(Lack of) Local controllability of a water tank controlled by acceleration

In collaboration with Jean-Michel Coron and Hoai-Minh Nguyen

Armand Koenig

August 21th, 2024

X Partial Differential Equations, Optimal Design and Numerics

[Introduction](#page-1-0)

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$.

 $0 \bullet$

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$. For $\epsilon > 0$

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$. For $\epsilon > 0$, does there exists $\eta > 0$

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$. For $\epsilon > 0$, does there exists $n > 0$ such that if $0 < T < \epsilon$. $|X_0| < \eta$, $|X_T| < \eta$

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$. For $\epsilon > 0$, does there exists $n > 0$ such that if $0 < T < \epsilon$. $|X_0| < \eta$, $|X_7| < \eta$, we can find $|u|_{L^{\infty}(0,T)} < \epsilon$ such that $X(T) = X_T$?

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with $f(0, 0) = 0$. For $\epsilon > 0$, does there exists $n > 0$ such that if $0 < T < \epsilon$. $|X_0| < \eta$, $|X_T| < \eta$, we can find $|u|_{L^{\infty}(0,T)} < \epsilon$ such that $X(T) = X_T$?

Theorem (Linear test)

Small-time local controllability holds if the linearized equation is controllable.

Proof.
$$
\dot{X} = L_1 X + L_2 u + N L(X, u)
$$

$$
\mathcal{F}: g \mapsto Y \text{ solution to } \dot{Y} = L_1 Y + g, \ Y(0) = 0
$$

Banach fixed-point theorem to $(X, u) \mapsto (Y, v)$ where

$$
\left\{\n\begin{array}{l}\n\mathsf{v} := \mathsf{Linear\,control}(X_0, X_1 - \mathcal{F} \circ \mathsf{NL}(X, u)(T)) \\
\mathsf{Y} := e^{T L_1} X_0 + \mathcal{F} \circ L_2 \mathsf{v} + \mathcal{F} \circ \mathsf{NL}(X, u)\n\end{array}\n\right.
$$

A simple quadratic obstruction

$$
\begin{cases}\n\dot{x}_1 = u \\
\dot{x}_2 = x_1^2\n\end{cases}
$$
\n $\dot{x}_2 \ge 0$: no controllability.

A quadratic obstruction in small time

$$
\begin{cases}\n\dot{x}_1 = u & \text{if } x_2(0) = x_2(T) = 0, \int_0^T x_2^2 \le (T/\pi)^2 \int_0^T \dot{x}_2^2 \\
\dot{x}_2 = x_1 & \text{(Poincaré). If } T \text{ is small, } x_3(T) \ge x_3(0): \text{ no} \\
\dot{x}_3 = x_1^2 - x_2^2 & \text{small-time controllability}\n\end{cases}
$$

Another small-time obstruction?

 $\sqrt{ }$ \int \downarrow $\dot{x}_1 = u$ $\dot{x}_2 = x_1$ $\dot{x}_3 = x_1^3 + x_2^2$ Small-time local controllability… but not if we ask $|u|_{W^{1,\infty}} \ll 1!$

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,…]

[Previous examples of quadratic obstruction](#page-10-0)

[The control system](#page-11-0)

[The case of a non-controllable linearization](#page-13-0)

[Control of a Water-Tank](#page-20-0)

[The Water-Tank System](#page-21-0)

[\(Non\)controllability for the Water-Tank](#page-23-0)

[Kernel for the Quadratic Approximation](#page-25-0)

[Conclusion](#page-30-0)

[Previous examples of quadratic](#page-10-0) [obstruction](#page-10-0)

Schrödinger equation

 $i\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) + u(t) \mu(x) \psi(t,x), \quad x \in (0,1)$ with Dirchlet B.C.

Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)

Let $\psi_0 \in L^2(0,1)$ *. The set*

 $\{\psi(T, \cdot): T > 0, u \in L^2(0, T), \psi \text{ solution with } \psi(0, \cdot) = \psi_0\}$

is contained in a countable union of compact subsets of $L^2(0,1)$.

Schrödinger equation

 $i\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) + u(t) \mu(x) \psi(t,x), \quad x \in (0,1)$ with Dirchlet B.C.

Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)

Let $\psi_0 \in L^2(0,1)$ *. The set*

 $\{\psi(T, \cdot): T > 0, u \in L^2(0, T), \psi \text{ solution with } \psi(0, \cdot) = \psi_0\}$

is contained in a countable union of compact subsets of $L^2(0,1)$.

