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Energy based modelling

Port-Hamiltonian system/dissipative Hamiltonian systems:
Dynamics driven by energy functional H = H (z) and split into energy conserving and
energy dissipating mechanisms

C(z)∂t z = J(z)C(z)T H ′(z) − R(z)C(z)T H ′(z) + Bu (PH)

with J(z) skew symmetric, R(z) symmetric positive definite, and B describes the effect of
controls u.
Usually outputs are defined as y = BT H ′(z).

▶ Many important models such as gradient flows and compressible fluid dynamics can be
written in such a form.

▶ The energy based viewpoint is very helpful for coupling different models.

▶ This form ensures fundamental properties such as passivity.

We will restrict ourselves to C(z) = Id .
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Energy based modelling

It is easy to check that solutions of (PH) satisfy a power balance

∂tH (z) = −H ′(z)T R(z)H ′(z)︸ ︷︷ ︸
≤0

+yT u

Goal: Discretise (PH) so that a discrete power balance holds.

▶ We want energy decrease for u = 0

▶ We want energy conservation for R = 0, u = 0

▶ Also address the case where (PH) is a PDE.
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Continuous Petrov-Galerkin
for state independent J and R

Final time T > 0, m ∈ N. Consider time points 0 = t0 < t1 < ... < tm = T and a partition of
[0, T ] by subintervals

Iτ := {I1, ... , Im}, with Ii := [ti−1, ti ] Set τi := ti − ti−1.

Let Pk (Ii ; Rn) denote polynomials of degree at most k mapping Ii to Rn. We define spaces of
piecewise polynomial functions

Vk (Iτ ) := {z ∈ L∞(I; Rn) : z|Ii ∈ Pk (Ii ; Rn) for all i}, and

Vc
k (Iτ ) := Vk (Iτ ; Rn) ∩ C(I; Rn).

Petrov-Galerkin discretisation:
Seek zτ ∈ Vc

k (Iτ ) such that∫ T

0
ϕT
τ∂t zτ dt =

∫ T

0
ϕT
τJH ′(zτ ) − ϕT

τRH ′(zτ ) + ϕT
τBu dt ∀ϕτ ∈ Vk−1(Iτ )

For lowest order (k = 1) this is the Crank-Nicolson method
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Energy consistency for state independent J, R

Let Π be L2-orthogonal projection Π : L2(0, T ; Rn) → Vk−1(Iτ ) then we can use
ϕτ = Π(H ′(zτ )) as test function: (use u = 0 for simplicity)∫

Ii

Π(H ′(zτ ))T∂t zτ dt =
∫

Ii

Π(H ′(zτ ))T JH ′(zτ ) − Π(H ′(zτ ))T RH ′(zτ ) dt

This implies∫
Ii

H ′(zτ )T∂t zτ dt =
∫

Ii

Π(H ′(zτ ))T JΠ(H ′(zτ )) − Π(H ′(zτ ))TΠ(RH ′(zτ )) dt

= −
∫

Ii

Π(H ′(zτ ))TΠ(RH ′(zτ )) dt ≤ 0

Thus, H (zτ (ti )) = H (zτ (ti−1)) −
∫

Ii
Π(H ′(zτ ))T RΠ(H ′(zτ )).

Petrov-Galerkin schemes easily achieve the goal for J, R constant.
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Modifying Petrov Galerkin I

The proof shown above only works if J, R are independent of z, since, in general,∫
Ii

Π(H ′(zτ ))T JΠ(H ′(zτ )) dt ̸=
∫

Ii

Π(H ′(zτ ))T JH ′(zτ ) dt

First suggestion for a modified Petrov-Galerkin scheme: Seek zτ ∈ Vc
k (Iτ ) such that∫

Ii

ϕT
τ∂t zτ dt =

∫
Ii

ϕT
τJ(zτ )Π(H ′(zτ )) − ϕT

τR(zτ )Π(H ′(zτ )) + ϕT
τBu dt ∀ϕτ ∈ Pk−1(Ii ; Rn)

An analogous computation as above shows

H (zτ (ti )) = H (zτ (ti−1)) −
∫

Ii

Π(H ′(zτ ))T R(zτ )Π(H ′(zτ )),

we get the desired energy consistency.
▶ Method is easy to implement: (2k · n) × (2k · n) system of equations in each time step.
▶ In practice we need a quadrature formula to compute the projection
▶ Introducing the projection is equivalent to introducing an auxiliary variable.
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(Some) existing methods

▶ Discrete gradient methods: Gonzalez ’96, McLachlan, Quispel & Robidoux ’99 are
exactly energy-preserving for Hamiltonian systems and, classically, of second order.
High-order generalizations e.g.Eidnes ’22, Schulze ’23

▶ Averaged vector field collocation methods aka energy-preserving collocation methods:
Hairer ’10, Cohen & Hairer ’11, Hairer & Lubich ’14, Cellendoni & Hoiseth ’17; exactly
energy-preserving for Hamiltonian systems, energy-dissipating for gradient systems.

