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General framework of training problems
Data: {(xi , yi ) ∈ Rd+1}Ni=1.

NN architecture:

f : Rd × Rp → R, (x ,Θ) 7→ f (x ,Θ), where

x : feature (input), Θ : parameter (control), f (x ,Θ) : prediction (output).

Three training scenarios:

1 Exact representation:

f (xi ,Θ) = yi , for i = 1, . . . ,N.

2 Approximate representation:

∥f (xi ,Θ)− yi∥ ≤ ϵ, for i = 1, . . . ,N.

3 Regression:

infΘ
1

N

N∑
i=1

ℓ(f (xi ,Θ)− yi ).

Problems
Existence, design of loss function, generalization property, numerical algorithms...
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Shallow Neural Network

Shallow NNs with P neurons

fshallow(x ,Θ) =
P∑
j=1

ωjσ(⟨aj , x⟩+ bj),

where Θ = (ωj , aj , bj)
P
j=1, with

ωj ∈ R and (aj , bj) ∈ Rd+1.

Why shallow NNs

Simple structure;

Universal approximation property [Cybenko, 1989];

Finite-sample representation property [Pinkus, 1999];

”Convergence” of the SGD algorithm [Chizat-Bach, 2018].
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Finite-sample representation property

Recall that

fshallow(x ,Θ) =
P∑
j=1

ωjσ(⟨aj , x⟩+ bj).

Finite-sample representation property [Pinkus 1999]

Assume that P ≥ N and m = 1. If σ is non-polynomial, then for any
distinct dataset {xi , yi}Ni=1, there exists Θ such that

fshallow(xi ,Θ) = yi , for i = 1, . . . ,N.

We extend in [L.-Zuazua, 2024] the previous result to the case where yi is
in high dimension and (aj , bj) are within a compact set. The proof is by
induction and the application of the Hahn-Banach Theorem.
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Design of loss function/regularization

A well-known principle 1 in machine learning is the following:

“sparsity” mitigates “overfitting”.

In shallow NNs, the number of activated neurons is ∥ω∥ℓ0 .

The function ∥ω∥ℓ0 is non-convex. A practical replacement from
compressed sensing 2:

∥ω∥ℓ0 7→ ∥ω∥ℓ1 .

1Srivastava et al. “Dropout: A simple way to prevent Neural Networks from
overfitting”. In JMLR, 2014.

2Candes and Romberg. “Quantitative robust uncertainty principles and optimally
sparse decompositions”. In FOCM, 2006.
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Primal problems

Let Ω be a compact subset of Rd+1. Note Θ = (ωj , aj , bj)
P
j=1.

The sparse exact representation problem:

infΘ∈(R×Ω)P ∥ω∥ℓ1 , s.t.
P∑
j=1

ωjσ(⟨aj , xi ⟩+ bj) = yi , for i = 1, . . . ,N. (P0)

The sparse approximate representation problem:

infΘ∈(R×Ω)P ∥ω∥ℓ1 , s.t.

∣∣∣∣∣
P∑
j=1

ωjσ(⟨aj , xi ⟩+ bj)− yi

∣∣∣∣∣ ≤ ϵ, for i = 1, . . . ,N,

(Pϵ)
where ϵ > 0 is a hyperparameter.

The sparse regression problem:

infΘ∈(R×Ω)P ∥ω∥ℓ1 +
λ

N

N∑
i=1

ℓ

(
P∑
j=1

ωjσ(⟨aj , xi ⟩+ bj)− yi

)
, (Preg

λ )

where λ > 0 is a hyperparameter.
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Problem

How can we address these high-dimensional and non-convex
optimization problems?

LIU (FAU DCN-AvH) Benasque Aug 2024 10 / 28



Table of Contents

1 Introduction

2 Relaxation

3 Generalization

4 Discretization and algorithms

5 Numerical simulations

LIU (FAU DCN-AvH) Benasque Aug 2024 11 / 28



Mean-field relaxation

Primal problems (P0), (Pϵ), and (Preg
λ ) are non-convex optimization problems, where the

non-convexity is from the non-linearity of shallow NNs, e.g.,{
Θ
∣∣∣ P∑

j=1

ωjσ(⟨aj , xi ⟩+ bj) = yi , ∀i = 1, . . . ,N

}
is a non-convex set.

