Representation and regression problems in neural networks

Mean-field relaxation, generalization, and numerics

Kang Liu

joint work with Enrique Zuazua

August 2024

 200

ヨメ メラ

4 0 8

Table of Contents

[Introduction](#page-2-0)

[Relaxation](#page-27-0)

- 4 [Discretization and algorithms](#page-53-0)
- 5 [Numerical simulations](#page-68-0)

4 0 F

 QQ

 \Rightarrow Þ

э **IN**

Table of Contents

1 [Introduction](#page-2-0)

[Relaxation](#page-27-0)

[Generalization](#page-38-0)

[Discretization and algorithms](#page-53-0)

5 [Numerical simulations](#page-68-0)

э

 \rightarrow \equiv \rightarrow

K ロ ▶ K 何 ▶

 $\leftarrow \equiv$ \rightarrow

 QQ

A diagram of classification task by NNs

÷,

 299

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

A diagram of classification task by NNs

Key Points: Data, Neural Network Model, Training.

Þ

← ロ → → ← 何 →

4. 三下 \rightarrow \equiv \rightarrow 299

Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.

 $\rightarrow \equiv$

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow

D.

 299

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **.** NN architecture:

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

4 D F

- ← 向 → → 三

G. Ω

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

• Three training scenarios:

4 0 F

 Ω

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

- **Three training scenarios:**
	- **1** Exact representation:

$$
f(x_i, \Theta) = y_i, \quad \text{for } i = 1, \ldots, N.
$$

 Ω

イ何 トイヨ トイヨ トーヨー

4 **ED**

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

- **Three training scenarios:**
	- **1** Exact representation:

$$
f(x_i, \Theta) = y_i, \quad \text{for } i = 1, \ldots, N.
$$

2 Approximate representation:

$$
|| f(x_i, \Theta) - y_i || \le \epsilon, \quad \text{for } i = 1, \ldots, N.
$$

4 **ED**

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow \overline{BA}

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

- **Three training scenarios:**
	- **1** Exact representation:

$$
f(x_i, \Theta) = y_i, \quad \text{for } i = 1, \ldots, N.
$$

2 Approximate representation:

$$
|| f(x_i, \Theta) - y_i || \le \epsilon, \quad \text{for } i = 1, \ldots, N.
$$

3 Regression:

$$
\inf_{\Theta} \frac{1}{N} \sum_{i=1}^N \ell(f(x_i, \Theta) - y_i).
$$

イロト イ押 トイヨ トイヨ トーヨ

 -990

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

- **Three training scenarios:**
	- **1** Exact representation:

$$
f(x_i, \Theta) = y_i, \quad \text{for } i = 1, \ldots, N.
$$

2 Approximate representation:

$$
|| f(x_i, \Theta) - y_i || \le \epsilon, \quad \text{for } i = 1, \ldots, N.
$$

3 Regression:

$$
\inf_{\Theta} \frac{1}{N} \sum_{i=1}^N \ell(f(x_i, \Theta) - y_i).
$$

イロト イ押 トイヨ トイヨ トーヨ

 -990

- Data: $\{(x_i, y_i) \in \mathbb{R}^{d+1}\}_{i=1}^N$.
- **NN architecture:**

 $f\colon \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}, \, (x,\Theta) \mapsto f(x,\Theta), \quad \text{where}$

x : feature (input), Θ : parameter (control), $f(x, \Theta)$: prediction (output).

- **Three training scenarios:**
	- **1** Exact representation:

$$
f(x_i, \Theta) = y_i, \quad \text{for } i = 1, \ldots, N.
$$

2 Approximate representation:

$$
|| f(x_i, \Theta) - y_i || \le \epsilon, \quad \text{for } i = 1, \ldots, N.
$$

3 Regression:

$$
\inf_{\Theta} \frac{1}{N} \sum_{i=1}^N \ell(f(x_i, \Theta) - y_i).
$$

Problems

Existence, design of loss function, generalization property, numerical algorithms...

LIU (FAU DCN-AvH) [Benasque](#page-0-0) Aug 2024 5 / 28

Shallow NNs with P neurons

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j,b_j) \in \mathbb{R}^{d+1}$.

