
How much does it cost to control near a shock?

Vincent Laheurte



Plan of the talk

1 Shock profiles for Burgers’ equation.

2 The control problem.

3 Main result and sketch of proof



1 Shock profiles for Burgers’ equation.

2 The control problem.

3 Main result and sketch of proof



Shocks for inviscid Burgers’ equation

Consider the 1D inviscid Burgers’ equation{
∂tu+ u∂xu = 0, t ∈ R+, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(1)

By method of characteristics, jump discontinuities arise in finite time unless u0 is
non-decreasing.

Rankine-Hugoniot condition : A jump from u− to u+ (u− > u+) is displaced at
velocity

shock speed =
u− + u+

2
.
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Family of stationary shocks

We restrict the study of (1) to a finite interval [−L,L] and add Dirichlet
conditions : 

∂tu+ u∂xu = 0, t ∈ R+, x ∈ (−L,L),
u(t,−L) = 1, t ∈ R+,

u(t, L) = −1, t ∈ R+,

(2)

There is an infinite family of stationary shocks given by

Ux0(x) =

{
1 if x < x0

−1 if x > x0
, x0 ∈ (−L,L).

Any solution to (2) with initial datum of bounded variation converges to some
Ux0 .
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Stationary shock profiles for viscous Burgers.

We add a diffusive term ε∂xx to the Burgers’ equation for a regularizing effect.
∂tu+ u∂xu = ε∂xxu, t ∈ R+, x ∈ (−L,L),
u(t,−L) = 1, t ∈ R+

u(t, L) = −1, t ∈ R+.

(3)

A unique stationary solution exists, given by

Uε(x) = −c tanh
(cx
2ε

)
,

where c > 0 is in order to verify the boundary conditions.
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Uniform controllability problem.

We consider the problem of boundary null-controllability of Burgers equation
linearized around the stationary shock.

∂tu+ ∂x(U
εu) = ε∂xxu, t ∈ [0, T ], x ∈ (−L,L),

u(t,−L) = h(t), t ∈ [0, T ],

u(t, L) = 0, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ [−L,L],

(4)

with Uε(x) = − tanh
(

x
2ε

)
.

Uniform controllability

We want to find Tunif such that, for any T > Tunif ,

∃C,∀ε > 0,∀u0 ∈ H2 ∩H1
0 ,∃h ∈ L2(0, T ) :

u(T ) ≡ 0 and ∥h∥L2(0,T ) ≤ C∥u0∥L2(−L,L)
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Dual observability problem.

By standard duality argument, this is equivalent to the uniform observability of
the adjoint system

∂tv − Uε∂xv = ε∂xxv, t ∈ [0, T ], x ∈ (−L,L)
v(t,−L) = v(t, L) = 0, t ∈ [0, T ]

v(0, x) = v0(x), x ∈ [−L,L]
(5)

Namely we want to investigate the minimal time Tunif such that, for any
T > Tunif ,

∃C = C(T ) > 0,∀ε > 0,∀v0 ∈ H2 ∩H1
0 ,

C2

∫ T

0

|ε∂xv(t,−L)|2 dt ≥ ∥v(T, ·)∥2L2(−L,L)
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Related problems

Coron-Guerrero conjecture (’05) :

The uniform controllability of the transport equation

∂ty +M∂xy = ε∂xxy

in the vanishing viscosity limit is possible whenever T > L
M if M > 0, or T > 2L

|M |
if M < 0.

Results in this sense :

M > 0 M < 0

Coron,Guerrero (’05) T > 4.3L
M T > 57.2L

|M |
Glass (’09) T > 4.2L

M T > 6.1L
|M |

Lissy (’12) T > 2.35L
M T > 4.35L

|M |

Laurent, Léautaud (’23) : Similar results generalized to a wider class of problems
of the form

∂ty + a∂xy + by = ε∂xxy,

under some regularity assumptions on a, b.
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Spectral analysis of Lε = −U ε∂x − ε∂xx

Proposition (Mascia-Strani, 2012)

The spectrum of the operator Lε consists of simple eigenvalues {λ0 < λ1 < · · · }
such that :

∃C > 0 : 0 < λ0 < Ce−
C
ε , λ1 ≥ C

ε

Two main issues compared with the constant transport case :
A small eigenvalue, caracteristic of a metastability phenomenon.
Lack of precise knowledge regarding the higher eigenvalues.

