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Introduction



Small-time Local Controllability 2

Small-time Local Controllability (around 0)
Ẋ = f (X,u) with f (0, 0) = 0.

For ε > 0, does
there exists η > 0 such that if 0 < T < ε,
|X0| < η, |XT | < η, we can find |u|L∞(0,T) < ε

such that X(T) = XT?

0

Theorem (Linear test)
Small-time local controllability holds if the linearized equation is controllable.

Proof. Ẋ = L1X + L2u+ NL(X,u)
F : g 7→ Y solution to Ẏ = L1Y + g, Y(0) = 0

Banach fixed-point theorem to (X,u) 7→ (Y, v) where{
v := Linear control(X0, X1 −F ◦ NL(X,u)(T))
Y := eTL1X0 + F ◦ L2v + F ◦ NL(X,u)

The converse is not true.



Small-time Local Controllability 2

Small-time Local Controllability (around 0)
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Banach fixed-point theorem to (X,u) 7→ (Y, v) where{
v := Linear control(X0, X1 −F ◦ NL(X,u)(T))
Y := eTL1X0 + F ◦ L2v + F ◦ NL(X,u)

The converse is not true.



Small-time Local Controllability 2

Small-time Local Controllability (around 0)
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Quadratic Obstructions 3

A simple quadratic obstruction{
ẋ1 = u
ẋ2 = x21

ẋ2 ≥ 0: no controllability.

A quadratic obstruction in small time
ẋ1 = u
ẋ2 = x1
ẋ3 = x21 − x22

If x2(0) = x2(T) = 0,
∫ T
0 x

2
2 ≤ (T/π)2

∫ T
0 ẋ

2
2

(Poincaré). If T is small, x3(T) ≥ x3(0): no
small-time controllabillity

Another small-time obstruction?
ẋ1 = u
ẋ2 = x1
ẋ3 = x31 + x22

Small-time local controllability… but not if
we ask |u|W1,∞ � 1 !

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,…]
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Schrödinger equation with bilinear control 5

Schrödinger equation
i∂tψ(t, x) = −∂2xψ(t, x) + u(t)µ(x)ψ(t, x), x ∈ (0, 1) with Dirchlet B.C.

Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)
Let ψ0 ∈ L2(0, 1). The set

{ψ(T, ·) : T > 0, u ∈ L2(0, T), ψ solution with ψ(0, ·) = ψ0}

is contained in a countable union of compact subsets of L2(0, 1).

Theorem (Local controllability in H3 around the ground state, Beauchard &
Laurent 2010)
(ϕk)k eigenfunctions of −∂2x . If |〈µϕ1, ϕk〉L2 | ≥ ck−3, for every T > 0, for every
ψ0, ψ1 with appropriate boundary conditions and

‖ψ0 − ϕ1‖H3 + ‖ψ1 − e−iλ1Tϕ1‖H3 small enough,

there exists u ∈ L2(0, T) such that the associated solution satisfies ψ(T, ·) = ψ1.

Proof.
Variant of the linear test
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Quadratic Obstruction 6

Theorem (Quadratic obstruction for small-time local controllability, Coron,
Beauchard, Morancey, Bournissou)
If 〈µϕ1, ϕK〉 = 0, under some assumptions on µ, there exists A > 0, T > 0 and
η > 0 such that for every u with ‖u‖H3(0,T) < η,

±=〈ψ(T), ϕKe−iλ1T〉 ≥ A‖u3‖2L2 − C‖ψ(T)− ϕ1e−iλ1T‖2L2
where u0 = u, uk+1(t) :=

∫ t
0 uk(s)ds.

Theorem (Small-time local controllability with oscillating controls,
Bournissou 2022)
Under more assumptions on µ, the Schrödinger equation with bilinear
controls is small-time locally controllable around ϕ1e−iλ1T with targets in
D((−∂2x )11/2) and controls small in H20(0, T).

Proofs.
ψ(t, x) = ϕ1e−iλ1T + ψlin(u) + ψquad(u) + ψcub(u) + error.