 200

Shallow NNs with P neurons

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j,b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

• Simple structure;

Shallow NNs with P neurons

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j,b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];

Shallow NNs with P neurons

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j,b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];
- Finite-sample representation property [Pinkus, 1999];

Shallow NNs with P neurons

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$, with $\omega_j \in \mathbb{R}$ and $(a_j,b_j) \in \mathbb{R}^{d+1}$.

Why shallow NNs

- Simple structure;
- Universal approximation property [Cybenko, 1989];
- Finite-sample representation property [Pinkus, 1999];
- "Convergence" of the SGD algorithm [Chiz[at-](#page-16-0)[Ba](#page-18-0)[c](#page-12-0)[h](#page-13-0)[,](#page-17-0) [2](#page-18-0)[0](#page-1-0)[1](#page-2-0)[8\]](#page-27-0)[.](#page-1-0)

Finite-sample representation property

Recall that

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j).
$$

Finite-sample representation property [Pinkus 1999]

Assume that $P \geq N$ and $m = 1$. If σ is non-polynomial, then for any distinct dataset $\{x_i, y_i\}_{i=1}^N$, there exists Θ such that

$$
f_{\text{shallow}}(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.
$$

つへへ

Finite-sample representation property

Recall that

$$
f_{\text{shallow}}(x,\Theta) = \sum_{j=1}^{P} \omega_j \sigma(\langle a_j, x \rangle + b_j).
$$

Finite-sample representation property [Pinkus 1999]

Assume that $P \geq N$ and $m = 1$. If σ is non-polynomial, then for any distinct dataset $\{x_i, y_i\}_{i=1}^N$, there exists Θ such that

$$
f_{\text{shallow}}(x_i, \Theta) = y_i, \text{ for } i = 1, \dots, N.
$$

We extend in [L.-Zuazua, 2024] the previous result to the case where y_i is in high dimension and (a_j,b_j) are within a compact set. The proof is by induction and the application of the Hahn-Banach Theorem.

 200

Design of loss function/regularization

A well-known principle 1 in machine learning is the following:

"sparsity" mitigates "overfitting".

LIU (FAU DCN-AvH) [Benasque](#page-0-0) Benasque Aug 2024 8/28

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

 2 Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006. (□) () +)

Design of loss function/regularization

A well-known principle 1 in machine learning is the following:

"sparsity" mitigates "overfitting".

In shallow NNs, the number of activated neurons is $\|\omega\|_{\ell^0}.$

$$
\left(\sigma(a_j\cdot x+b_j)\right)\xrightarrow{\times a_j}
$$

LIU (FAU DCN-AvH) [Benasque](#page-0-0) Benasque Aug 2024 8/28

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

 2 Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006. (□) () +)

Design of loss function/regularization

A well-known principle 1 in machine learning is the following:

"sparsity" mitigates "overfitting".

In shallow NNs, the number of activated neurons is $\|\omega\|_{\ell^0}.$

$$
\left(\sigma(a_j\cdot x+b_j)\right)\xrightarrow{\times\omega_j}
$$

The function $\|\omega\|_{\ell^0}$ is non-convex. A practical replacement from compressed sensing ²:

$$
\|\omega\|_{\ell^0}\mapsto \|\omega\|_{\ell^1}.
$$

LIU (FAU DCN-AvH) [Benasque](#page-0-0) Benasque Aug 2024 8/28

¹Srivastava et al. "Dropout: A simple way to prevent Neural Networks from overfitting". In JMLR, 2014.

 2 Candes and Romberg. "Quantitative robust uncertainty principles and optimally sparse decompositions". In FOCM, 2006. **4 ロ ト 4 何 ト**

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$.

• The sparse exact representation problem:

$$
\textstyle \inf_{\Theta \in (\mathbb{R} \times \Omega)^P} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) = y_i, \quad \text{for } i = 1, \dots, N. \tag{P_0}
$$

Э×

∢ ロ ▶ - ∢ 母 ▶ - ∢ ヨ

 299

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$.

• The sparse exact representation problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^P} ||\omega||_{\ell^1}, \quad \text{s.t.} \quad \sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) = y_i, \quad \text{for } i = 1, \dots, N. \quad (P_0)
$$

• The sparse approximate representation problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^P} \|\omega\|_{\ell^1}, \quad \text{s.t. } \left| \sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right| \leq \epsilon, \quad \text{for } i = 1, \dots, N,
$$

where $\epsilon > 0$ is a hyperparameter.

