(Lack of) Local controllability of a water tank
controlled by acceleration

In collaboration with Jean-Michel Coron and Hoai-Minh Nguyen

Armand Koenig
August 21th, 2024

X Partial Differential Equations, Optimal Design and Numerics



Introduction



Small-time Local Controllability 2

Small-time Local Controllability (around 0)
X = f(X, u) with (0, 0) = 0.
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Small-time Local Controllability

X = f(X, u) with f(0,0) = 0. For e > 0, does
there exists 7 > 0 such that if 0 < T < ¢,
|Xo| <, [X7| < n, we can find |u|=@,m) <€
such that X(T) = X¢?

Small-time Local Controllability (around 0) (

Theorem (Linear test)
Small-time local controllability holds if the linearized equation is controllable.

Proof. X = LiX + Lu + NL(X, u)
F:gw Ysolutionto Y =LY +g, Y(0)=0
Banach fixed-point theorem to (X, u) — (Y, v) where

v := Linear control(Xo, X7 — F o NL(X, u)(T))
Y :=e™Xy+ Folyv+ FoNL(X,u)



Quadratic Obstructions 3

A simple quadratic obstruction

X1 =u . -
. X, > 0: no controllability.
Xy = X3

A quadratic obstruction in small time

Xi=u If %2(0) = xoT) = 0, 32 < (T/m)2 [ 5
X = X4 (Poincaré). If T is small, x3(T) > x3(0): no
X3 =X} — X3 small-time controllabillity

Another small-time obstruction?

).ﬁ =u ) o )
) Small-time local controllability... but not if
>_<2 ke we ask [Uwne < 1!

X3 =X + X5

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,...]



Previous examples of quadratic obstruction
The control system

The case of a non-controllable linearization

Control of a Water-Tank
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(Non)controllability for the Water-Tank

Kernel for the Quadratic Approximation

Conclusion



Previous examples of quadratic
obstruction



Schrodinger equation with bilinear control

Schrodinger equation
i0pb(t, X) = —021p(t, x) 4+ u(t)u(x)(t,x), x € (0,1) with Dirchlet B.C.
Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)
Let o € L?(0,1). The set
{(T,-): T >0, uel?0,T), ¢ solution with 1(0,-) = 1o}

is contained in a countable union of compact subsets of L2(0,1).



Schrodinger equation with bilinear control

Schrodinger equation
i0ap(t, x) = —32(t, x) + u(t)u(x)y(t,x), x € (0,1) with Dirchlet B.C.
Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)
Let o € L?(0,1). The set
{(T,-): T >0, uel?0,T), ¢ solution with 1(0,-) = 1o}

is contained in a countable union of compact subsets of L?(0,1).

Theorem (Local controllability in H* around the ground state, Beauchard &
Laurent 2010)

(k) eigenfunctions of —82. If |{upr, ¢r)2| > ck=3, for every T > 0, for every
1o, 1 With appropriate boundary conditions and

990 — @1l + |lvr — e~ T 1]l 4s small enough,
there exists u € L?(0, T) such that the associated solution satisfies (T, -) = 1.

Proof. .
Variant of the linear test L]



Quadratic Obstruction 3

Theorem (Quadratic obstruction for small-time local controllability, Coron,
Beauchard, Morancey, Bournissou)
If {upr, k) = 0, under some assumptions on p, there exists A > 0, T > 0 and
n > 0 such that for every u with |[ullpo,1) <,

+S((T), pxe™™T) > Allus||f — Cllw(T) — pre™ ™ TI7

where Uy = U, Upy4(t) = fot Uk(S) ds.

Theorem (Small-time local controllability with oscillating controls,
Bournissou 2022)

Under more assumptions on p, the Schrodinger equation with bilinear
controls is small-time locally controllable around ¢,e="™7 with targets in
D((—82)"/?) and controls small in H3(0,T).

