must study the case

ξ1 := ξ0 + k
2π

L
, ξ2 := ξ1 + l

2π

L
,

ξ3 − ξ + p = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2)


ξ0 + ξ1 + ξ2 = 0,

ξ0ξ1 + ξ0ξ2 + ξ1ξ2 = −1,

ξ0ξ1ξ2 = −p.

Hugo Parada Controllability results for KdV-type equations



6

Introduction KdV on networks Kawahara The KdV equation

Entire function

f (ξ) =
α− βe−iLξ

ξ3 − ξ + p

The roots of α− βe−iLξ are simple and periodic. Then we must study the case

ξ1 := ξ0 + k
2π

L
, ξ2 := ξ1 + l

2π

L
,

ξ3 − ξ + p = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2)


ξ0 + ξ1 + ξ2 = 0,

ξ0ξ1 + ξ0ξ2 + ξ1ξ2 = −1,

ξ0ξ1ξ2 = −p.

After some calculations we get

L = 2π

√
k2 + kl + l2

3
, Critical length phenomena
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Entire function

f (ξ) =
α− βe−iLξ

ξ3 − ξ + p

The roots of α− βe−iLξ are simple and periodic. Then we must study the case

ξ1 := ξ0 + k
2π

L
, ξ2 := ξ1 + l

2π

L
,

ξ3 − ξ + p = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2)


ξ0 + ξ1 + ξ2 = 0,

ξ0ξ1 + ξ0ξ2 + ξ1ξ2 = −1,

ξ0ξ1ξ2 = −p.

After some calculations we get

L = 2π

√
k2 + kl + l2

3
, Critical length phenomena

In what follows we focus on the related overderminated systems appearing developing
this strategy. We do not put emphasis in the regularity framework and nonlinear systems.
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KdV on a star network

The KdV equation in a network, it was proposed to model the pressure on the arterial
tree in[4] . We will study this equation on a star shaped network.

Figure: Star shaped network for N = 3.

∂tyj + ∂xyj + ∂3xyj + yj∂xyj = 0, (deflection)

vj = yj −
1

6
y2j + 2∂2xyj , (velocity)

Central node conditions
yj(t, 0) = y1(t, 0), (continuity)
N∑
j=1

yj(t, 0)vj(t, 0) = 0, (null sum of the flux).

[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg–de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620–1639 (2018)
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[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg–de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620–1639 (2018)

Hugo Parada Controllability results for KdV-type equations



8

Introduction KdV on networks Kawahara

LKdV on a star network

We study the linearization around 0

∂tyj(t, x) + ∂xyj(t, x) + ∂3xyj(t, x) = 0, t ∈ (0,T ), x ∈ (0, ℓj), j = 1, . . .N,

yj(t, 0) = y1(t, 0), t ∈ (0,T ), ∀j = 2, . . .N,
N∑
j=1

∂2xyj(t, 0) = −αy1(t, 0) + g0(t), t ∈ (0,T ),

yj(t, ℓj) = pj(t), ∂xyj(t, ℓj) = gj(t), t ∈ (0,T ), j = 1, . . .N,

yj(0, x) = y0j (x), x ∈ Ij ,
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Control on network

Controllability is equivalent to an observability inequality for the adjoint system

−∂tφj − ∂xφj − ∂3xφj = 0,

φj(t, 0) = φ1(t, 0), ∀j = 2, . . .N,
N∑
j=1

∂2xφj(t, 0) = (α− N)φ1(t, 0), t ∈ (0,T ),

φj(t, ℓj) = ∂xφj(t, 0) = 0,

φj(T , x) = φT
j (x).

∥φ(T , x)∥2L2(T ) ≤ C


N∑
j=1

∥∂2xφj(t, ℓj)∥2L2(0,T )︸ ︷︷ ︸
Dirichlet

+
N∑
j=1

∥∂xφj(t, ℓj)∥2L2(0,T )︸ ︷︷ ︸
Neumann

+ ∥φ1(t, 0)∥2L2(0,T )︸ ︷︷ ︸
Central node

 .
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Neumann controls

Observability inequality reads[4]

∥φ(T , x)∥2L2(T ) ≤ C

 N∑
j=1

∥∂xφj(t, ℓj)∥2L2(0,T ) + ∥φ1(t, 0)∥2L2(0,T )

 .

Theorem (Controllability with N + 1 controls)

#{ℓj ∈ NN} ≤ 1. Controls g0, g1, . . . gN .

[4]K. Ammari and E. Crépeau, “Feedback Stabilization and Boundary Controllability of the Korteweg–de Vries
Equation on a Star-Shaped Network”, SIAM Journal on Control and Optimization 56, 1620–1639 (2018)
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Idea of the proof

This is related to study 

λjφj + φ′
j + φ′′′

j = 0, j = 1, . . .N

φj(ℓj) = φ′
j(ℓj) = 0, j = 1, . . .N

φj(0) = φ′
j(0) = 0, j = 1, . . .N

N∑
j=1

φ′′
j (0) = 0.