4 0 8

 Ω

Primal problems

Let Ω be a compact subset of \mathbb{R}^{d+1} . Note $\Theta = (\omega_j, a_j, b_j)_{j=1}^P$.

• The sparse exact representation problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^P} ||\omega||_{\ell^1}, \quad \text{s.t.} \quad \sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) = y_i, \quad \text{for } i = 1, \ldots, N. \quad (P_0)
$$

• The sparse approximate representation problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^P} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \left| \sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right| \leq \epsilon, \quad \text{for } i = 1, \dots, N,
$$

where $\epsilon > 0$ is a hyperparameter.

• The sparse regression problem:

$$
\textstyle \inf_{\Theta \in (\mathbb{R} \times \Omega)^P} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^P \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right), \qquad \textstyle (\mathsf{P}_{\lambda}^{\text{reg}})
$$

4日下

where $\lambda > 0$ is a hyperparameter.

 200

Problem

• How can we address these high-dimensional and non-convex optimization problems?

メロトメ 倒 トメ ミトメ ミト

重

 299

Table of Contents

[Introduction](#page-2-0)

[Discretization and algorithms](#page-53-0)

э

 $\leftarrow \equiv$ \rightarrow

4 ロ ▶ 4 何 ▶

 QQ

Mean-field relaxation

Primal problems (P_0) , (P_ϵ) , and $(\mathsf{P}_\lambda^\mathsf{reg})$ are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$
\left\{\Theta \Big|\ \sum_{j=1}^P \omega_j \sigma(\langle a_j,x_i \rangle + b_j) = y_i, \, \forall i=1,\ldots,N \right\} \text{ is a non-convex set.}
$$

÷.

イロト イ押ト イヨト イヨト

 QQ

Mean-field relaxation

Primal problems (P_0) , (P_ϵ) , and $(\mathsf{P}_\lambda^\mathsf{reg})$ are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$
\left\{\Theta \Big|\ \sum_{j=1}^P \omega_j \sigma(\langle a_j,x_i \rangle + b_j) = y_i, \, \forall i = 1,\ldots,N \right\} \text{ is a non-convex set.}
$$

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

 Ω

イロト イ押 トイヨ トイヨ トー

Mean-field relaxation

Primal problems (P_0) , (P_ϵ) , and $(\mathsf{P}_\lambda^\mathsf{reg})$ are non-convex optimization problems, where the non-convexity is from the non-linearity of shallow NNs, e.g.,

$$
\left\{\Theta \Big|\ \sum_{j=1}^P \omega_j \sigma(\langle a_j,x_i \rangle + b_j) = y_i, \, \forall i=1,\ldots,N \right\} \text{ is a non-convex set.}
$$

The mean-field relaxation technique is commonly employed in shallow NNs, see [Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN

The original shallow NN writes:

$$
\sum_{j=1}^P \omega_j \sigma(\langle a_j, x \rangle + b_j),
$$

where $(\omega_j, a_j, b_j) \in \mathbb{R} \times \Omega$ for all j.

Cost function: $\|\omega\|_{\ell^1}$.

Mean-field shallow NN

The mean-field shallow NN writes:

$$
\int_{\Omega}\sigma(\langle \text{\textit{a}},\text{\textit{x}}\rangle+b)d\mu(\text{\textit{a}},\text{\textit{b}}),
$$

where $\mu \in \mathcal{M}(\Omega).$ The outcome is linear with respect to μ .

Cost function: $||\mu||_{TV}$.

 Ω

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$
\phi \mu := (\phi_i \,\mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N
$$

重

 299

イロメ イ部メ イヨメ イヨメー

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$
\phi \mu := (\phi_i \mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N
$$

Convex relaxations:

 \bullet The relaxation of (P_0) (P_0) :

 $\inf_{\mu \in \mathcal{M}(\Omega)} ||\mu||_{TV}$, s.t. $\phi \mu = Y$. (PR₀)

- ← ロ ▶ → ← 同 ▶ → ← ヨ ▶

G.