Proofs. _
P(t,x) = 177 + yn(U) + Yauad(U) + Peus(U) + error. O



Other examples 7

Theorem (Viscuous Burgers equation, Marbach 2018)
If y(0,x) = 0 and
Oey(t,x) — Ay (t, x) + y (&, x)xy (L, x) = u(t),
for some test function p, T > 0 small enough, and u4(t) == [Ot u(s)ds,
(o, Y(T,-)) 2 Rllua[lf-e-

€ (0,1) with Dirichlet B.C.,
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Theorem (Viscuous Burgers equation, Marbach 2018)
If y(0,x) = 0 and
Ay (t,x) — A2y (t,X) + y(t, X)dxy(t,x) = u(t), x e (0, ) with Dirichlet B.C.,
for some test function p, T > 0 small enough, and u4(t) == ]O
(o, Y(T,-)) 2 Rllua[lf-e-

Theorem (Nonlinear heat equation, Beauchard et Marbach 2020)
If (T[0], o) = O, under some assumptions on I € C>(H};; Hy"), there exists
A # 0 such that for every e > 0, there exist T > 0 and n > 0 such that for every
0 € [-1,1] and ||ul|gen+> < m, if
oz(t,x) — 02z(t, x) = u(t)r(z(t))(x), x € (0,1) with Neuman B.C.,
and z(0) = dpo and for j > 1, (z(T), ¢;) # 0,
1( (T) o) — & +Allunllzz

where Ug = U, Ups(t) = [O Ug(s)ds.

< €(|8] + llunllZ)-




KdV Equation 8

KdV equation
Oy + Oy + &Ry +ydy =0, (t,x) € (0,T) x (0,1)
y(t,0) = y(t,L) = 0,dky(t,L) = u(t) te(0,7)

KdV equation linearized around 0
8ty1 + 8)()/1 + a§y1 =0, (LX) € (O’ T) X (07 L)
yi(t, 0) = ya(t, L) = 0,0y (t, L) = u(t) te(0,7)
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KdV equation
Oy + 0wy + &Ry +ydy =0, (t,x) € (0,T) x (0,L)
y(t,0) =y(t,L) =0,0y(t,L) =u(t) te(0,T)

KdV equation linearized around 0
aty‘l + 8><y1 +a§y1 = Oa (tvx) € (OaT) X (OL)
Va(t, 0) = ya(t, L) = 0, yn(t, L) = u(t) te(0,7)

Theorem (Rosier 1997)

The linearized KdV equation is controllable in some time (equivalently in

2 2
arbitrarily small time) iff L ¢ N == {27r R+ R+ E2

= (ke (N*)Z}.

If L € N, there is some finite dimensional unreachable space M.



Control of the nonlinear equation

Theorem (Rosier 1997)
If L & N, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2m\/ ®*EEL and that k = |, the
nonlinear KdV equation is small-time locally controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)
If L € N, there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.



Control of the nonlinear equation

Theorem (Rosier 1997)
If L & N, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2m\/ ®*EEL and that k = |, the
nonlinear KdV equation is small-time locally controllabl e.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If L € N, there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If kR # | € N*, L =2my /KL and 2k + [ ¢ 3N, lack of small-time local
controllable of the nonlinear KdV equation for H* initial conditions with
controls small in H'(0, T).
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The Water-Tank

The water-tank system

OtH + 0y (VH) = 0, (t,x) € (0,T) x (0,L)
oV + O(gH +v¥/2) = —u(t),  (t,x) € (0,T) x (0,L)
v(t,0) = v(t,L) = 0 te(0,T)
D(t) = u(t) te(0,7)

v(t, x)
1 D(1) H(t, x)




The Water-Tank

The water-tank system

OtH + 0y (VH) = 0, (t,x) € (0,T) x (0,L)
OV + Ok(gH + v¥2) = —u(t),  (t,x) € (0,T) x (0,L)
v(t,0) = v(t,L) =0 te(0,T)
D(t) = u(t) te(0,T)
v(t, x)
D(1) H(t, x)

Linearized equation around H = Heq, v =0

O0th + HeqOxv = 0, (t,x) € (0,T) x (0,L)

v + goxh = —u(t), (t,x) € (0,T) x (0,L)

v(t,0) =v(t,L)=0 te(0,7)
h(t,L —x) = —h(t,x), v(t,L — x) = v(t, x); not controllable. But moving the tank
and such that the water is still at the start and end is possible if

T>T,=L/\/GHeq.



