Representation and regression problems in neural networks

Mean-field relaxation, generalization, and numerics

Kang Liu

joint work with Enrique Zuazua

August 2024

Table of Contents

Introduction

2 Relaxation

- Discretization and algorithms
- 5 Numerical simulations

Table of Contents

Introduction

2 Relaxation

3 Generalization

- 4 Discretization and algorithms
- 5 Numerical simulations

< ∃⇒

Image: A match a ma

A diagram of classification task by NNs

1 11 1 1		
LIU	FAU D	сіл-Алп)

э

A D N A B N A B N A B N

A diagram of classification task by NNs

Key Points: Data, Neural Network Model, Training.

1 11 1 1		DCN	I A. LI	١
LIU	FAU	DCIN	-АУП	J

→ ∃ →

< 3 >

• **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.

э

< ∃ >

Image: A match a ma

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

• Three training scenarios:

イロト イポト イヨト イヨト 二日

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

• Three training scenarios:

Exact representation:

$$f(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.$$

イロト イポト イヨト イヨト 二日

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

- Three training scenarios:
 - Exact representation:

$$f(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.$$

Approximate representation:

$$\|f(x_i, \Theta) - y_i\| \leq \epsilon$$
, for $i = 1, \dots, N$.

イロト 不得 トイヨト イヨト 二日

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

- Three training scenarios:
 - Exact representation:

$$f(x_i, \Theta) = y_i, \quad ext{for } i = 1, \dots, N.$$

Approximate representation:

$$\|f(x_i, \Theta) - y_i\| \leq \epsilon$$
, for $i = 1, \dots, N$.

8 Regression:

$$\inf_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \Theta) - y_i).$$

イロト 不得下 イヨト イヨト 二日

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

- Three training scenarios:
 - Exact representation:

$$f(x_i, \Theta) = y_i, \quad ext{for } i = 1, \dots, N.$$

Approximate representation:

$$\|f(x_i, \Theta) - y_i\| \leq \epsilon$$
, for $i = 1, \dots, N$.

8 Regression:

$$\inf_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \Theta) - y_i).$$

イロト 不得下 イヨト イヨト 二日

- **Data**: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^{N}$.
- NN architecture:

 $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (\mathbf{x}, \Theta) \mapsto f(\mathbf{x}, \Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(\mathbf{x}, \Theta)$: prediction (output).

• Three training scenarios:

Exact representation:

$$f(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.$$

2 Approximate representation:

$$\|f(x_i, \Theta) - y_i\| \leq \epsilon$$
, for $i = 1, \dots, N$.

8 Regression:

$$\inf_{\Theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \Theta) - y_i).$$

Problems

Existence, design of loss function, generalization property, numerical algorithms...

LIU (FAU DCN-AvH)

Shallow NNs with P neurons

$$f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j, b_j) \in \mathbb{R}^{d+1}$.

Shallow NNs with P neurons

$$f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j, b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

• Simple structure;

Shallow NNs with P neurons

$$f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j, b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];

Shallow NNs with P neurons

$$f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j, b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];
- Finite-sample representation property [Pinkus, 1999];

Shallow NNs with P neurons

$$f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j, b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];
- Finite-sample representation property [Pinkus, 1999];
- "Convergence" of the SGD algorithm [Chizat-Bach, 2018].

Finite-sample representation property

Recall that

$$f_{\mathsf{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j).$$

Finite-sample representation property [Pinkus 1999]

Assume that $P \ge N$ and m = 1. If σ is non-polynomial, then for any distinct dataset $\{x_i, y_i\}_{i=1}^N$, there exists Θ such that

$$f_{\text{shallow}}(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.$$

Finite-sample representation property

Recall that

$$f_{\mathsf{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j).$$

Finite-sample representation property [Pinkus 1999]

Assume that $P \ge N$ and m = 1. If σ is non-polynomial, then for any distinct dataset $\{x_i, y_i\}_{i=1}^N$, there exists Θ such that

$$f_{\text{shallow}}(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.$$

We extend in [L.-Zuazua, 2024] the previous result to the case where y_i is in high dimension and (a_j, b_j) are within a compact set. The proof is by induction and the application of the Hahn-Banach Theorem.