 Ω

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$
\phi \mu := (\phi_i \mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N
$$

Convex relaxations:

 \bullet The relaxation of (P_0) (P_0) :

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \phi \,\mu = Y. \tag{PR_0}
$$

• The relaxation of (P_{ϵ}) (P_{ϵ}) :

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \|\phi \,\mu - \mathsf{Y}\|_{\ell^\infty} \leq \epsilon. \tag{PR_{\epsilon}}
$$

目

 QQ

イロト イ押ト イヨト イヨト

Let $Y = (y_1, \ldots, y_N)$. Define the following linear mapping:

$$
\phi \mu := (\phi_i \,\mu)_{i=1}^N = \left(\int_{\Omega} \sigma(\langle a, x_i \rangle + b) d\mu(a, b) \right)_{i=1}^N
$$

Convex relaxations:

 \bullet The relaxation of (P_0) (P_0) :

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \phi \,\mu = Y. \tag{PR_0}
$$

• The relaxation of (P_{ϵ}) (P_{ϵ}) :

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}}, \quad \text{s.t. } \|\phi \,\mu - \mathsf{Y}\|_{\ell^\infty} \leq \epsilon. \tag{PR_{\epsilon}}
$$

The relaxation of (P_λ^{reg}) (P_λ^{reg}) :

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^N \ell(\phi_i \mu - y_i). \tag{PR}^{\text{reg}}_{{\lambda}}
$$

G.

 QQ

イロト イ押ト イヨト イヨトー

Free of relaxation gap

Theorem (L.-Zuazua,2024)

Under mild assumptions 1 on σ and Ω , if $P \geq N$, then

 $\mathsf{val}(\mathsf{P}_0) = \mathsf{val}(\mathsf{PR}_0); \quad \mathsf{val}(\mathsf{P}_\epsilon) = \mathsf{val}(\mathsf{PR}_\epsilon); \quad \mathsf{val}(\mathsf{P}_{\lambda}^{\mathsf{reg}}) = \mathsf{val}(\mathsf{PR}_{\lambda}^{\mathsf{reg}}).$

Moreover, the extreme points of the solution sets of relaxed problems have the following form:

$$
\mu^*=\sum_{j=1}^N\omega_j^*\delta_{(a_j^*,b_j^*)}.
$$

LIU (FAU DCN-AvH) [Benasque](#page-0-0) Benasque Aug 2024 14/28

¹An example of $(σ, Ω)$: $σ$ is the ReLU function and $Ω$ is the unit ball.

 2 Similar results for particular scenarios of exact representation and regression in ML obtained by representer theorems are studied in [Unser, 2[01](#page-34-0)9[\] a](#page-36-0)[n](#page-27-0)[d](#page-35-0) [\[](#page-36-0)[D](#page-37-0)[i](#page-26-0)[os](#page-27-0)[-](#page-37-0)[B](#page-38-0)[ru](#page-26-0)n[a](#page-37-0)[,](#page-38-0) [20](#page-0-0)[20\]](#page-75-0).
Free of relaxation gap

Theorem (L.-Zuazua,2024)

Under mild assumptions 1 on σ and Ω , if $P \geq N$, then

```
\mathsf{val}(\mathsf{P}_0) = \mathsf{val}(\mathsf{PR}_0); \quad \mathsf{val}(\mathsf{P}_\epsilon) = \mathsf{val}(\mathsf{PR}_\epsilon); \quad \mathsf{val}(\mathsf{P}_{\lambda}^{\mathsf{reg}}) = \mathsf{val}(\mathsf{PR}_{\lambda}^{\mathsf{reg}}).
```
Moreover, the extreme points of the solution sets of relaxed problems have the following form:

$$
\mu^*=\sum_{j=1}^N\omega_j^*\delta_{(a_j^*,b_j^*)}.
$$

Main techniques in the proof:

- Existence of solutions: finite-sample representation property.
- "Representer Theorem" ² from [Fisher-Jerome, 1975].

¹An example of $(σ, Ω)$: $σ$ is the ReLU function and $Ω$ is the unit ball.

 2 Similar results for particular scenarios of exact representation and regression in ML obtained by representer theorems are studied in [Unser, 2[01](#page-35-0)9[\] a](#page-37-0)[n](#page-27-0)[d](#page-35-0) [\[](#page-36-0)[D](#page-37-0)[i](#page-26-0)[os](#page-27-0)[-](#page-37-0)[B](#page-38-0)[ru](#page-26-0)n[a](#page-37-0)[,](#page-38-0) [20](#page-0-0)[20\]](#page-75-0).