The mean-field relaxation technique is commonly employed in shallow NNs, see
[Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN

The original shallow NN writes:

P∑
j=1

ωjσ(⟨aj , x⟩+ bj),

where (ωj , aj , bj) ∈ R× Ω for all j .

Cost function: ∥ω∥ℓ1 .

Mean-field shallow NN

The mean-field shallow NN writes:∫
Ω

σ(⟨a, x⟩+ b)dµ(a, b),

where µ ∈ M(Ω). The outcome is linear
with respect to µ.

Cost function: ∥µ∥TV.
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Relaxed problems
Let Y = (y1, . . . , yN). Define the following linear mapping:

ϕµ := (ϕi µ)
N
i=1 =

(∫
Ω

σ(⟨a, xi ⟩+ b)dµ(a, b)

)N

i=1

Convex relaxations:

The relaxation of (P0):

infµ∈M(Ω) ∥µ∥TV, s.t. ϕµ = Y . (PR0)

The relaxation of (Pϵ):

infµ∈M(Ω) ∥µ∥TV, s.t. ∥ϕµ− Y ∥ℓ∞ ≤ ϵ. (PRϵ)

The relaxation of (Preg
λ ):

infµ∈M(Ω) ∥µ∥TV +
λ

N

N∑
i=1

ℓ (ϕi µ− yi ) . (PRreg
λ )
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Free of relaxation gap

Theorem (L.-Zuazua,2024)

Under mild assumptions 1 on σ and Ω, if P ≥ N, then

val(P0) = val(PR0); val(Pϵ) = val(PRϵ); val(Preg
λ ) = val(PRreg

λ ).

Moreover, the extreme points of the solution sets of relaxed problems have the following
form:

µ∗ =
N∑
j=1

ω∗
j δ(a∗j ,b

∗
j )
.

Main techniques in the proof:

Existence of solutions: finite-sample representation property.

“Representer Theorem” 2 from [Fisher-Jerome, 1975].

1An example of (σ,Ω): σ is the ReLU function and Ω is the unit ball.
2Similar results for particular scenarios of exact representation and regression in ML

obtained by representer theorems are studied in [Unser, 2019] and [Dios-Bruna, 2020].
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Problems

How should the hyperparameters ϵ and λ be chosen in these
problems? (Generalization)

How can the relaxed problems be solved, and how can solutions of the
primal problems be found? (Numerical algorithms)
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A generalization bound
Training/Testing dataset: {(xi , yi )}Ni=1 / {(x ′

i , y
′
i )}N

′
i=1.

Predictions on testing set by the shallow NN with parameter Θ:

{(x ′
i , fshallow(x

′
i ,Θ))}N

′
i=1

Empirical measures:

mtrain =
1

N

N∑
i=1

δ(xi ,yi ), mtest =
1

N ′

N′∑
i=1

δ(x′i ,y
′
i )
, mpred(Θ) =

1

N ′

N′∑
i=1

δ(x′i ,fshallow(x
′
i ,Θ)).

Theorem (L.-Zuazua,2024)

Let W1(·, ·) denote the Wassernstein-1 distance. If σ is 1-Lipschitz, then for any Θ,

W1(mtest,mpred(Θ)) ≤ 2W1(mtrain,mtest)︸ ︷︷ ︸
Bias from datasets

+r(Θ), where

r(Θ) =
1

N

N∑
i=1

|fshallow(xi ,Θ)− yi |︸ ︷︷ ︸
Bias from training

+W1(mtrain,mtest)
P∑
j=1

|ωj |∥aj∥︸ ︷︷ ︸
“Variance”

.
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Generalization bounds by optimal solutions

Fix the following:

σ: ReLU;

Ω: Bd+1(0, 1);

ℓ(·) = | · |.

Recall that

W1(mtest,mpred(Θ)) ≤ 2W1(mtrain,mtest)︸ ︷︷ ︸
Bias from datasets

+r(Θ).