Design of loss function/regularization

• A well-known principle ¹ in machine learning is the following:

"sparsity" mitigates "overfitting".

LIU (FAU DCN-AvH)

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

²Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006.

Design of loss function/regularization

• A well-known principle ¹ in machine learning is the following:

"sparsity" mitigates "overfitting".

• In shallow NNs, the number of activated neurons is $\|\omega\|_{\ell^0}$.

LIU (FAU DCN-AvH)

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

²Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006.

Design of loss function/regularization

• A well-known principle ¹ in machine learning is the following:

"sparsity" mitigates "overfitting".

• In shallow NNs, the number of activated neurons is $\|\omega\|_{\ell^0}$.

$$\overbrace{}^{} \sigma(a_j \cdot x + b_j) \xrightarrow{} \omega_j$$

• The function $\|\omega\|_{\ell^0}$ is non-convex. A practical replacement from compressed sensing ²:

$$\|\omega\|_{\ell^0} \mapsto \|\omega\|_{\ell^1}.$$

LIU (FAU DCN-AvH)

Benasque

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

²Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006.

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^{P}$.

• The sparse exact representation problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}}, \quad \text{s.t.} \quad \sum_{j=1}^{P} \omega_{j} \sigma(\langle a_{j}, x_{i} \rangle + b_{j}) = y_{i}, \quad \text{for } i = 1, \dots, N. \quad (\mathsf{P}_{0})$$

э

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^{P}$.

• The sparse exact representation problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}}, \quad \text{s.t.} \quad \sum_{j=1}^{P} \omega_{j} \sigma(\langle a_{j}, x_{i} \rangle + b_{j}) = y_{i}, \quad \text{for } i = 1, \dots, N. \quad (\mathsf{P}_{0})$$

• The sparse approximate representation problem:

$$\left|\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}}, \quad \text{s.t.} \quad \left|\sum_{j=1}^{P} \omega_{j} \sigma(\langle a_{j}, x_{i} \rangle + b_{j}) - y_{i}\right| \leq \epsilon, \quad \text{for } i = 1, \dots, N,$$

$$(\mathsf{P}_{\epsilon})$$

where $\epsilon > 0$ is a hyperparameter.

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^{P}$.

• The sparse exact representation problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}}, \quad \text{s.t.} \quad \sum_{j=1}^{P} \omega_{j} \sigma(\langle a_{j}, x_{i} \rangle + b_{j}) = y_{i}, \quad \text{for } i = 1, \dots, N. \quad (\mathsf{P}_{0})$$

• The sparse approximate representation problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}}, \quad \text{s.t.} \quad \left| \sum_{j=1}^{P} \omega_{j} \sigma(\langle a_{j}, x_{i} \rangle + b_{j}) - y_{i} \right| \leq \epsilon, \quad \text{for } i = 1, \dots, N,$$

$$(\mathsf{P}_{\epsilon})$$

where $\epsilon > 0$ is a hyperparameter.

• The sparse regression problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{P}} \|\omega\|_{\ell^{1}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell\left(\sum_{j=1}^{P} \omega_{j}\sigma(\langle \mathbf{a}_{j}, \mathbf{x}_{i} \rangle + \mathbf{b}_{j}) - \mathbf{y}_{i}\right), \qquad (\mathsf{P}_{\lambda}^{\mathsf{reg}})$$

where $\lambda > 0$ is a hyperparameter.

Problem

• How can we address these high-dimensional and non-convex optimization problems?

(日) (四) (日) (日) (日)

э

Table of Contents

Introduction

2 Relaxation

3 Generalization

4 Discretization and algorithms

5 Numerical simulations

(日) (四) (日) (日) (日)

Mean-field relaxation

Primal problems (P₀), (P_{ϵ}), and (P^{reg}_{λ}) are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$\left\{\Theta \ \Big| \ \sum_{j=1}^{P} \omega_j \sigma(\langle \mathsf{a}_j, \mathsf{x}_i \rangle + \mathsf{b}_j) = \mathsf{y}_i, \ \forall i = 1, \dots, \mathsf{N} \right\} \text{ is a non-convex set.}$$