Problems

• How should the hyperparameters ϵ and λ be chosen in these problems? (Generalization)

• How can the relaxed problems be solved, and how can solutions of the primal problems be found? (Numerical algorithms)

4 **D F**

Table of Contents

[Introduction](#page-2-0)

[Relaxation](#page-27-0)

[Discretization and algorithms](#page-53-0)

5 [Numerical simulations](#page-68-0)

э

4. 三下

4 ロ ▶ 4 何 ▶

Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N \ / \ \{ (x'_i, y'_i) \}_{i=1}^{N'}$.

 $\leftarrow \equiv +$

÷ **IN**

K ロ ▶ K 何 ▶

÷.

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N \ / \ \{ (x'_i, y'_i) \}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{\left(\textit{x}_{i}^{\prime},\textit{f}_{\textsf{shallow}}(\textit{x}_{i}^{\prime},\Theta)\right)\}_{i=1}^{N^{\prime}}$

4 **D F**

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N \ / \ \{ (x'_i, y'_i) \}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{\left(\textit{x}_{i}^{\prime},\textit{f}_{\textsf{shallow}}(\textit{x}_{i}^{\prime},\Theta)\right)\}_{i=1}^{N^{\prime}}$

o Empirical measures:

$$
m_{\text{train}} = \frac{1}{N} \sum_{i=1}^N \delta_{(x_i, y_i)}, \quad m_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, y'_i)}, \quad m_{\text{pred}}(\Theta) = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, f_{\text{shallow}}(x'_i, \Theta))}.
$$

4 **D F**

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N \ / \ \{ (x'_i, y'_i) \}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{\left(\textit{x}_{i}^{\prime},\textit{f}_{\textsf{shallow}}(\textit{x}_{i}^{\prime},\Theta)\right)\}_{i=1}^{N^{\prime}}$

o Empirical measures:

$$
m_{\text{train}} = \frac{1}{N} \sum_{i=1}^N \delta_{(x_i, y_i)}, \quad m_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, y'_i)}, \quad m_{\text{pred}}(\Theta) = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, f_{\text{shallow}}(x'_i, \Theta))}.
$$

4 **D F**

э

- Training/Testing dataset: $\{(x_i, y_i)\}_{i=1}^N \ / \ \{ (x'_i, y'_i) \}_{i=1}^{N'}$.
- **Predictions** on testing set by the shallow NN with parameter Θ :

 $\{\left(\textit{x}_{i}^{\prime},\textit{f}_{\textsf{shallow}}(\textit{x}_{i}^{\prime},\Theta)\right)\}_{i=1}^{N^{\prime}}$

Empirical measures: \bullet

$$
m_{\text{train}} = \frac{1}{N} \sum_{i=1}^N \delta_{(x_i, y_i)}, \quad m_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, y'_i)}, \quad m_{\text{pred}}(\Theta) = \frac{1}{N'} \sum_{i=1}^{N'} \delta_{(x'_i, f_{\text{shallow}}(x'_i, \Theta))}.
$$

Theorem (L.-Zuazua,2024)

Let $W_1(\cdot, \cdot)$ denote the Wassernstein-1 distance. If σ is 1-Lipschitz, then for any Θ ,

$$
W_1(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq \underbrace{2W_1(m_{\text{train}}, m_{\text{test}})}_{\text{Bias from datasets}} + r(\Theta), \quad \text{where}
$$
\n
$$
r(\Theta) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} |f_{\text{shallow}}(x_i, \Theta) - y_i|}_{\text{Bias from training}} + \underbrace{W_1(m_{\text{train}}, m_{\text{test}})}_{\text{"Variance}'} \underbrace{\sum_{j=1}^{P} |\omega_j| ||a_j||}_{\text{Wariance} \times \text{Wariance}'}.
$$
\nLUU (FAU DCN-AvH)

\nBensque

\n

Generalization bounds by optimal solutions

Fix the following:

- \bullet σ : ReLU;
- $\Omega \colon\thinspace B^{d+1}(0,1);$
- $\ell(\cdot)=|\cdot|.$

Recall that

 $W_1(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq 2W_1(m_{\text{train}}, m_{\text{test}})$ Bias from datasets $+r(\Theta)$.

 Ω

Generalization bounds by optimal solutions

Fix the following:

- \bullet σ : ReLU;
- $\Omega \colon\thinspace B^{d+1}(0,1);$
- $\rho(\cdot) = |\cdot|$.