Proposition

Let P ≥ N. For any ϵ ≥ 0 and λ > 0, let Θϵ and Θreg
λ be the solutions of

(Pϵ) and (Preg
λ ), respectively. Then,

r(Θϵ) ≤ U(ϵ) := ϵ+ C val(Pϵ);

r(Θreg
λ ) ≤ L(λ) := max{λ−1, C} val(PRreg

λ ),

where C = W1(mtrain,mtest).
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Optimal hyperparameters
Recall that C = W1(mtrain,mtest).

Optimal value of λ: λ∗ = C−1.

Optimal value of ϵ:

1 if C < c−1
0 , then ϵ∗ = 0;

2 if C ≥ c−1
0 , then ϵ∗ satisfies the first-order optimality condition

C−1 ∈ [cϵ∗ ,Cϵ∗ ].

Here, (cϵ,Cϵ) is related to the solutions of the dual problem of (PRϵ).

(a) Qualitative curve of L(λ). (b) Two scenarios of U(ϵ).
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Guideline for numerical algorithms

Relaxed problems are convex, but in an infinite-dimensional space.

infµ∈M(Ω) ∥µ∥TV, s.t. ∥ϕµ− Y ∥ℓ∞ ≤ ϵ. (PRϵ)

infµ∈M(Ω) ∥µ∥TV +
λ

N

N∑
i=1

|ϕi µ− yi |. (PRreg
λ )

A general approach: Discretization, then Optimization.

Two numerical scenarios

1 When dim(Ω) = d + 1 is small, discretize Ω by a mesh, then optimize by the
simplex method.

2 When dim(Ω) = d + 1 is great, discretize (PRreg
λ ) by an overparameterized version

(problem (Preg
λ ) with a large P), then optimize by the SGD algorithm.
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Low-dimensional scenario

Discretization of the domain:

Ω → Ωh = {(aj , bj)}Mj=1 .

Discretized problems:

inf
ω∈RM

∥ω∥ℓ1 , s.t. ∥Aω − Y ∥ℓ∞ ≤ ϵ, (PDϵ)

inf
ω∈RM

∥ω∥ℓ1 +
λ

N
∥Aω − Y ∥ℓ1 , (PDreg

λ )

where A ∈ RN×M with Aij = σ(⟨aj , xi ⟩+ bj).

Error estimates:

|val(PDϵ)− val(PRϵ)|, |val(PDreg
λ )− val(PRreg

λ )| = O(dHausdorff(Ω,Ωh)).

Equivalent to linear programming problems, solvable using the simplex method.

▶ Advantage: Terminates at an extreme point of the solution set, which
corresponds to a solution of the primal problems.

▶ Limitation: Suffer from the curse of dimensionality.
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High-dimensional scenario

Apply the SGD algorithm to the following overparameterized problem:

infΘ∈(R×Ω)P̄ ∥ω∥ℓ1 +
λ

N

N∑
i=1

ℓ

 P̄∑
j=1

ωjσ(⟨aj , xi ⟩+ bj)− yi

 ,

where P̄ is large 1.

Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous
solution, obtaining one with fewer than N activated neurons.

This approach is free from the curse of dimensionality but lacks rigorous convergence
analysis.

1The convergence properties of SGD for the training of overparameterized NNs have
been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019],
[Bach, 2024, Chp.12], etc.
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Conclusion:

If the datasets have clear separable boundaries, consider (P0), (Pϵ)
with ϵ → 0, or (Preg

λ ) with λ → ∞;

If the datasets have heavily overlapping areas, consider the regression
problem (Preg

λ ) with a particular range of λ ∼ W−1
1 (mtrain,mtest).
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Classification in a high-dimensional space

The Mnist dataset, vectors in R28×28.

Training data: 300 samples of
numbers 0, 1, and 2.

Testing data: 1000 samples of
numbers 0, 1, and 2.

(a) Testing accuracy w.r.t. P. (b) ∥ω∥ℓ0 w.r.t. the iteration number.
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Thank you!
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