э

イロト イポト イヨト イヨト

Mean-field relaxation

Primal problems (P₀), (P_{ϵ}), and (P_{λ}^{reg}) are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$\left\{\Theta \ \Big| \ \sum_{j=1}^{P} \omega_j \sigma(\langle \mathsf{a}_j, \mathsf{x}_i \rangle + \mathsf{b}_j) = \mathsf{y}_i, \ \forall i = 1, \dots, \mathsf{N} \right\} \text{ is a non-convex set.}$$

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

< ロ > < 同 > < 回 > < 回 > < 回 > <

Mean-field relaxation

Primal problems (P₀), (P_e), and (P^{reg}_{λ}) are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$\left\{\Theta \ \Big| \ \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) = y_i, \ \forall i = 1, \dots, N \right\} \text{ is a non-convex set.}$$

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN

The original shallow NN writes:

$$\sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x
angle + b_j),$$

where $(\omega_j, a_j, b_j) \in \mathbb{R} \times \Omega$ for all j.

Cost function: $\|\omega\|_{\ell^1}$.

Mean-field shallow NN

The mean-field shallow NN writes:

$$\int_{\Omega} \sigma(\langle a, x \rangle + b) d\mu(a, b),$$

where $\mu \in \mathcal{M}(\Omega)$. The outcome is linear with respect to μ .

Cost function: $\|\mu\|_{TV}$.

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$\phi \, \mu \coloneqq (\phi_i \, \mu)_{i=1}^{\mathsf{N}} = \left(\int_{\Omega} \sigma(\langle \mathbf{a}, \mathbf{x}_i \rangle + \mathbf{b}) d\mu(\mathbf{a}, \mathbf{b}) \right)_{i=1}^{\mathsf{N}}$$

イロト 不得 トイヨト イヨト

э

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$\phi \mu := (\phi_i \mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N$$

Convex relaxations:

• The relaxation of (P₀):

 $\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \phi \mu = Y.$ (PR₀)

3

(日)

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$\phi \mu := (\phi_i \mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N$$

Convex relaxations:

• The relaxation of (P_0) :

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \phi \mu = Y.$$
(PR₀)

• The relaxation of (P_{ϵ}) :

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t.} \ \|\phi\,\mu - Y\|_{\ell^{\infty}} \le \epsilon. \tag{PR}_{\epsilon}$$

3

イロト 不得 トイヨト イヨト

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$\phi \mu := (\phi_i \mu)_{i=1}^{N} = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^{N}$$

Convex relaxations:

• The relaxation of (P_0) :

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \phi \mu = Y.$$
 (PR₀)

• The relaxation of (P_{ϵ}) :

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t.} \ \|\phi\,\mu - Y\|_{\ell^{\infty}} \le \epsilon. \tag{PR}_{\epsilon}$$

• The relaxation of (P_{λ}^{reg}) :

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell \left(\phi_i \, \mu - y_i\right). \tag{PR}_{\lambda}^{\mathsf{reg}}$$

3

イロト 不得 トイヨト イヨト

Free of relaxation gap

Theorem (L.-Zuazua, 2024)

Under mild assumptions ¹ on σ and Ω , if $P \ge N$, then

 $\mathsf{val}(\mathsf{P}_0) = \mathsf{val}(\mathsf{PR}_0); \quad \mathsf{val}(\mathsf{P}_\epsilon) = \mathsf{val}(\mathsf{PR}_\epsilon); \quad \mathsf{val}(\mathsf{P}^{\mathsf{reg}}_\lambda) = \mathsf{val}(\mathsf{PR}^{\mathsf{reg}}_\lambda).$

Moreover, the extreme points of the solution sets of relaxed problems have the following form:

$$\mu^* = \sum_{j=1}^{N} \omega_j^* \delta_{(a_j^*, b_j^*)}.$$

LIU (FAU DCN-AvH)

¹An example of (σ, Ω) : σ is the ReLU function and Ω is the unit ball.