Recall that

$$
W_1(m_{\text{test}}, m_{\text{pred}}(\Theta)) \leq \underbrace{2W_1(m_{\text{train}}, m_{\text{test}})}_{\text{Bias from datasets}} + r(\Theta).
$$

Proposition

Let $P\geq N$. For any $\epsilon\geq 0$ and $\lambda>0$, let Θ_ϵ and $\Theta_\lambda^{\rm reg}$ λ^{reg} be the solutions of (P_{ϵ}) (P_{ϵ}) and (P_{λ}^{reg}) , respectively. Then,

$$
r(\Theta_{\epsilon}) \leq \mathcal{U}(\epsilon) \coloneqq \epsilon + C \text{ val}(P_{\epsilon});
$$

$$
r(\Theta_{\lambda}^{\text{reg}}) \leq \mathcal{L}(\lambda) \coloneqq \max\{\lambda^{-1}, C\} \text{ val}(PR_{\lambda}^{\text{reg}}),
$$

where $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- 4 何) 4 三)

 QQQ

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

Optimal value of λ : $\lambda^* = C^{-1}$.

÷.

 299

イロト イ部 トイヨ トイヨト

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

÷.

 299

イロト イ部 トイヨ トイヨト

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
	- **1** if $C < c_0^{-1}$, then $\epsilon^* = 0$;

G.

 QQ

メロトメ 倒 トメ ヨ トメ ヨ ト

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

1 if $C < c_0^{-1}$, then $\epsilon^* = 0$; 2 if $C\geq c_0^{-1}$, then ϵ^* satisfies the first-order optimality condition $C^{-1}\in[c_{\epsilon^*},C_{\epsilon^*}].$

э

 QQ

4 0 F

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :

1 if $C < c_0^{-1}$, then $\epsilon^* = 0$; 2 if $C\geq c_0^{-1}$, then ϵ^* satisfies the first-order optimality condition $C^{-1}\in[c_{\epsilon^*},C_{\epsilon^*}].$

э

 QQ

4 0 F

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
	- $\textbf{1}$ if $C < c_0^{-1}$, then $\epsilon^* = 0$; **2** if $C \geq c_0^{-1}$, then ϵ^* satisfies the first-order optimality condition $C^{-1}\in[c_{\epsilon^*},C_{\epsilon^*}].$

Here, $(c_{\epsilon}, C_{\epsilon})$ is related to the solutions of the dual problem of (PR_{ϵ}) (PR_{ϵ}) .

4 **D F**

э

Recall that $C = W_1(m_{\text{train}}, m_{\text{test}})$.

- Optimal value of λ : $\lambda^* = C^{-1}$.
- Optimal value of ϵ :
	- **1** if $C < c_0^{-1}$, then $\epsilon^* = 0$; 2 if $C\geq c_0^{-1}$, then ϵ^* satisfies the first-order optimality condition $C^{-1}\in[c_{\epsilon^*},C_{\epsilon^*}].$

Here, $(c_{\epsilon}, C_{\epsilon})$ is related to the solutions of the dual problem of [\(PR](#page-31-1)_{$_{\epsilon}$}).

Table of Contents

[Introduction](#page-2-0)

[Relaxation](#page-27-0)

4 [Discretization and algorithms](#page-53-0)

5 [Numerical simulations](#page-68-0)

4 0 8

 \leftarrow \overline{m} \rightarrow

э \sim э

Relaxed problems are convex, but in an infinite-dimensional space.

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \|\phi \,\mu - Y\|_{\ell^\infty} \le \epsilon. \tag{PR_{\epsilon}}
$$

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\text{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \mu - y_i|.
$$
 (PR_λ^{reg})

イロト イ押 トイヨ トイヨト

÷.

 2990

Relaxed problems are convex, but in an infinite-dimensional space.

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \|\phi \,\mu - Y\|_{\ell^\infty} \le \epsilon. \tag{PR_{\epsilon}}
$$

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\text{TV}} + \frac{\lambda}{N} \sum_{i=1}^{N} |\phi_i \mu - y_i|.
$$
 (PR_λ^{reg})

4 ロ 4 何 }

 $\leftarrow \equiv$ \rightarrow $\rightarrow \equiv$

A general approach: Discretization, then Optimization.

