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@ Shock profiles for Burgers' equation.



Shocks for inviscid Burgers' equation

Consider the 1D inviscid Burgers' equation

Oru + udzu =0, teR" 2z eR, (1)
u(0, ) = up(x), z €R.

By method of characteristics, jump discontinuities arise in finite time unless wug is
non-decreasing.

Rankine-Hugoniot condition : A jump from v~ to u™ (v~ > u™) is displaced at
velocity
u” +ut

shock speed = 5



Family of stationary shocks

We restrict the study of (1) to a finite interval [—L, L] and add Dirichlet
conditions :

O + udu = 0, tc Rtz e (~L,L),
u(t,—L) =1, teRT, (2)
u(t,L) = —1, teRT,

There is an infinite family of stationary shocks given by

1 if x < Zo
Us, = . , e(—L,L).
(@) {1 if x > xo %0 € ( )

Any solution to (2) with initial datum of bounded variation converges to some
Ug,-



Stationary shock profiles for viscous Burgers.

We add a diffusive term €9, to the Burgers' equation for a regularizing effect.

O + ulzu = €01, teRY 2z e (~L,L),
u(t,—L) =1, t e RT (3)
w(t,L) = -1, teR*.

A unique stationary solution exists, given by

U¢(z) = —ctanh (%) )

where ¢ > 0 is in order to verify the boundary conditions.



© The control problem.



Uniform controllability problem.

We consider the problem of boundary null-controllability of Burgers equation
linearized around the stationary shock.

Opu + 0, (Ufu) = 0z u, €10,T),x ( ,L),

u(t7 _L) = h(t)a [ T]v
u(t,L) =0, € (0,77, )

u(oa Z‘) = UO('I)7 [ L]v

with U¢(z) = —tanh (£).

Uniform controllability

We want to find Tynis such that, for any T > Ty,

3C,Ve > 0,Yug € H* N H,3h € L*(0,T) :
u(T) =0 and ||Al[z2(0,7) < Clluollr2(~L,1)




Dual observability problem.

By standard duality argument, this is equivalent to the uniform observability of
the adjoint system

0w — UC0,v = €0,,v, tel0,T],z € (—L,L)
v(t,—L) =v(t,L) =0, tel0,7] (5)
v(0,2) = vo(z), z€[-L, 1]

Namely we want to investigate the minimal time T3,,;¢ such that, for any
T> Tunif,

c =C(T) > 0,Ye > 0,Yvg € H* N H},

T
e / (eBpu(t, —L)2dt > [[o(T, ) [22_1.1)



Related problems
Coron-Guerrero conjecture ('05) :
The uniform controllability of the transport equation

in the vanishing viscosity limit is possible whenever T' > % if M >0,orT >
if M <0.

2L

[M]
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Related problems

Coron-Guerrero conjecture ('05) :

The uniform controllability of the transport equation

in the vanishing viscosity limit is possible whenever T' > ﬁ if M >0,orT >

if M <0.

2L

[M]

Results in this sense :

M >0 M <0
Coron,Guerrero ('05) | T > % T~ 5|71\§|L
Glass ('09) T>%2L TS %
Lissy ('12) T>ZEL 7> %

Laurent, Léautaud ('23) : Similar results generalized to a wider class of problems

of the form

Oy + adyy + by = €022y,

under some regularity assumptions on a, b.
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© Main result and sketch of proof



Spectral analysis of L5 = —U®0, — €0,

Proposition (Mascia-Strani, 2012)

The spectrum of the operator £ consists of simple eigenvalues {A\g < Ay < ---}
such that :

C
3C>0:0< Ny < Ce ¢, Mz =

Two main issues compared with the constant transport case :
@ A small eigenvalue, caracteristic of a metastability phenomenon.
@ Lack of precise knowledge regarding the higher eigenvalues.
Result based on the conjugation of the operator :

sech (1) £ cosh (1) = £ (=0, - 1 + g (1)) = 17
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Spectral analysis of P*

Schrddinger operator with a single-well symmetric potential = good estimates
for the bottom of the spectrum, loss of precision far from the well.

We are saved by the factorisation
Pf =a*a,
where @ = €0, + § tanh (£) .
We may compute
* 2
= - a:rx R
aa £ + 1
which is much simpler, and the eigenvalues of aa* and a*a are similar :
aa*p = Ao <= a*ala’p) = A(a"p),
afav = p > aa*(av) = plav)
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Spectral analysis of P<.

Solving the eigenvalue problem
Pep = Ao,
o(+L) =0,

(—€°0s + )1/1 A
a*w(ﬁ:L)_O.

is equivalent to solving

Proposition

The spectrum of L° consists of simple eigenvalues {\g < \; < ---} that verify

0< X< Ce <,

1 k*m? 1 (k +1)%n?
I VP ST Gl ) AL A
e ey S S T e o F2

1
\/Ak+14\/k>\[ k>1




The main result

Theorem (L. 2024) [WIP].

There exists a time
Tunit = 8.4L

such that, whenever T" > T\,,;r, the system
Ou+ (L5 u=0
u(t,—L) = h(t), u(t,L)=0,
u(0, z) = ug(x)

is uniformly controllable to the first mode in the vanishing viscosity limit.
Namely, for T' > Ty, there exists a control h uniformly bounded with respect to

¢ such that
<sech (%) u(T),cpk> =0, k>1.

Moreover the controllability cost verifies

C(T,e) < ce” .

15



Construction of a biorthogonal family

The first step is to construct a bi-orthogonal family to the (e’)"“t)k>1 with
suitable estimates, namely a family (g;);>1 C L?(0,T) such that

T
/ gj(t)e ! dt = §j
0
Estimates on A allow us to build such a family with the bound
llarll < Cexp (f(L,&, Ak, T))
where f is such that
— T+ f(Lye,\e, T) < —adg, a>0

for T > 8.4L.

16



Conclusion by method of moments.

Then, take any initial datum vy of the form

vo(z) = Z ckr,

k>1
where ¢, := cosh (£ ) ¢y, are the eigenvectors of L. The solution at time ¢ is

immediately given by
o(t,z) = Z cuthpe M
k>1

By taking the space derivative in —L and integrating in time against ¢;, we obtain

T
/0 €0yv(t,—L)g;(t)dt = cja/);(—L).
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Conclusion by method of moments.

It follows, for j > 1,
dzv(-, —L)|lllg;]
Yy (—L)

Finally, we plug the latter estimate into v(T') :

lej] <

(@, ) = |3 extpee ™

k>1
- IquH 9%l
< |ledpv(-, —L)|| Z Ami
k>1 (=L)
Using (6) finally gives
Io(T, )| < lledau(-,—L)| S e - WkIIL)
k>1

and we conclude by having a precise description of the eigenfunctions .
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Work in progress and possible leads.

@ Refine the constant 8.4 by improving the estimates on the bi-orthogonal
family.

@ Possibly obtain a time T}, for which we can prove the cost of controllability
to the first mode explodes as ¢ — 0 whenever T' < Tiin.

@ Prove non-uniform controllability for the full system for any finite time 7.

19



Work in progress and possible leads.

@ Refine the constant 8.4 by improving the estimates on the bi-orthogonal
family.

@ Possibly obtain a time T}, for which we can prove the cost of controllability
to the first mode explodes as ¢ — 0 whenever T' < Tiin.

@ Prove non-uniform controllability for the full system for any finite time 7.

Thank you for your attention!
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