²Similar results for particular scenarios of exact representation and regression in ML obtained by representer theorems are studied in [Unser, 2019] and [Dios-Bruna, 2020]
Free of relaxation gap

Theorem (L.-Zuazua, 2024)

Under mild assumptions ¹ on σ and Ω , if $P \ge N$, then

```
\mathsf{val}(\mathsf{P}_0) = \mathsf{val}(\mathsf{PR}_0); \quad \mathsf{val}(\mathsf{P}_\epsilon) = \mathsf{val}(\mathsf{PR}_\epsilon); \quad \mathsf{val}(\mathsf{P}^{\mathsf{reg}}_\lambda) = \mathsf{val}(\mathsf{PR}^{\mathsf{reg}}_\lambda).
```

Moreover, the extreme points of the solution sets of relaxed problems have the following form:

$$\mu^* = \sum_{j=1}^{N} \omega_j^* \delta_{(a_j^*, b_j^*)}.$$

Main techniques in the proof:

- Existence of solutions: finite-sample representation property.
- "Representer Theorem"² from [Fisher-Jerome, 1975].

¹An example of (σ, Ω) : σ is the ReLU function and Ω is the unit ball.

²Similar results for particular scenarios of exact representation and regression in ML obtained by representer theorems are studied in [Unser, 2019] and [Dios-Bruna, 2020] $\beta \propto 0$

LIU (FAU DCN-AvH)

Problems

 How should the hyperparameters ε and λ be chosen in these problems? (Generalization)

• How can the relaxed problems be solved, and how can solutions of the primal problems be found? (Numerical algorithms)

Table of Contents

Introduction

2 Relaxation

Discretization and algorithms

5 Numerical simulations

LIU ((FAU DCN-AvH)
	· · · · · · · · · · · · · · · · · · ·

< 4³ ►

• Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x'_i, y'_i)\}_{i=1}^{N'}$.

∃ ⇒

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x'_i, y'_i)\}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ:

 $\{(\mathbf{x}'_i, f_{\text{shallow}}(\mathbf{x}'_i, \Theta))\}_{i=1}^{N'}$

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x'_i, y'_i)\}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{(\mathbf{x}'_i, f_{\text{shallow}}(\mathbf{x}'_i, \Theta))\}_{i=1}^{N'}$

Empirical measures:

$$m_{ ext{train}} = rac{1}{N}\sum_{i=1}^N \delta_{(x_i,y_i)}, \quad m_{ ext{test}} = rac{1}{N'}\sum_{i=1}^{N'} \delta_{(x_i',y_i')}, \quad m_{ ext{pred}}(\Theta) = rac{1}{N'}\sum_{i=1}^{N'} \delta_{(x_i',f_{ ext{shallow}}(x_i',\Theta))}.$$

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x'_i, y'_i)\}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{(\mathbf{x}'_i, f_{\text{shallow}}(\mathbf{x}'_i, \Theta))\}_{i=1}^{N'}$

Empirical measures:

$$m_{ ext{train}} = rac{1}{N}\sum_{i=1}^N \delta_{(x_i,y_i)}, \quad m_{ ext{test}} = rac{1}{N'}\sum_{i=1}^{N'} \delta_{(x_i',y_i')}, \quad m_{ ext{pred}}(\Theta) = rac{1}{N'}\sum_{i=1}^{N'} \delta_{(x_i',f_{ ext{shallow}}(x_i',\Theta))}.$$

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N / \{(x'_i, y'_i)\}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{(\mathbf{x}'_i, f_{\text{shallow}}(\mathbf{x}'_i, \Theta))\}_{i=1}^{N'}$

• Empirical measures:

$$m_{\text{train}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{(x_i, y_i)}, \quad m_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x_i', y_i')}, \quad m_{\text{pred}}(\Theta) = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x_i', f_{\text{shallow}}(x_i', \Theta))}.$$

Theorem (L.-Zuazua, 2024)

Let $W_1(\cdot, \cdot)$ denote the Wassernstein-1 distance. If σ is 1-Lipschitz, then for any Θ ,

$$W_{1}(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq \underbrace{2W_{1}(m_{\text{train}}, m_{\text{test}})}_{\text{Bias from datasets}} + r(\Theta), \text{ where}$$

$$r(\Theta) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} |f_{\text{shallow}}(x_{i}, \Theta) - y_{i}|}_{\text{Bias from training}} + \underbrace{W_{1}(m_{\text{train}}, m_{\text{test}})}_{\text{"Variance"}} \sum_{j=1}^{P} |\omega_{j}| ||a_{j}||.$$
EAU DCN-AvH)
Repare