目

Relaxed problems are convex, but in an infinite-dimensional space.

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \|\phi \,\mu - Y\|_{\ell^\infty} \le \epsilon. \tag{PR_{\epsilon}}
$$

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^N |\phi_i \mu - y_i|.
$$
 (PR_λ^{reg})

A general approach: Discretization, then Optimization.

Two numerical scenarios

1 When dim($Ω$) = $d + 1$ is small, discretize $Ω$ by a mesh, then optimize by the simplex method.

 Ω

イロト イ押 トイヨ トイヨ トー

Relaxed problems are convex, but in an infinite-dimensional space.

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{TV}, \quad \text{s.t. } \|\phi \,\mu - Y\|_{\ell^\infty} \le \epsilon. \tag{PR_{\epsilon}}
$$

$$
\inf_{\mu \in \mathcal{M}(\Omega)} \|\mu\|_{\mathsf{TV}} + \frac{\lambda}{N} \sum_{i=1}^N |\phi_i \mu - y_i|.
$$
 (PR_λ^{reg})

A general approach: **Discretization**, then **Optimization**.

Two numerical scenarios

- **1** When dim($Ω$) = $d + 1$ is small, discretize $Ω$ by a mesh, then optimize by the simplex method.
- 2 When dim $(\Omega)=d+1$ is great, discretize $(\mathsf{PR}_{\lambda}^{\mathsf{reg}})$ by an overparameterized version (problem (P_{λ}^{reg}) (P_{λ}^{reg}) with a large P), then optimize by the SGD algorithm.

KOD KAP KED KED E VAA

• Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

重

 2990

イロト イ部 トイヨ トイヨト

• Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

O Discretized problems:

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD_\epsilon}
$$

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1},\tag{PD}^{\text{reg}}_{\lambda}
$$

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j).$

イロト イ押ト イヨト イヨト

÷.

 299

O Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

O Discretized problems:

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD_\epsilon}
$$

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1},
$$
 (PD _{λ} ^{reg})

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j).$

• Error estimates:

 $|{\sf val}({\sf PD}_\epsilon) - {\sf val}({\sf PR}_\epsilon)|, \, |{\sf val}({\sf PD}^{\sf reg}_\lambda) - {\sf val}({\sf PR}^{\sf reg}_\lambda)| = \mathcal{O}(d_{\sf Hausdorff}(\Omega,\Omega_\hbar)).$

O Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

O Discretized problems:

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD_\epsilon}
$$

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1},
$$
 (PD _{λ} ^{reg})

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j).$

• Error estimates:

 $|{\sf val}({\sf PD}_\epsilon) - {\sf val}({\sf PR}_\epsilon)|, \, |{\sf val}({\sf PD}^{\sf reg}_\lambda) - {\sf val}({\sf PR}^{\sf reg}_\lambda)| = \mathcal{O}(d_{\sf Hausdorff}(\Omega,\Omega_\hbar)).$

Equivalent to linear programming problems, solvable using the simplex method.

 Ω G.

Q Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

• Discretized problems:

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD_\epsilon}
$$

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1},
$$
 (PD _{λ} ^{reg})

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j).$

• Error estimates:

 $|{\sf val}({\sf PD}_\epsilon) - {\sf val}({\sf PR}_\epsilon)|, \, |{\sf val}({\sf PD}^{\sf reg}_\lambda) - {\sf val}({\sf PR}^{\sf reg}_\lambda)| = \mathcal{O}(d_{\sf Hausdorff}(\Omega,\Omega_\hbar)).$

Equivalent to linear programming problems, solvable using the simplex method.

▶ Advantage: Terminates at an extreme point of the solution set, which corresponds to a solution of the primal problems.

KOD KAP KED KED E VAA

Q Discretization of the domain:

$$
\Omega \to \Omega_h = \left\{ (a_j, b_j) \right\}_{j=1}^M.
$$

• Discretized problems:

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1}, \quad \text{s.t.} \quad \|A\omega - Y\|_{\ell^\infty} \le \epsilon, \tag{PD_\epsilon}
$$

$$
\inf_{\omega \in \mathbb{R}^M} \|\omega\|_{\ell^1} + \frac{\lambda}{N} \|A\omega - Y\|_{\ell^1},
$$
 (PD _{λ} ^{reg})

where $A \in \mathbb{R}^{N \times M}$ with $A_{ij} = \sigma(\langle a_j, x_i \rangle + b_j).$

• Error estimates:

 $|{\sf val}({\sf PD}_\epsilon) - {\sf val}({\sf PR}_\epsilon)|, \, |{\sf val}({\sf PD}^{\sf reg}_\lambda) - {\sf val}({\sf PR}^{\sf reg}_\lambda)| = \mathcal{O}(d_{\sf Hausdorff}(\Omega,\Omega_\hbar)).$

Equivalent to linear programming problems, solvable using the simplex method.