Local Controllability for the Water-Tank?

Theorem (Control using the return method, Coron 2002)
Local controllability in large time: there exists T > 0, n > 0 such that if

[Ho — ¢t + lIvoller < m,
[H1 = ller + Iviller < m,
|D1 = Dol < m

then there exists a trajectory such that H(t = 0) = Ho, H(t =T)= H1,
v(t = 0) = vp, v(t =T) = vy, D(0) = Dy, D(T) = Ds, D(0) = D(T)



Local Controllability for the Water-Tank?

Theorem (Control using the return method, Coron 2002)
Local controllability in large time: there exists T > 0, n > 0 such that if

[Ho — ¢t + lIvoller < m,
[H1 = ller + Iviller < m,
|D1 = Dol < m

then there exists a trajectory such that H(t = 0) = Ho, H(t =T)= H1,
v(t = 0) = vo, v(t = T) = vy, D(0) = Dy, D(T) = Dy, D(0) = D(T) =

Theorem (Lack of local controllability when the time is not large enough,
Coron-K-Nguyen 2021)

For T < 2T,, lack of local controllability with controls small in C°: there exists
n > 0suchthatif Ht=0)=H({t=T) =Heq V(t=0)=v(t=T) =0,

D(0) = D(T) = 0, and if ||ul|co < n, then u = 0.

Proof strategy: (H,v) ~ linearized + quadratic, and the quadratic term is
> cllullf-



Kernel for the Quadratic Approximation

Rescalling

L=1Heq=19g=1T.=1.

Linearized equation
8th1 + 6XV1 =10
Ovq + Oxhy = —U(t)
V](t,O) = Vj(t,1) =10



Kernel for the Quadratic Approximation

Rescalling
L:1yHeq:1,g:1yT*:1.

Quadratic term
8th2 + vy = —8X(h1V1)
vy + Ochy = —06,(Vi/2)
Vz(t7 0) = V2(t71) =0

Lemma

(ha(T, ), @) + (va(T, ), %) = / KT,0,5(51, S2)U(S1)u(S2) dss ds;

(0,717

for some explicitly computable kernel Kt 4.



Kernel for the Quadratic Approximation

Formula for the kernel (do not read)
With ®(x) = (¢(x) +1(x))/2 for 0 < x < 1Tand (¢(—x) —(—x))/2 for =1 < x < 0,

2K7,6,4(51,52) =

0
/d>(s + T —55)ds +2(T — 5)(T — 55) — 4(T — 55)(T — 1)

—2T+42s;
if2T —1<s145, < 2T

2—2T+5,+51
/ S(s =5+ T)ds+ (4T —1—35, —5)D(T — 5) — (14 2T — 35, + 51)P(T — 59)
S—$51

if2T —2 <s1+5, < 2T -1

0
/ DS+ T —=5)ds+ (1427 = 25)P(T — S3) — (=1 + 4T — 45)P(T — s9)
2-2T+2s;
if2T —3<51+5,<2T -2

4—=2T+5,+51
/ O(s+T—5))ds+ (—2+ 4T —35; —S1)®(T —Sp) — (24 2T — 35, + 59)P(T —
S

2—51

if2T —4 <5145, <2T -3



Kernel for the Quadratic Approximation

Lemma
d(x) = (o(x) +¥(x))/2 for 0 < x < 1and (¢(—x) —¥(—x))/2 for =1 < x < 0. If
1< T < 2 and if the control u steers the linearized equation from 0 to 0 (apart

from maybe moving the tank),

(ho(T, ), @) + (va(T, "), 0) = / K;?g,w(shsz)u(sw)u(sz) ds;ds;
with [0,7=1F
3
KiS6. (51:52) = S(1 = Is2 = 1) (®(T = 51V 52) — &(T — 51 A 52))



Kernel for the Quadratic Approximation

Lemma

d(x) = (o(x) +¥(x))/2 for 0 < x < 1and (¢(—x) —¥(—x))/2 for =1 < x < 0. If
1< T < 2 and if the control u steers the linearized equation from 0 to 0 (apart
from maybe moving the tank),