Generalization bounds by optimal solutions

Fix the following:

- σ: ReLU;
- Ω: $B^{d+1}(0,1)$;
- $\ell(\cdot) = |\cdot|.$

Recall that

 $W_1(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq \underbrace{2W_1(m_{\text{train}}, m_{\text{test}})}_{+r(\Theta)} + r(\Theta)$

Bias from datasets

Generalization bounds by optimal solutions

Fix the following:

- σ: ReLU;
- Ω: B^{d+1}(0,1);
- $\ell(\cdot) = |\cdot|.$

Recall that

 $W_1(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq \underbrace{2W_1(m_{\text{train}}, m_{\text{test}})}_{r(\Theta)} + r(\Theta)$

Bias from datasets

< □ > < 同 > < 回 > < 回 > < 回 >

Proposition

Let $P \ge N$. For any $\epsilon \ge 0$ and $\lambda > 0$, let Θ_{ϵ} and Θ_{λ}^{reg} be the solutions of (P_{ϵ}) and $(\mathsf{P}_{\lambda}^{reg})$, respectively. Then,

$$r(\Theta_{\epsilon}) \leq \mathcal{U}(\epsilon) \coloneqq \epsilon + C \operatorname{val}(\mathsf{P}_{\epsilon});$$

$$r(\Theta^{\mathsf{reg}}_{\lambda}) \leq \mathcal{L}(\lambda) \coloneqq \max\{\lambda^{-1}, C\} \operatorname{val}(\mathsf{PR}^{\mathsf{reg}}_{\lambda}),$$

where $C = W_1(m_{\text{train}}, m_{\text{test}})$.

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

• Optimal value of λ : $\lambda^* = C^{-1}$.

э

イロト イヨト イヨト

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
 - if $C < c_0^{-1}$, then $\epsilon^* = 0$;

э

イロト イポト イヨト イヨト

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

if C < c₀⁻¹, then ϵ^{*} = 0;
 if C ≥ c₀⁻¹, then ϵ^{*} satisfies the first-order optimality condition C⁻¹ ∈ [c_{ϵ*}, C_{ϵ*}].

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

if C < c₀⁻¹, then ϵ^{*} = 0;
 if C ≥ c₀⁻¹, then ϵ^{*} satisfies the first-order optimality condition C⁻¹ ∈ [c_{ϵ*}, C_{ϵ*}].

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
 - if C < c₀⁻¹, then e^{*} = 0;
 if C ≥ c₀⁻¹, then e^{*} satisfies the first-order optimality condition C⁻¹ ∈ [c_{e^{*}}, C_{e^{*}}].

Here, $(c_{\epsilon}, C_{\epsilon})$ is related to the solutions of the dual problem of (PR_{ϵ}) .

A 回下 A 三下 A 三下

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
 - if C < c₀⁻¹, then ε^{*} = 0;
 if C ≥ c₀⁻¹, then ε^{*} satisfies the first-order optimality condition C⁻¹ ∈ [c_{ε*}, C_{ε*}].

Here, $(c_{\epsilon}, C_{\epsilon})$ is related to the solutions of the dual problem of (PR_{ϵ}) .

Table of Contents

Introduction

2 Relaxation

3 Generalization

4 Discretization and algorithms

5 Numerical simulations

Image: A matrix

Relaxed problems are convex, but in an infinite-dimensional space.

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \|\phi \,\mu - \mathbf{Y}\|_{\ell^{\infty}} \le \epsilon. \tag{PR}_{\epsilon}$$

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \mu - y_i|. \tag{PR}_{\lambda}^{\mathsf{reg}}$$

э

イロト イポト イヨト イヨト

Relaxed problems are convex, but in an infinite-dimensional space.

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t.} \ \|\phi\,\mu - Y\|_{\ell^{\infty}} \le \epsilon. \tag{PR}_{\epsilon}$$

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \, \mu - y_i|. \tag{PR}_{\lambda}^{\mathsf{reg}}$$

A general approach: **Discretization**, then **Optimization**.

→

Image: A match a ma

Relaxed problems are convex, but in an infinite-dimensional space.