Theorem (Local controllability in H^3 around the ground state, Beauchard & Laurent 2010)

 $(\varphi_k)_k$ eigenfunctions of $-\partial_x^2$. If $|\langle \mu\varphi_1, \varphi_k\rangle_{L^2}|$ ≥ ck⁻³, for every T > 0, for every $ψ₀, ψ₁$ with appropriate boundary conditions and

 $\|\psi_0 - \varphi_1\|_{H^3} + \|\psi_1 - e^{-i\lambda_1 T}\varphi_1\|_{H^3}$ small enough,

there exists $u \in L^2(0,T)$ such that the associated solution satisfies $\psi(T,\cdot) = \psi_1.$

Proof. Variant of the linear test

Theorem (Quadratic obstruction for small-time local controllability, Coron, Beauchard, Morancey, Bournissou)

If $\langle \mu\varphi_1, \varphi_K \rangle = 0$ *, under some assumptions on* μ *, there exists A* $>$ *0, T* $>$ *0 and* $\eta > 0$ such that for every u with $||u||_{H^3(0,T)} < \eta$,

$$
\pm \Im \langle \psi(T), \varphi_K e^{-i\lambda_1 T} \rangle \geq A \|u_3\|_{L^2}^2 - C \| \psi(T) - \varphi_1 e^{-i\lambda_1 T} \|_{L^2}^2
$$

where $u_0 = u$, $u_{k+1}(t) := \int_0^t u_k(s) \, ds$.

Theorem (Small-time local controllability with oscillating controls, Bournissou 2022)

Under more assumptions on µ*, the Schrödinger equation with bilinear controls is small-time locally controllable around* ϕ1*e* [−]*i*λ1*^T with targets in* $D((-\partial_x^2)^{11/2})$ and controls small in $H_0^2(0,T)$ *.*

Proofs. $\psi(t,x) = \varphi_1 e^{-i\lambda_1 T} + \psi_\mathsf{lin}(u) + \psi_\mathsf{quad}(u) + \psi_\mathsf{cub}(u) + \text{error}.$

Other examples **7** and 2011 12:00 the contract of α

Theorem (Viscuous Burgers equation, Marbach 2018)

If $y(0, x) = 0$ *and* $\partial_t y(t, x) - \partial_x^2 y(t, x) + y(t, x) \partial_x y(t, x) = u(t), \quad x \in (0, 1)$ with Dirichlet B.C., *for some test function* ρ *, T* $>$ 0 *small enough, and u*₁(*t*) := $\int_0^t u(s) \, \mathrm{d} s$, $\langle \rho, y(T, \cdot) \rangle \geq k ||u_1||_{H^{-1/4}}^2$.

Other examples **7** and 200 million and 200 mil

Theorem (Viscuous Burgers equation, Marbach 2018)

If $y(0, x) = 0$ *and* $\partial_t y(t, x) - \partial_x^2 y(t, x) + y(t, x) \partial_x y(t, x) = u(t), \quad x \in (0, 1)$ with Dirichlet B.C., *for some test function* ρ *, T* $>$ 0 *small enough, and u*₁(*t*) := $\int_0^t u(s) \, \mathrm{d} s$, $\langle \rho, y(T, \cdot) \rangle \geq k ||u_1||_{H^{-1/4}}^2$.

Theorem (Nonlinear heat equation, Beauchard et Marbach 2020)

If $\langle \Gamma[0], \varphi_0 \rangle = 0$, under some assumptions on $\Gamma \in C^2(H^1_N; H^{-1}_N)$, there exists $A \neq 0$ *such that for every* $\epsilon > 0$, there exist $T > 0$ and $\eta > 0$ *such that for every* $δ ∈ [-1, 1]$ *and* $||u||_{H^{2n+2}} < η$ *, if* $∂_tz(t,x) − ∂_x²z(t,x) = u(t)Γ(z(t))(x), x ∈ (0, 1)$ *with Neuman B.C.*, *and z*(0) = $\delta\varphi_0$ *and for j* \geq 1, $\langle z(T), \varphi_i \rangle \neq 0$ *,* $|\langle z(T), \varphi_0 \rangle - \delta + A ||u_n||_{L^2}^2| \leq \epsilon (|\delta| + ||u_n||_{L^2}^2).$

where $u_0 = u$, $u_{k+1}(t) := \int_0^t u_k(s) \, ds$.