- \triangleright **Advantage:** Terminates at an extreme point of the solution set, which corresponds to a solution of the primal problems.
- ▶ Limitation: Suffer from the curse of dimensionality.

KOD KAP KED KED E VAA

• Apply the SGD algorithm to the following overparameterized problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\bar{P}}} ||\omega||_{\ell^1} + \frac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^{\bar{P}} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right),
$$

where \bar{P} is large $^1.$

 1 The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc. QQ **← ロ → → ← 何 → ALCOHOL:**

• Apply the SGD algorithm to the following overparameterized problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\bar{P}}} ||\omega||_{\ell^1} + \frac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^{\bar{P}} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right),
$$

where \bar{P} is large $^1.$

Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

 1 The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc. 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} } QQ

• Apply the SGD algorithm to the following overparameterized problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\bar{P}}} ||\omega||_{\ell^1} + \frac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^{\bar{P}} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right),
$$

where \bar{P} is large $^1.$

Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

 1 The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc. 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} } QQ

• Apply the SGD algorithm to the following overparameterized problem:

$$
\inf_{\Theta \in (\mathbb{R} \times \Omega)^{\bar{P}}} ||\omega||_{\ell^1} + \frac{\lambda}{N} \sum_{i=1}^N \ell \left(\sum_{j=1}^{\bar{P}} \omega_j \sigma(\langle a_j, x_i \rangle + b_j) - y_i \right),
$$

where \bar{P} is large $^1.$

Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous solution, obtaining one with fewer than N activated neurons.

This approach is free from the curse of dimensionality but lacks rigorous convergence analysis.

 1 The convergence properties of SGD for the training of overparameterized NNs have been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019], [Bach, 2024, Chp.12], etc. **K ロ ト K 何 ト K ヨ ト K ヨ ト** \equiv Ω

Table of Contents

[Introduction](#page-2-0)

[Relaxation](#page-27-0)

[Generalization](#page-38-0)

[Discretization and algorithms](#page-53-0)

5 [Numerical simulations](#page-68-0)

э

化重新润滑脂

K ロ ▶ K 何 ▶

Classification in 2-D

造

 299

イロメス 御き スミメス ミメー

Classification in 2-D

(a) Datasets. (b) Testing accuracy w.r.t. ϵ . (c) Testing accuracy w.r.t. λ .

イロト イ部 トイヨ トイヨト

Classification in 2-D

(a) Datasets. (b) Testing accuracy w.r.t. ϵ . (c) Testing accuracy w.r.t. λ .

イロト イ部 トイモ トイモト

Þ

 299
Classification in 2-D

Conclusion:

- If the datasets have clear separable boundaries, consider (P_0) (P_0) , (P_{ϵ}) with $\epsilon \to 0$, or (P_{λ}^{reg}) (P_{λ}^{reg}) with $\lambda \to \infty$;
- If the datasets have heavily overlapping areas, consider the regression problem $({\mathsf P}_\lambda^{\sf reg})$ with a particular range of $\lambda \sim W_1^{-1}(m_{\text{train}}, m_{\text{test}})$.

 Ω

イロト イ押ト イヨト イヨト

Classification in a high-dimensional space

- The Mnist dataset, vectors in $\mathbb{R}^{28\times 28}$
- **•** Training data: 300 samples of numbers 0, 1, and 2.
- **•** Testing data: 1000 samples of numbers 0, 1, and 2.

4 0 8

 Ω

.

Classification in a high-dimensional space

- The Mnist dataset, vectors in $\mathbb{R}^{28\times 28}$
- Training data: 300 samples of numbers 0, 1, and 2.
- Testing data: 1000 samples of numbers 0, 1, and 2.

LIU (FAU DCN-AvH)

Aug 2024

Thank you!

重

 298

イロト イ部 トイモト イモト