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t.} \ \|\phi\,\mu - Y\|_{\ell^{\infty}} \le \epsilon. \tag{PR}_{\epsilon}$$

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \, \mu - y_i|. \tag{PR}_{\lambda}^{\mathsf{reg}})$$

A general approach: **Discretization**, then **Optimization**.

Two numerical scenarios

() When dim $(\Omega) = d + 1$ is small, discretize Ω by a mesh, then optimize by the simplex method.

イロト 不得 トイヨト イヨト

Relaxed problems are convex, but in an infinite-dimensional space.

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t.} \ \|\phi \, \mu - \mathbf{Y}\|_{\ell^{\infty}} \leq \epsilon. \tag{PR}_{\epsilon}$$

$$\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \, \mu - y_i|. \tag{PR}_{\lambda}^{\mathsf{reg}}$$

A general approach: Discretization, then Optimization.

Two numerical scenarios

- When dim(Ω) = d + 1 is small, discretize Ω by a mesh, then optimize by the simplex method.
- When dim(Ω) = d + 1 is great, discretize (PR^{reg}_λ) by an overparameterized version (problem (P^{reg}_λ) with a large P), then optimize by the SGD algorithm.

イロト イポト イヨト イヨト 二日

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

イロト イポト イヨト イヨト

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

• Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD}_{\epsilon}$$

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \qquad (\mathsf{PD}^{\mathsf{reg}}_{\lambda})$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

э

イロト イポト イヨト イヨト

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

• Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^{\infty}} \le \epsilon, \tag{PD}_{\epsilon}$$

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \qquad (\mathsf{PD}^{\mathsf{reg}}_{\lambda})$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

Error estimates:

 $|\mathsf{val}(\mathsf{PD}_{\epsilon}) - \mathsf{val}(\mathsf{PR}_{\epsilon})|, \ |\mathsf{val}(\mathsf{PD}_{\lambda}^{\mathsf{reg}}) - \mathsf{val}(\mathsf{PR}_{\lambda}^{\mathsf{reg}})| = \mathcal{O}(d_{\mathsf{Hausdorff}}(\Omega, \Omega_h)).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

• Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^{\infty}} \le \epsilon, \tag{PD}_{\epsilon}$$

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \qquad (\mathsf{PD}^{\mathsf{reg}}_{\lambda})$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

Error estimates:

 $|\mathsf{val}(\mathsf{PD}_{\epsilon}) - \mathsf{val}(\mathsf{PR}_{\epsilon})|, \ |\mathsf{val}(\mathsf{PD}_{\lambda}^{\mathsf{reg}}) - \mathsf{val}(\mathsf{PR}_{\lambda}^{\mathsf{reg}})| = \mathcal{O}(d_{\mathsf{Hausdorff}}(\Omega, \Omega_h)).$

• Equivalent to linear programming problems, solvable using the simplex method.

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

• Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^{\infty}} \le \epsilon, \tag{PD}_{\epsilon}$$

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \qquad (\mathsf{PD}^{\mathsf{reg}}_{\lambda})$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

• Error estimates:

 $|\mathsf{val}(\mathsf{PD}_{\epsilon}) - \mathsf{val}(\mathsf{PR}_{\epsilon})|, \, |\mathsf{val}(\mathsf{PD}^{\mathsf{reg}}_{\lambda}) - \mathsf{val}(\mathsf{PR}^{\mathsf{reg}}_{\lambda})| = \mathcal{O}(\mathit{d}_{\mathsf{Hausdorff}}(\Omega, \Omega_h)).$

• Equivalent to linear programming problems, solvable using the simplex method.

Advantage: Terminates at an extreme point of the solution set, which corresponds to a solution of the primal problems.

• Discretization of the domain:

$$\Omega \rightarrow \Omega_h = \{(a_j, b_j)\}_{j=1}^M$$

• Discretized problems:

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^{\infty}} \le \epsilon, \tag{PD}_{\epsilon}$$

$$\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1}, \qquad (\mathsf{PD}^{\mathsf{reg}}_{\lambda})$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j)$.