KdV equation

$$
\begin{cases}\n\partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\
y(t, 0) = y(t, L) = 0, & \partial_x y(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

$$
(t, x) \in (0, T) \times (0, L)
$$

$$
t \in (0, T)
$$

KdV equation linearized around 0

$$
\begin{cases}\n\partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\
y_1(t, 0) = y_1(t, L) = 0, & \partial_x y_1(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

KdV equation

$$
\begin{cases}\n\partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\
y(t, 0) = y(t, L) = 0, & \partial_x y(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

KdV equation linearized around 0

$$
\begin{cases}\n\partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\
y_1(t, 0) = y_1(t, L) = 0, & \partial_x y_1(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

Theorem (Rosier 1997)

The linearized KdV equation is controllable in some time (equivalently in arbitrarily small time) iff L $\notin \mathcal{N}$ \coloneqq $\sqrt{ }$ 2π $\sqrt{k^2 + kl + l^2}$ $\frac{kl+l^2}{3}$, $(k, l) \in (\mathbb{N}^*)^2$ *.*

If $L \in \mathcal{N}$, there is some finite dimensional unreachable space M.

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L $= 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$ and that k $=$ l, the *nonlinear KdV equation is small-time locally controllable.*

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists *T* > 0 such that the nonlinear KdV equation is locally *controllable in time T.*

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L $= 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$ and that k $=$ l, the *nonlinear KdV equation is small-time locally controllable.*

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists $T > 0$ such that the nonlinear KdV equation is locally *controllable in time T.*

Theorem (Coron K Nguyen 2020)

If k \neq *l* ∈ \mathbb{N}^* , *L* = 2 $\pi\sqrt{\frac{k^2 + kl + l^2}{3}}$ and 2*k* + *l* \notin 3N, lack of small-time local *controllable of the nonlinear KdV equation for H*³ *initial conditions with controls small in* $H^1(0,T)$ *.*

[Control of a Water-Tank](#page-20-0)

The Water-Tank 10 and 10 a

The water-tank system

$$
\begin{cases}\n\partial_t H + \partial_x (vH) = 0, & (t, x) \in (0, T) \times (0, L) \\
\partial_t v + \partial_x (gH + v^2/2) = -u(t), & (t, x) \in (0, T) \times (0, L) \\
v(t, 0) = v(t, L) = 0 & t \in (0, T) \\
\ddot{D}(t) = u(t) & t \in (0, T)\n\end{cases}
$$

The Water-Tank 10

The water-tank system

$$
\begin{cases}\n\partial_t H + \partial_x (vH) = 0, & (t, x) \in (0, T) \times (0, L) \\
\partial_t v + \partial_x (gH + v^2/2) = -u(t), & (t, x) \in (0, T) \times (0, L) \\
v(t, 0) = v(t, L) = 0 & t \in (0, T) \\
\ddot{D}(t) = u(t) & t \in (0, T)\n\end{cases}
$$

Linearized equation around $H = H_{\text{eq}}$, $V = 0$ $\sqrt{ }$ $\left\vert \right\vert$ $∂_th + H_{eq}∂_xv = 0,$ (*t*, *x*) ∈ (0, *T*) × (0, *L*) $∂_t$ *v* + $g∂_x h = −u(t)$, (*t*, *x*) ∈ (0, *T*) × (0, *L*)

 \mathcal{L} $v(t, 0) = v(t, L) = 0$ $t \in (0, T)$ $h(t, L - x) = -h(t, x)$, $v(t, L - x) = v(t, x)$; not controllable. But moving the tank and such that the water is still at the start and end is possible if $T > T_* = L/\sqrt{gH_{eq}}.$

Theorem (Control using the return method, Coron 2002)

Local controllability in large time: there exists $T > 0$ *,* $\eta > 0$ *such that if*

$$
||H_0 - 1||_{C^1} + ||V_0||_{C^1} < \eta,
$$

\n
$$
||H_1 - 1||_{C^1} + ||V_1||_{C^1} < \eta,
$$

\n
$$
||D_1 - D_0|| < \eta
$$

then there exists a trajectory such that $H(t = 0) = H_0$ *,* $H(t = T) = H_1$ *,* $v(t = 0) = v_0$, $v(t = T) = v_1$, $D(0) = D_0$, $D(T) = D_1$, $D(0) = D(T) = 0$.