If ℓj /∈ NN , wr have φj(0) = φ′
j(0) = φj(ℓj) = φ′

j(ℓj) = 0, thus φj ≡ 0.

If ℓ1 ∈ NN . As φj = 0, for j = 2, . . .N, then
λ1φ1 + φ′

1 + φ′′′
1 = 0,

φ1(ℓ1) = φ′
1(ℓ1) = 0,

φ1(0) = φ′
1(0) = φ′′

1(0) = 0.

Then φ1 = 0.
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N Neumann controls.

Theorem (Controllability with N controls.)

ℓj /∈ NN , for j = 2, . . .N. Controls g0, g2, . . . gN .

What about no central node control?
Exact controllability with N Neumann controls if ∀j , ℓj /∈ NN?
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N Neumann controls.

Theorem (Controllability with N controls.)

ℓj /∈ NN , for j = 2, . . .N. Controls g0, g2, . . . gN .

What about no central node control?
This case was considered in[5] , and the following result was proved.

Theorem (Controllability with N controls.)

There exist L0,T0 > 0, such that if

max
j=1,...N

ℓj < L0, and T > T0.

Exact controllability with controls g1, . . . gN .

Exact controllability with N Neumann controls if ∀j , ℓj /∈ NN?

[5]E. Cerpa et al., “On the boundary controllability of the Korteweg–de Vries equation on a star-shaped network”,
IMA Journal of Mathematical Control and Information 37, 226–240 (2020)
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N Neumann controls.

This ask us to study the solutions of



λjφj + φ′
j + φ′′′

j = 0, j = 1, . . .N

φj(0) = φ1(0), j = 2, . . .N

φj(ℓj) = φ′
j(ℓj) = φ′

j(0) = 0, j = 1, . . .N
N∑
j=1

φ′′
j (0) = (α− N)φ1.

Rosier’s approach arises

iφ̂j(ξ) =
κξ2 + βje

−iξℓj + γj
ξ3 − ξ − pj

, . . .
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N Neumann controls.

I pass now to an easier case, ℓj = L,∀j . Now, we can define ψ =
N∑
j=1

φj .

Proposition

Let L /∈ NN . Then ψ = 0 if and only if φj = 0 for all j = 1, . . .N.
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N Neumann controls.

I pass now to an easier case, ℓj = L,∀j . Now, we can define ψ =
N∑
j=1

φj .

Proposition

Let L /∈ NN . Then ψ = 0 if and only if φj = 0 for all j = 1, . . .N.

If ψ = 0, we have ψ(0) = Nφj(0) = 0 then φj solves
λφj + φ′

j + φ′′′
j = 0,

φj(L) = φ′
j(L) = 0,

φj(0) = φ′
j(0) = 0.

As L /∈ NN , φj = 0.
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N Neumann controls.

By definition ψ solves 
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = ψ′(0) = 0,

ψ′′(0) =
α− N

N
ψ(0).

Consider the case α = N
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N Neumann controls.

By definition ψ solves 
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = ψ′(0) = 0,

ψ′′(0) =
α− N

N
ψ(0).

Consider the case α = N
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = 0,

ψ′(0) = ψ′′(0) = 0.

θ(x) = ψ(L− x),

λ̃ = −λ


λ̃θ + θ′ + θ′′′ = 0,

θ(0) = θ′(0) = 0,

θ′(L) = θ′′(L) = 0.
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N Neumann controls.

By definition ψ solves 
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = ψ′(0) = 0,

ψ′′(0) =
α− N

N
ψ(0).

Consider the case α = N
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = 0,

ψ′(0) = ψ′′(0) = 0.

θ(x) = ψ(L− x),

λ̃ = −λ


λ̃θ + θ′ + θ′′′ = 0,

θ(0) = θ′(0) = 0,

θ′(L) = θ′′(L) = 0.

θ ≡ 0 ⇐⇒ L /∈ ND

Exact controllability with N controls if L /∈ NN ∪ND .
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Dirichlet controls

Theorem (Controllability with N + 1 controls.)

#{ℓj ∈ ND} ≤ 1. Controls g0, p1, . . . pN .

Theorem (Controllability with N controls.)

ℓj /∈ ND , for j = 2, . . .N. Controls g0, p2, . . . pN

No central node control ?

Proposition

ℓj = L /∈ ND . Then ψ =
N∑
j=1

φj = 0 if and only if φj = 0 for all j = 1, . . .N.
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N Dirichlet controls.

For α = N, ψ solves
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′′(L) = 0,

ψ′(0) = ψ′′(0) = 0.

, Change of variables


λψ + ψ′ + ψ′′′ = 0,

ψ(0) = ψ′′(0) = 0,

ψ′(L) = ψ′′(L) = 0.