Error estimates:

 $|\mathsf{val}(\mathsf{PD}_{\epsilon}) - \mathsf{val}(\mathsf{PR}_{\epsilon})|, \, |\mathsf{val}(\mathsf{PD}^{\mathsf{reg}}_{\lambda}) - \mathsf{val}(\mathsf{PR}^{\mathsf{reg}}_{\lambda})| = \mathcal{O}(\mathit{d}_{\mathsf{Hausdorff}}(\Omega, \Omega_h)).$

• Equivalent to linear programming problems, solvable using the simplex method.

- Advantage: Terminates at an extreme point of the solution set, which corresponds to a solution of the primal problems.
- Limitation: Suffer from the curse of dimensionality.

• Apply the SGD algorithm to the following overparameterized problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\overline{P}}} \|\omega\|_{\ell^{1}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell \left(\sum_{j=1}^{\overline{P}} \omega_{j} \sigma(\langle \mathbf{a}_{j}, \mathbf{x}_{i} \rangle + b_{j}) - \mathbf{y}_{i} \right),$$

where \overline{P} is large ¹.

LIU (FAU DCN-AvH)

23 / 28

¹The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc.

• Apply the SGD algorithm to the following overparameterized problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\tilde{P}}} \|\omega\|_{\ell^{1}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell \left(\sum_{j=1}^{\tilde{P}} \omega_{j} \sigma(\langle \mathbf{a}_{j}, \mathbf{x}_{i} \rangle + \mathbf{b}_{j}) - \mathbf{y}_{i} \right),$$

where \overline{P} is large ¹.

• Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

¹The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc.

• Apply the SGD algorithm to the following overparameterized problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\tilde{P}}} \|\omega\|_{\ell^{1}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell \left(\sum_{j=1}^{\tilde{P}} \omega_{j} \sigma(\langle \mathbf{a}_{j}, \mathbf{x}_{i} \rangle + \mathbf{b}_{j}) - \mathbf{y}_{i} \right),$$

where \overline{P} is large ¹.

• Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

¹The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc.

• Apply the SGD algorithm to the following overparameterized problem:

$$\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\overline{P}}} \|\omega\|_{\ell^{1}} + \frac{\lambda}{N} \sum_{i=1}^{N} \ell \left(\sum_{j=1}^{\overline{P}} \omega_{j} \sigma(\langle \mathbf{a}_{j}, \mathbf{x}_{i} \rangle + \mathbf{b}_{j}) - \mathbf{y}_{i} \right),$$

where \overline{P} is large ¹.

• Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

This approach is free from the curse of dimensionality but lacks rigorous convergence analysis.

¹The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc.

Table of Contents

Introduction

2 Relaxation

3 Generalization

Discretization and algorithms

5 Numerical simulations

(日) (四) (日) (日) (日)

Classification in 2-D

2

イロト イヨト イヨト イヨト

Classification in 2-D

(a) Datasets.

■ Testing accuracy (Θ_c)

Testing accuracy (pre-trained)

(c) Testing accuracy w.r.t. λ .

<ロ> <四> <ヨ> <ヨ>

	DCL	
	1 36 18	$\Delta V H$
17.00	DCI	

Aug 2024 25 / 28

Classification in 2-D

(b) Testing accuracy w.r.t. ϵ .

(c) Testing accuracy w.r.t. λ .

A D N A B N A B N A B N
Classification in 2-D

Conclusion:

- If the datasets have clear separable boundaries, consider (P₀), (P_ε) with ε → 0, or (P^{reg}_λ) with λ → ∞;
- If the datasets have heavily overlapping areas, consider the regression problem (P_{λ}^{reg}) with a particular range of $\lambda \sim W_1^{-1}(m_{train}, m_{test})$.

イロト イヨト イヨト

Classification in a high-dimensional space

- The Mnist dataset, vectors in $\mathbb{R}^{28 \times 28}$
- Training data: 300 samples of numbers 0, 1, and 2.
- Testing data: 1000 samples of numbers 0, 1, and 2.

Classification in a high-dimensional space

- The Mnist dataset, vectors in $\mathbb{R}^{28 \times 28}$.
- Training data: 300 samples of numbers 0, 1, and 2.
- Testing data: 1000 samples of numbers 0, 1, and 2.

LIU (FAU DCN-AvH)

27 / 28

Thank you!

3

イロト イヨト イヨト イヨト