Theorem (Control using the return method, Coron 2002)

Local controllability in large time: there exists $T > 0$ *,* $\eta > 0$ *such that if*

$$
||H_0 - 1||_{C^1} + ||V_0||_{C^1} < \eta,
$$

\n
$$
||H_1 - 1||_{C^1} + ||V_1||_{C^1} < \eta,
$$

\n
$$
||D_1 - D_0|| < \eta
$$

then there exists a trajectory such that $H(t = 0) = H_0$ *,* $H(t = T) = H_1$ *,* $v(t = 0) = v_0$, $v(t = T) = v_1$, $D(0) = D_0$, $D(T) = D_1$, $D(0) = D(T) = 0$.

Theorem (Lack of local controllability when the time is not large enough, Coron-K-Nguyen 2021)

For T < 2*T*∗*, lack of local controllability with controls small in C*⁰ *: there exists* $\eta > 0$ such that if $H(t = 0) = H(t = T) = H_{eq}$, $v(t = 0) = v(t = T) = 0$, $\dot{D}(0) = \dot{D}(T) = 0$, and if $||u||_{C^0} < \eta$, then $u = 0$.

Proof strategy: $(H, v) \approx$ linearized + quadratic, and the quadratic term is $\geq c \|u\|_{H^{-1}}^2$.

Rescalling *L* = 1, *H*eq = 1, *g* = 1, *T*[∗] = 1.

Linearized equation

$$
\partial_t h_1 + \partial_x v_1 = 0
$$

\n
$$
\partial_t v_1 + \partial_x h_1 = -u(t)
$$

\n
$$
v_1(t, 0) = v_1(t, 1) = 0
$$

Rescalling *L* = 1, *H*eq = 1, *g* = 1, *T*[∗] = 1.

Quadratic term

$$
\partial_t h_2 + \partial_x v_2 = -\partial_x (h_1 v_1)
$$

\n
$$
\partial_t v_2 + \partial_x h_2 = -\partial_x (v_1^2/2)
$$

\n
$$
v_2(t, 0) = v_2(t, 1) = 0
$$

Lemma

$$
(h_2(T,\cdot),\phi) + (v_2(T,\cdot),\psi) = \int_{[0,T]^2} K_{T,\phi,\psi}(s_1,s_2)u(s_1)u(s_2) \,ds_1 \,ds_2
$$

for some explicitly computable kernel KT,φ,ψ*.*

Kernel for the Quadratic Approximation 13

Formula for the kernel (do not read) With $Φ(x) = (φ(x) + ψ(x)) / 2$ for $0 < x < 1$ and $(φ(−x) – ψ(−x)) / 2$ for $-1 < x < 0$, $2K_{T,\phi,\psi}(s_1,s_2) =$

$$
\begin{cases}\n\int_{-2T+2s_2}^{0} \Phi(s+T-s_2) \, ds + 2(T-s_2) \Phi(T-s_2) - 4(T-s_2) \Phi(T-s_1) \\
\text{if } 2T-1 < s_1 + s_2 < 2T \\
\int_{s_2-s_1}^{2-2T+s_2+s_1} \Phi(s-s_2+T) \, ds + (4T-1-3s_2-s_1) \Phi(T-s_2) - (1+2T-3s_2+s_1) \Phi(T-s_1) \\
\text{if } 2T-2 < s_1 + s_2 < 2T-1 \\
\int_{2-2T+2s_2}^{0} \Phi(s+T-s_2) \, ds + (1+2T-2s_2) \Phi(T-s_2) - (-1+4T-4s_2) \Phi(T-s_1) \\
\text{if } 2T-3 < s_1 + s_2 < 2T-2 \\
\int_{s_2-s_1}^{4-2T+s_2+s_1} \Phi(s+T-s_2) \, ds + (-2+4T-3s_2-s_1) \Phi(T-s_2) - (2+2T-3s_2+s_1) \Phi(T-s_1) \\
\text{if } 2T-4 < s_1 + s_2 < 2T-3\n\end{cases}
$$

Lemma

 $Φ(x) = (φ(x) + ψ(x))/2$ *for* 0 < *x* < 1 *and* $(φ(−x) − ψ(−x))/2$ *for* $-1 < x < 0$ *.* If 1 < *T* < 2 *and if the control u steers the linearized equation from* 0 *to* 0 *(apart from maybe moving the tank),*