▶ Continuous Petrov-Galerkin methods using auxiliary variables: Morandin ’24

▶ Continuous Petrov Galerkin methods preserving several invariants using multiple
auxiliary variables: Andrews & Farrell ’24

August 21, 2024 | Numerische Mathematik | Jan Giesselmann | 9 Numerische
Mathematik



Rewriting the framework

The equation
∂t z = sign(z)

√
|z| =

z√
z

fits into the above framework with H (z) = 1
2 z2 and R(z) = 1√

z .
Here, the above discretisation creates a term of the form

Π(zτ )√
zτ

which is problematic: The denominator might be zero at certain points where the enumerator
is not.

When we focus on cases where H is strictly convex, i.e. H ′ is invertible, then we can
define J̃ such that J̃(H ′(z)) = J(z) and absorb everything:

j(η,ϕ) := ϕT J̃(η)η, r (η,ϕ) := ϕT R̃(η)η
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Rewriting the framework II

It seems more natural to consider problems of the form∫ T

0
ϕT∂t z dt =

∫ T

0
j(H ′(z),ϕ) − r (H ′(z),ϕ) − ϕT Bu dt (PHnl)

for a suitable set of test functions ϕ.
Then, ’natural’ numerical schemes read:
Seek zτ ∈ Vc

k (Iτ ) such that∫
Ii

ϕT
τ∂t zτ dt =

∫
Ii

j(Π(H ′(zτ )),ϕτ ) − r (Π(H ′(zτ )),ϕτ ) + ϕT
τBu dt ∀ϕτ ∈ Pk−1(Ii ; Rn)

or ∫
Ii

ϕT
τ∂t zτ dt = Qi

[
j(Π(H ′(zτ )),ϕτ ) − r (Π(H ′(zτ )),ϕτ ) + ϕT

τBu
]

∀ϕτ ∈ Pk−1(Ii ; Rn)

for some quadrature Qi .
We have energy conservation/dissipation as long as Qi has non-negative weights.
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Example 1: the Toda lattice

We describe the motion of a chain of particles in 1D. Each particle is connected to its nearest
neighbors with an exponential spring. Let the control exert a force on the first particle.
For N particles, q ∈ RN denotes their displacement vector and p ∈ RN their momentum. We
set z := (q, p)T and have the form (PH) with

J =
(

0 IN
−IN 0

)
∈ R2N×2N , R =

(
0 0
0 diag(γ1, ... , γN )

)
∈ R2N×2N , B =

(
0
e1

)
∈ R2N×1.

Here IN ∈ RN×N is the identity matrix, γi ≥ 0 are given damping parameters, and e1 is the
first unit vector.
The Hamiltonian of the system reads

H (z) =
N∑

k=1

1
2

p2
k +

N−1∑
k=1

exp(qk − qk+1) + exp(qN − q1) − N
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Varying polynomial degrees k
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Left: Optimal decay rates in L∞ for different polynomial degrees k
Right: Nodal super convergence (order 2k ) for different polynomial degrees k
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Varying numbers of quadrature points
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Left: Varying the number of (Gauss) quadrature nodes sQ in Qi

Right: Varying the number of (Gauss) quadrature nodes sΠ for computing the projection
⇒ Taking sQ = k = sΠ seems optimal.
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Example 2: Spinning rigid body

A rigid body spinning around its center of mass in the absence of gravity can be modeled by
(PH) with z = (p1, p2, p3)T the vector of angular momenta of the body and

J̃(z) =

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 , R = 0, and B̃ =

b1

b2

b3

 ,

where B̃ is the axis around which torque is applied, and u ∈ R is a given control. The
Hamiltonian

H (z) = 1
2

3∑
i=1

Ii z
2
i

is quadratic with I1, I2, I3 > 0 the principal moments of inertia.
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Simulation rigid spinning body
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Left: Decay of L∞ error: order (k + 1) ⇒ optimal.
Middle: Decay of nodal error: order (2k ) ⇒ nodal super convergence.
Right: Energy conservation up to 10−14 nearly machine precision.