Other examples 7

Theorem (Viscuous Burgers equation, Marbach 2018)
If y(0, x) = 0 and
∂ty(t, x)− ∂2xy(t, x) + y(t, x)∂xy(t, x) = u(t), x ∈ (0, 1) with Dirichlet B.C.,

for some test function ρ, T > 0 small enough, and u1(t) :=
∫ t
0 u(s)ds,

〈ρ, y(T, ·)〉 ≥ k‖u1‖2H−1/4 .

Theorem (Nonlinear heat equation, Beauchard et Marbach 2020)
If 〈Γ[0], ϕ0〉 = 0, under some assumptions on Γ ∈ C2(H1N; H

−1
N ), there exists

A 6= 0 such that for every ε > 0, there exist T > 0 and η > 0 such that for every
δ ∈ [−1, 1] and ‖u‖H2n+2 < η, if

∂tz(t, x)− ∂2xz(t, x) = u(t)Γ(z(t))(x), x ∈ (0, 1) with Neuman B.C.,

and z(0) = δϕ0 and for j ≥ 1, 〈z(T), ϕj〉 6= 0,∣∣〈z(T), ϕ0〉 − δ + A‖un‖2L2
∣∣ ≤ ε(|δ|+ ‖un‖2L2).

where u0 = u, uk+1(t) :=
∫ t
0 uk(s)ds.
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KdV Equation 8

KdV equation{
∂ty + ∂xy + ∂3xy + y∂xy = 0, (t, x) ∈ (0, T)× (0, L)
y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t) t ∈ (0, T)

KdV equation linearized around 0{
∂ty1 + ∂xy1 + ∂3xy1 = 0, (t, x) ∈ (0, T)× (0, L)
y1(t, 0) = y1(t, L) = 0, ∂xy1(t, L) = u(t) t ∈ (0, T)

Theorem (Rosier 1997)
The linearized KdV equation is controllable in some time (equivalently in

arbitrarily small time) iff L /∈ N :=

{
2π

√
k2 + kl+ l2

3
, (k, l) ∈ (N∗)2

}
.

If L ∈ N , there is some finite dimensional unreachable spaceM.
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Control of the nonlinear equation 9

Theorem (Rosier 1997)
If L /∈ N , the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2π
√

k2+kl+l2
3 and that k = l, the

nonlinear KdV equation is small-time locally controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)
If L ∈ N , there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If k 6= l ∈ N∗, L = 2π
√

k2+kl+l2
3 and 2k+ l /∈ 3N, lack of small-time local

controllable of the nonlinear KdV equation for H3 initial conditions with
controls small in H1(0, T).
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Control of a Water-Tank



The Water-Tank 10

The water-tank system
∂tH+ ∂x(vH) = 0, (t, x) ∈ (0, T)× (0, L)
∂tv + ∂x(gH+ v2/2) = −u(t), (t, x) ∈ (0, T)× (0, L)
v(t, 0) = v(t, L) = 0 t ∈ (0, T)
D̈(t) = u(t) t ∈ (0, T)

H(t, x)

v(t, x)

D(t)

Linearized equation around H = Heq, v = 0
∂th+ Heq∂xv = 0, (t, x) ∈ (0, T)× (0, L)
∂tv + g∂xh = −u(t), (t, x) ∈ (0, T)× (0, L)
v(t, 0) = v(t, L) = 0 t ∈ (0, T)

h(t, L− x) = −h(t, x), v(t, L− x) = v(t, x); not controllable. But moving the tank
and such that the water is still at the start and end is possible if
T > T∗ = L/

√
gHeq.
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Local Controllability for the Water-Tank? 11

Theorem (Control using the return method, Coron 2002)
Local controllability in large time: there exists T > 0, η > 0 such that if

‖H0 − 1‖C1 + ‖v0‖C1 < η,

‖H1 − 1‖C1 + ‖v1‖C1 < η,

‖D1 − D0‖ < η

then there exists a trajectory such that H(t = 0) = H0, H(t = T) = H1,
v(t = 0) = v0, v(t = T) = v1, D(0) = D0, D(T) = D1, Ḋ(0) = Ḋ(T) = 0.