 $(h_2(T, \cdot), \phi) + (v_2(T, \cdot), \psi) = \int_{[0, T-1]^2} K_{T, \phi, \psi}^{\text{red}}(s_1, s_2) u(s_1) u(s_2) \, ds_1 \, ds_2$ *with* $K_{T,\phi,\psi}^{\text{red}}(s_1, s_2) = \frac{3}{2}(1 - |s_2 - s_1|) (\Phi(T - s_1 \vee s_2) - \Phi(T - s_1 \wedge s_2))$

Lemma

 $Φ(x) = (φ(x) + ψ(x))/2$ *for* 0 < *x* < 1 *and* $(φ(−x) − ψ(−x))/2$ *for* $-1 < x < 0$ *.* If 1 < *T* < 2 *and if the control u steers the linearized equation from* 0 *to* 0 *(apart from maybe moving the tank),*

 $(h_2(T, \cdot), \phi) + (v_2(T, \cdot), \psi) = \int_{[0, T-1]^2} K_{T, \phi, \psi}^{\text{red}}(s_1, s_2) u(s_1) u(s_2) \, ds_1 \, ds_2$ *with* $K_{T,\phi,\psi}^{\text{red}}(s_1, s_2) = \frac{3}{2}(1 - |s_2 - s_1|) (\Phi(T - s_1 \vee s_2) - \Phi(T - s_1 \wedge s_2))$

Proposition

Φ 1-periodic, $Φ(s) = s$ for $s ∈ [1, T]$ *. For* 1 < *T* < 2 and $U(s) = \int_0^s u(s') ds'$

$$
(h_2(T,\cdot),\phi) + (v_2(T,\cdot),\psi) \geq 3(2-T) ||U||^2_{L^2(0,T-1)}
$$

[Conclusion](#page-30-0)

Quadratic obstruction for small-time local controllability

- Finite-dimensional systems
- Schrödinger equation with bilinear controls
- Viscous Burgers equation
- Some nonlinear heat equations
- KdV

Quadratic obstruction for small-time local controllability

- Finite-dimensional systems
- Schrödinger equation with bilinear controls
- Viscous Burgers equation
- Some nonlinear heat equations
- KdV

Water-tank

- A trajectory which is natural for the water-tank is possible for the linearized equation but not for the nonlinear equation.
- Minimal time for the local-controllability to hold?

That's all folks!

[Bonus: Coercivity of an arbitrary](#page-34-0) [scalar product for the water tank](#page-34-0)

Question

Coercivity of *Q*Ψ:

$$
Q_{\Psi}(u) = \int_{[a,b]^2} u(s_1)u(s_2)(1+\epsilon|s_2-s_1|)(\Psi(s_1 \wedge s_2) - \Psi(s_1 \vee s_2)) \,ds_1 \,ds_2?
$$

(with $\Psi = -\Phi(T - s)$, $Q_{\Psi} = \langle \Phi$, order 2 for the water-tank).)

Ouestion

Coercivity of *Q*Ψ:

$$
Q_{\Psi}(u) = \int_{[a,b]^2} u(s_1)u(s_2)(1+\epsilon|s_2-s_1|)(\Psi(s_1 \wedge s_2) - \Psi(s_1 \vee s_2)) \,ds_1 \,ds_2?
$$

(with $\Psi = -\Phi(T - s)$, $Q_{\Psi} = \langle \Phi$, order 2 for the water-tank).)

Lemma

$$
\Psi \in C^1, \Psi' \ge c > 0. \text{ Then,}
$$
\n
$$
Q_{\Psi}(U') \ge \alpha ||U||_{L^2}^2 \text{ for every } U \in H_0^1(a, b)
$$
\n
$$
\text{iff}
$$
\n
$$
\int_a^b \Psi'(s) \, \text{d}s \int_a^b \frac{1}{\Psi'(s)} \, \text{d}s < (b - a + 2\epsilon^{-1})^2
$$

Proof.

Integrate by parts; consider the resulting formula as a quadratic form on *L*²(Ψ'(s) ds); see that on a stable space with codimension 2, Q_Ψ = Identity; compute explicitly the 2×2 matrix on the orthogonal and study its positivity.