(ha(T, ), 6) + (valT, -), ) = / K0 (51, 52)u(s1)u(sz) dsi ds,
with fo.7=1

3
KiS6. (51:52) = S(1 = Is2 = 1) (®(T = 51V 52) — &(T — 51 A 52))
Proposition

o 1-periodic, ®(s) = s fors € [1,T]. For1 < T < 2 and U(s) = jos u(s’)ds’

(h2(T,-), @) + (va(T, ), %) = 3(2 = M[UlIE 0.7

End of the proof.
(h,V)Q: (h1,V1)—‘r (hz,Vz) OJ
S—— ~——

linearinu  quadraticinu
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Conclusion

Quadratic obstruction for small-time local controllability
- Finite-dimensional systems
- Schrodinger equation with bilinear controls
- Viscous Burgers equation
- Some nonlinear heat equations
- KdV

Water-tank

- Atrajectory which is natural for the water-tank is possible for the
linearized equation but not for the nonlinear equation.

- Minimal time for the local-controllability to hold?



That's all folks!



Bonus: Coercivity of an arbitrary
scalar product for the water tank



Coercivity of a class of quadratic forms

Question
Coercivity of Qy:

Qu(u) = /[a " u(s)u(s2)(1+ €lsy — s1|) (W(s1 A S2) — W(s1V'sy)) dsy ds,?

(with W = —&(T —s), Qu = (¥, order 2 for the water-tank).)



Coercivity of a class of quadratic forms

Question
Coercivity of Qy:

Qu(u) = /[a " u(s)u(s2)(1+ €lsy — s1|) (W(s1 A S2) — W(s1V'sy)) dsy ds,?

(with W = —&(T —s), Qu = (¥, order 2 for the water-tank).)

Lemma

Vel VW >c>0. Then,
Qu(U') > a||U||?, forevery U € Hy(a,b)

iff

/ab V'(s)ds /ab W,T(S) ds < (b—a+2e")?

Proof.
Integrate by parts; consider the resulting formula as a quadratic form on

L?(W’(s) ds); see that on a stable space with codimension 2, Qy = Identity;
compute explicitly the 2 x 2 matrix on the orthogonal and study its
positivity.
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KdV Equation
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Control of the nonlinear equation

Theorem (Rosier 1997)
If L & N, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2m\/ ®*EEL and that k = |, the
nonlinear KdV equation is small-time locally controllabl e.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If L € N, there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If kR # | € N*, L =2my /KL and 2k + [ ¢ 3N, lack of small-time local
controllable of the nonlinear KdV equation for H* initial conditions with
controls small in H'(0, T).



Quadratic Approximation

Order 2
Oyr + Oy + Byr = 0, (t,x) € (0,T) x (0,L)
ya(t,0) = yi(t, L) = 0, By(t,L) = u(t)  te(0,T)



Quadratic Approximation

Order 2
A2 + OuYa + Y2 = —Y10u, (t,x) € (0,T) x (0,L)
Ya(t,0) = ya(t, L) = Oxya(t, L) =0 te(0,T)

Lemma
If dim(M) = 2, we identify M ~ C, and then for some explicit p € R and
function ¢.

L '
y2|M(t):/O /0yj(S,X)ZeIP(t_S)(b(X)dXdS.



Coercivity property

Theorem

If L= 2my/ AL with 2k + [ ¢ 3N, if T is small and if u steers y, from 0 to 0,
’ L T ¢ ) !
Vom = / / yi(s,x)2ePT=5)(x) dx ds = EN(u)?(1 + O(T"*))
0 0
where E € C\ {0} and N(u) ~ |lul|g—2/5-

Proof.

- Take Fourier transform in t. For some explicitly computable function A(x, 2),
Y(z,%) = U(2)\(z,x)
- Paley-Wiener: if, u steers the linearized equation from 0 to 0 then 0 and
A(-,x)0(-) are entire and |0(2)| + |0(2)8xA(z, 0)| < Ce"S@I,

- Computations y; :/O(S)Cl(s—p)B(s)ds, B(s) , ~ E|s|=/3

* In the integral above, the part for |s| < m is < CmT"?||u||?_,,; (we use the
Paley-Wiener property here). O
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