Following Glass-Guerrero[6] (Dirichlet) and Cerpa[7] (Neumann).

Nnew =
{
L > 0, a, b ∈ C, L2 = −(a2 + ab + b2); a2ea = b2eb = (a+ b)2e−(a+b)

}
.

[6]O. Glass and S. Guerrero, “Controllability of the Korteweg–de Vries equation from the right dirichlet boundary
condition”, Systems & Control Letters 59, 390–395 (2010)

[7]E. Cerpa, “Control of a Korteweg-de Vries equation: a tutorial”, Mathematical Control & Related Fields 4,
45–99 (2014)
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[6]O. Glass and S. Guerrero, “Controllability of the Korteweg–de Vries equation from the right dirichlet boundary
condition”, Systems & Control Letters 59, 390–395 (2010)

[7]E. Cerpa, “Control of a Korteweg-de Vries equation: a tutorial”, Mathematical Control & Related Fields 4,
45–99 (2014)
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Critical lengths for Kawahara (with S. Majumdar)

Generalization of KdV (high order dispersive effects).
∂tu − ∂xu + ∂3xu − ∂5xu = 0, (t, x) ∈ (0,T )× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,T ),

∂2xu(t, L) = ∂2xu(t, 0) = 0, t ∈ (0,T ).

There exists ψ not trivial such that ψ′ − ψ′′′ − ψ′′′′′ = 0 and ψ(0) = ψ(L) = ψ′(0) =
ψ′(L) = ψ′′(0) = ψ′′(L) = 0. If L ∈ N ∗.

For our system there is no critical length phenomena.

Proposition

If λ, ψ ∈ C× H5(0, L) satisfies{
λψ − ψ′ + ψ′′′ − ψ′′′′′ = 0, x ∈ (0, L)

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = ψ′′(0) = ψ′′(L) = 0,

then ψ ≡ 0.
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Critical lengths Kawahara

Taking Fourier

−iψ̂(ξ) = f (ξ, L) =
α1iξ − α2iξe

−iξL + α3 − α4e
−iξL

ξ5 + ξ3 + ξ + r
=

N(ξ, L)

q(ξ)
, r ∈ R.

Denote by ξi , i = 1, . . . , 5 the roots of q(·), then α1iξi + α3

α2iξi + α4
= e−iξiL. We can introduce

the Möbius transformation M(ξi ) = e−iLξi . From[8] we have

Lemma

Let α⃗ ∈ C4 \ {0} with d(α⃗) = α1α3 − α2α4 = 0 and L > 0. Then, the set of the
imaginary parts of the zeros of N(·, L) has at most two elements.

For L > 0, there is no Möbius transformation M, such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ1, ξ2}, ξ1, ξ2, ξ1, ξ2 different.

It is enough to prove that the set of imaginary parts of zeros of q(·) has three elements.

[8]A. L. C. d. Santos et al., “Entire functions related to stationary solutions of the kawahara equation”, (2016)
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Some perspectives

Take α ̸= N in the controllability results for the network?

Neumann case
λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = ψ′(0) = 0,

ψ′′(0) =
α− N

N
ψ(0),


λψ + ψ′ + ψ′′′ = 0,

ψ(L) = ψ′(L) = ψ′(0) = 0,

ψ′′(0) + τψ(0) = 0.

−→

{
τ = 0, L /∈ ND ,

τ = 1, L /∈ F .

Recover ND via Fourier? (τ = 0).

iψ̂(ξ) =
αξ2 + βe−iξL

ξ3 − ξ − p
,

−αξ − αp

βξ
= e−iξL.

Möbius transform uniquely defined by the values ξj → e−iξjL, j = 0, 1, 2.
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Some perspectives

Relation with delay differential equation??

y (n)(t) +
n−1∑
j=0

ajy
(j)(t) +

n−1∑
j=0

αjy
(j)(t − τ) = 0

Characteristic function

∆(ξ) = ξn +
n−1∑
j=0

ajξ
j + e−τξ

n−1∑
j=0

αjξ
j , ξ ∈ C

Asymptotic behavior related to roots of ∆.......
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A funny situation

Consider the systems
∂ty + (1 + β)∂xy + ∂3xy = 0

y(t, 0) = y(t, L) = 0,

∂xy(t, L) = h(t),

y(0, x) = y0(x)

(A)


∂ty + (1 + β)∂xy + ∂3xy = 0

∂2xy(t, 0) = ∂2xy(t, L) = 0,

∂xy(t, L) = h(t),

y(0, x) = y0(x)

(B)

Critical lengths

β = 0, (A) critical lengths NN

β = 0, (B) critical lengths NN ∪ {kπ, k ∈ N∗}.
β = −1, (A) critical lengths ∅.
β = −1, (B) critical lengths R+.
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Thank you for your attention
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