[Control of the KdV Equation](#page-37-0)

KdV equation

$$
\begin{cases}\n\partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\
y(t, 0) = y(t, L) = 0, & \partial_x y(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

KdV equation linearized around 0

$$
\begin{cases}\n\partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\
y_1(t, 0) = y_1(t, L) = 0, & \partial_x y_1(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

KdV equation

$$
\begin{cases}\n\partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\
y(t, 0) = y(t, L) = 0, & \partial_x y(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

KdV equation linearized around 0

$$
\begin{cases}\n\partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\
y_1(t, 0) = y_1(t, L) = 0, & \partial_x y_1(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

Theorem (Rosier 1997)

The linearized KdV equation is controllable in some time (equivalently in arbitrarily small time) iff L $\notin \mathcal{N}$ \coloneqq $\sqrt{ }$ 2π $\sqrt{k^2 + kl + l^2}$ $\frac{kl+l^2}{3}$, $(k, l) \in (\mathbb{N}^*)^2$ *.*

If $L \in \mathcal{N}$, there is some finite dimensional unreachable space M.

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L $= 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$ and that k $=$ l, the *nonlinear KdV equation is small-time locally controllable.*

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists *T* > 0 such that the nonlinear KdV equation is locally *controllable in time T.*

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L $= 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$ and that k $=$ l, the *nonlinear KdV equation is small-time locally controllable.*

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists $T > 0$ such that the nonlinear KdV equation is locally *controllable in time T.*

Theorem (Coron K Nguyen 2020)

If k \neq *l* ∈ \mathbb{N}^* , *L* = 2 $\pi\sqrt{\frac{k^2 + kl + l^2}{3}}$ and 2*k* + *l* \notin 3N, lack of small-time local *controllable of the nonlinear KdV equation for H*³ *initial conditions with controls small in* $H^1(0,T)$ *.*

Order 2

$$
\begin{cases}\n\partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\
y_1(t, 0) = y_1(t, L) = 0, & \partial_x y_1(t, L) = u(t) & t \in (0, T)\n\end{cases}
$$

Order 2 $\int \partial_t y_2 + \partial_x y_2 + \partial_x^3 y_2 = -y_1 \partial_x y_1,$ $(t, x) \in (0, T) \times (0, L)$ $y_2(t, 0) = y_2(t, L) = \partial_x y_2(t, L) = 0$ *t* ∈ (0, *T*)

Lemma

If dim(M) = 2, we identify $M \approx \mathbb{C}$, and then for some explicit $p \in \mathbb{R}$ and *function* φ*.*

$$
y_{2|\mathcal{M}}(t) = \int_0^L \int_0^t y_1(s,x)^2 e^{ip(t-s)} \phi(x) \, dx \, ds.
$$

Coercivity property 21

Theorem

$$
If L = 2\pi \sqrt{\frac{k^2 + k l + l^2}{3}} \text{ with } 2k + l \notin 3\mathbb{N}, \text{ if } T \text{ is small and if } u \text{ steers } y_1 \text{ from 0 to 0,}
$$
\n
$$
y_{2|\mathcal{M}} = \int_0^L \int_0^T y_1(s, x)^2 e^{ip(T-s)} \phi(x) \, dx \, ds = EN(u)^2 (1 + O(T^{1/4}))
$$

where E ∈ C \ {0} *and N*(*u*) ~ ||*u*||_H−2/3 *.*

Proof.

- Take Fourier transform in *t*. For some explicitly computable function Λ(*x*, *z*), $\hat{V}(z, x) = \hat{u}(z) \Lambda(z, x)$
- Paley-Wiener: if, *u* steers the linearized equation from 0 to 0 then \hat{u} and $\Lambda(\cdot, x)\hat{\iota}(\cdot)$ are entire and $|\hat{\iota}(z)| + |\hat{\iota}(z)\partial_{\rm x} \Lambda(z,0)| \leq \mathcal{C}e^{ \tau |\Im(z)|}.$
- \cdot Computations $y_{2|\mathcal{M}} = \int \hat{u}(s)\overline{\hat{u}(s p)}B(s)\,\mathrm{d}s, \quad B(s)\underset{s\rightarrow \pm \infty}{\sim} E|s|^{-4/3}$
- In the integral above, the part for $|s| \le m$ is $\le C m T^{1/2} ||u||^2_{H^{-2/3}}$ (we use the Paley-Wiener property here).