Result based on the conjugation of the operator :

sech
( x
2ε

)
Lε cosh

( x
2ε

)
=

1

ε

(
−ε2∂xx − 1

4
+

1

2
tanh2

( x
2ε

))
=:

1

ε
P ε
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Spectral analysis of P ε

Schrödinger operator with a single-well symmetric potential =⇒ good estimates
for the bottom of the spectrum, loss of precision far from the well.

We are saved by the factorisation

P ε = a∗a,

where a = ε∂x + 1
2 tanh

(
x
2ε

)
.

We may compute

aa∗ = −ε2∂xx +
1

4
,

which is much simpler, and the eigenvalues of aa∗ and a∗a are similar :

aa∗φ = λφ ⇐⇒ a∗a(a∗φ) = λ(a∗φ),

a∗aψ = µψ ⇐⇒ aa∗(aψ) = µ(aψ)
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Spectral analysis of P ε.

Solving the eigenvalue problem {
P εφ = λφ,

φ(±L) = 0,

is equivalent to solving (−ε2∂xx +
1

4
)ψ = λψ

a∗ψ(±L) = 0.

Proposition

The spectrum of Lε consists of simple eigenvalues {λ0 < λ1 < · · · } that verify

0 < λ0 < Ce−
C
ε ,

1

4ε
+ ε

k2π2

4L2
< λk <

1

4ε
+ ε

(k + 1)2π2

4L2
, k ≥ 1√

λk+1 −
1

4ε
−
√
λk − 1

4ε
>

√
ε
π

2L
, k ≥ 1

14



The main result

Theorem (L. 2024) [WIP].

There exists a time
Tunif = 8.4L

such that, whenever T > Tunif, the system
∂tu+ (Lε)∗u = 0

u(t,−L) = h(t), u(t, L) = 0,

u(0, x) = u0(x)

is uniformly controllable to the first mode in the vanishing viscosity limit.
Namely, for T > Tunif , there exists a control h uniformly bounded with respect to
ε such that 〈

sech
( x
2ε

)
u(T ), φk

〉
= 0, k ≥ 1.

Moreover the controllability cost verifies

C(T, ε) ≤ ce−
c
ε .
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Construction of a biorthogonal family

The first step is to construct a bi-orthogonal family to the
(
e−λkt

)
k≥1

with
suitable estimates, namely a family (qj)j≥1 ⊂ L2(0, T ) such that∫ T

0

qj(t)e
−λkt dt = δj,k

Estimates on λk allow us to build such a family with the bound

∥qk∥ ≤ C exp (f(L, ε, λk, T ))

where f is such that

− λkT + f(L, ε, λk, T ) ≤ −αλk, α > 0 (6)

for T > 8.4L.
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Conclusion by method of moments.

Then, take any initial datum v0 of the form

v0(x) =
∑
k≥1

ckψk,

where ψk := cosh
(

x
2ε

)
φk are the eigenvectors of Lε. The solution at time t is

immediately given by
v(t, x) =

∑
k≥1

ckψke
−λkt

By taking the space derivative in −L and integrating in time against qj , we obtain∫ T

0

ε∂xv(t,−L)qj(t) dt = cjεψ
′
j(−L).
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Conclusion by method of moments.

It follows, for j ≥ 1,

|cj | ≤
∥ε∂xv(·,−L)∥∥qj∥

εψ′
k(−L)

Finally, we plug the latter estimate into v(T ) :

∥v(T, ·)∥ =

∥∥∥∥∥∥
∑
k≥1

ckψke
λkT

∥∥∥∥∥∥
≤ ∥ε∂xv(·,−L)∥

∑
k≥1

e−λkT
∥qk∥ · ∥ψk∥
εψ′

k(−L)

Using (6) finally gives

∥v(T, ·)∥ ≤ ∥ε∂xv(·,−L)∥
∑
k≥1

e−αλk · ∥ψk∥
εψ′

k(−L)
,

and we conclude by having a precise description of the eigenfunctions ψk.
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Work in progress and possible leads.

Refine the constant 8.4 by improving the estimates on the bi-orthogonal
family.
Possibly obtain a time Tmin for which we can prove the cost of controllability
to the first mode explodes as ε→ 0 whenever T < Tmin.

Prove non-uniform controllability for the full system for any finite time T .

Thank you for your attention !
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