Theorem (Lack of local controllability when the time is not large enough,
Coron-K-Nguyen 2021)
For T < 2T∗, lack of local controllability with controls small in C0: there exists
η > 0 such that if H(t = 0) = H(t = T) = Heq, v(t = 0) = v(t = T) = 0,
Ḋ(0) = Ḋ(T) = 0, and if ‖u‖C0 < η, then u = 0.

Proof strategy: (H, v) ≈ linearized+ quadratic, and the quadratic term is
≥ c‖u‖2H−1 .
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Kernel for the Quadratic Approximation 12

Rescalling
L = 1, Heq = 1, g = 1, T∗ = 1.

Linearized equation
∂th1 + ∂xv1 = 0
∂tv1 + ∂xh1 = −u(t)
v1(t, 0) = v1(t, 1) = 0

Lemma

(h2(T, ·), φ) + (v2(T, ·), ψ) =
∫
[0,T]2

KT,φ,ψ(s1, s2)u(s1)u(s2)ds1 ds2

for some explicitly computable kernel KT,φ,ψ .
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Kernel for the Quadratic Approximation 13

Formula for the kernel (do not read)
With Φ(x) = (φ(x)+ψ(x))/2 for 0 < x < 1 and (φ(−x)−ψ(−x))/2 for −1 < x < 0,
2KT,φ,ψ(s1, s2) =

∫ 0

−2T+2s2
Φ(s+ T − s2)ds+ 2(T − s2)Φ(T − s2)− 4(T − s2)Φ(T − s1)

if 2T − 1 < s1 + s2 < 2T∫ 2−2T+s2+s1

s2−s1
Φ(s− s2 + T)ds+ (4T − 1− 3s2 − s1)Φ(T − s2)− (1+ 2T − 3s2 + s1)Φ(T − s1)

if 2T − 2 < s1 + s2 < 2T − 1∫ 0

2−2T+2s2
Φ(s+ T − s2)ds+ (1+ 2T − 2s2)Φ(T − s2)− (−1+ 4T − 4s2)Φ(T − s1)

if 2T − 3 < s1 + s2 < 2T − 2∫ 4−2T+s2+s1

s2−s1
Φ(s+ T − s2)ds+ (−2+ 4T − 3s2 − s1)Φ(T − s2)− (2+ 2T − 3s2 + s1)Φ(T − s1)

if 2T − 4 < s1 + s2 < 2T − 3



Kernel for the Quadratic Approximation 14

Lemma
Φ(x) = (φ(x) + ψ(x))/2 for 0 < x < 1 and (φ(−x)− ψ(−x))/2 for −1 < x < 0. If
1 < T < 2 and if the control u steers the linearized equation from 0 to 0 (apart
from maybe moving the tank),

(h2(T, ·), φ) + (v2(T, ·), ψ) =
∫
[0,T−1]2

KredT,φ,ψ(s1, s2)u(s1)u(s2)ds1 ds2
with

KredT,φ,ψ(s1, s2) =
3
2
(1− |s2 − s1|)

(
Φ(T − s1 ∨ s2)− Φ(T − s1 ∧ s2)

)

Proposition
Φ 1-periodic, Φ(s) = s for s ∈ [1, T]. For 1 < T < 2 and U(s) =

∫ s
0 u(s

′)ds′

(h2(T, ·), φ) + (v2(T, ·), ψ) ≥ 3(2− T)‖U‖2L2(0,T−1)

End of the proof.
(h, v) ≈ (h1, v1)︸ ︷︷ ︸

linear in u

+ (h2, v2)︸ ︷︷ ︸
quadratic in u
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Quadratic obstruction for small-time local controllability

• Finite-dimensional systems
• Schrödinger equation with bilinear controls
• Viscous Burgers equation
• Some nonlinear heat equations
• KdV

Water-tank

• A trajectory which is natural for the water-tank is possible for the
linearized equation but not for the nonlinear equation.

• Minimal time for the local-controllability to hold?
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The End 16

That’s all folks!



Bonus: Coercivity of an arbitrary
scalar product for the water tank



Coercivity of a class of quadratic forms 17

Question
Coercivity of QΨ:

QΨ(u) =
∫
[a,b]2

u(s1)u(s2)(1+ ε|s2 − s1|)
(
Ψ(s1 ∧ s2)−Ψ(s1 ∨ s2)

)
ds1 ds2?

(with Ψ = −Φ(T − s), QΨ = 〈Φ,order 2 for the water-tank〉.)

Lemma
Ψ ∈ C1, Ψ′ ≥ c > 0. Then,

QΨ(U′) ≥ α‖U‖2L2 for every U ∈ H10(a,b)
iff ∫ b

a
Ψ′(s)ds

∫ b

a

1
Ψ′(s)

ds < (b− a+ 2ε−1)2

Proof.
Integrate by parts; consider the resulting formula as a quadratic form on
L2(Ψ′(s)ds); see that on a stable space with codimension 2, QΨ = Identity;
compute explicitly the 2× 2 matrix on the orthogonal and study its
positivity.
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Control of the KdV Equation



KdV Equation 18

KdV equation{
∂ty + ∂xy + ∂3xy + y∂xy = 0, (t, x) ∈ (0, T)× (0, L)
y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t) t ∈ (0, T)

KdV equation linearized around 0{
∂ty1 + ∂xy1 + ∂3xy1 = 0, (t, x) ∈ (0, T)× (0, L)
y1(t, 0) = y1(t, L) = 0, ∂xy1(t, L) = u(t) t ∈ (0, T)

Theorem (Rosier 1997)
The linearized KdV equation is controllable in some time (equivalently in

arbitrarily small time) iff L /∈ N :=

{
2π

√
k2 + kl+ l2

3
, (k, l) ∈ (N∗)2

}
.

If L ∈ N , there is some finite dimensional unreachable spaceM.
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Control of the nonlinear equation 19

Theorem (Rosier 1997)
If L /∈ N , the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2π
√

k2+kl+l2
3 and that k = l, the

nonlinear KdV equation is small-time locally controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)
If L ∈ N , there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If k 6= l ∈ N∗, L = 2π
√

k2+kl+l2
3 and 2k+ l /∈ 3N, lack of small-time local

controllable of the nonlinear KdV equation for H3 initial conditions with
controls small in H1(0, T).
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Order 2{
∂ty1 + ∂xy1 + ∂3xy1 = 0, (t, x) ∈ (0, T)× (0, L)
y1(t, 0) = y1(t, L) = 0, ∂xy1(t, L) = u(t) t ∈ (0, T)

Lemma
If dim(M) = 2, we identifyM ≈ C, and then for some explicit p ∈ R and
function φ.

y2|M(t) =
∫ L

0

∫ t

0
y1(s, x)2eip(t−s)φ(x)dx ds.
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Order 2 {
∂ty2 + ∂xy2 + ∂3xy2 = −y1∂xy1, (t, x) ∈ (0, T)× (0, L)
y2(t, 0) = y2(t, L) = ∂xy2(t, L) = 0 t ∈ (0, T)
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If dim(M) = 2, we identifyM ≈ C, and then for some explicit p ∈ R and
function φ.

y2|M(t) =
∫ L

0

∫ t

0
y1(s, x)2eip(t−s)φ(x)dx ds.
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Theorem

If L = 2π
√

k2+kl+l2
3 with 2k+ l /∈ 3N, if T is small and if u steers y1 from 0 to 0,

y2|M =

∫ L

0

∫ T

0
y1(s, x)2eip(T−s)φ(x)dx ds = EN(u)2(1+ O(T1/4))

where E ∈ C \ {0} and N(u) ∼ ‖u‖H−2/3 .

Proof.

• Take Fourier transform in t. For some explicitly computable function Λ(x, z),
ŷ(z, x) = û(z)Λ(z, x)

• Paley-Wiener: if, u steers the linearized equation from 0 to 0 then û and
Λ(·, x)û(·) are entire and |û(z)|+ |û(z)∂xΛ(z, 0)| ≤ CeT|=(z)|.

• Computations y2|M =

∫
û(s)û(s− p)B(s)ds, B(s) ∼

s→±∞
E|s|−4/3

• In the integral above, the part for |s| ≤ m is ≤ CmT1/2‖u‖2H−2/3 (we use the
Paley-Wiener property here).
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