August 21, 2024 | Numerische Mathematik | Jan Giesselmann | 17 Numerische
Mathematik



Overview

Port-Hamiltonian systems

Temporal discretisation

Numerical experiments (time discretisation)

Examples of port-Hamiltonian PDEs

Spatial discretisation

August 21, 2024 | Numerische Mathematik | Jan Giesselmann | 18 Numerische
Mathematik



Example 1: Quasilinear wave equation

∂tρ + div (v ) = 0,

∂t v + div (p(ρ)) = −F (v ) + ν∆v ,
with boundary conditions

(p(ρ)I − ν∇v )n = g on (0, T ) × ∂Ω

where n is the unit outer normal. Set z = (ρ, v )T and

H(z) :=
∫
Ω

P(ρ) +
1
2
|v |2 d x for P(ρ) :=

∫ ρ

0
p(r ) d r .

Then, H ′(z) = (p(ρ), v ) and for any ϕ = (ξ, w)T we have∫
Ω

∂t z · ϕ d x =
∫
Ω

p(ρ) div (w) − div (v ) ξ d x︸ ︷︷ ︸
=:j(H ′(z),ϕ)=j((p(ρ),v ),ϕ)

−
∫
Ω

F (v ) · w + ν∇v : ∇w d x︸ ︷︷ ︸
=:r (H ′(z),ϕ)

−
∫
∂Ω

g · w dσ︸ ︷︷ ︸
boundary ’control’

,
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Expl 2: Doubly nonlinear parabolic equations

We consider strictly monotone functions α : R → R and β : Rn → Rn and the PDE

∂t z − div
(
β
(
∇(α−1(z))

))
= 0.

with boundary conditions:

β(∇α−1(z)) · n = 0 on (0, T ) × ∂Ω

This has the form (PHnl) with j = 0,

H such that H ′(z) = α−1(z), and r (χ,ϕ) =
∫
Ω

β(∇χ) · ∇ϕ.

Several popular models have this form:
▶ porous medium equation
▶ p-Laplace equation
▶ ’ISO3’ model describing friction dominated flow in gas pipelines:

z = ρ, η′(ρ) = ρp′(ρ), and β(q) =
q√
|q|
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Spatial discretisation I

In ODEs: j : Rn × Rn → R, r : Rn × Rn → R
In PDEs: j : X × X → R, r : X × X → R where X is some (infinite dimensional) Banach
space:

▶ Wave equation: X = L2(Ω) × H1(Ω)

▶ Doubly nonlinear parabolic model: X = W 1,p(Ω) for some suitable p > 1.

j , r are linear in their second arguments and satisfy

j(χ,χ) = 0, r (χ,χ) ≥ 0

Method of lines:

▶ Discretise the problem in space such that we obtain a finite dimensional ODE of the
form (PHnl).

▶ Apply time discretisation as described above.
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Spatial discretisation I

Let Xh ⊂ X ⊂ L2(Ω) finite dimensional, then a Galerkin spatial semi-discretisation would be
(u = 0 for brevity) to seek zh ∈ C1([0, T ], Xh) such that∫

Ω

ϕT
h ∂t zh d x = j(H ′(zh),ϕh) − r (H ′(zh),ϕh) ∀ϕh ∈ Xh

This does not satisfy an energy balance! However, when Πh : X → Xh denotes
L2-orthogonal projection, we may consider∫

Ω

ϕT
h ∂t zh d x = j(Πh(H ′(zh)),ϕh) − r (Πh(H ′(zh)),ϕh) ∀ϕh ∈ Xh

which satisfies an energy balance:

d
dt

H (zh) = −r (Πh(H ′(zh),Πh(H ′(zh))
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Spatial discretisation II

The discretisation∫
Ω

ϕT
h ∂t zh d x = j(Πh(H ′(zh)),ϕh) − r (Πh(H ′(zh)),ϕh) ∀ϕh ∈ Xh (∗)

is of the form (PHnl) with

jh(χ,ϕh) := j(Πh(χ),ϕh), rh(χ,ϕh) := r (Πh(χ),ϕh)

▶ Introducing the projection is equivalent to introducing and auxiliary variable in the
sense that (∗) is equivalent to∫

Ω

ϕT
h ∂t zh d x = j(χh,ϕh) − r (χh,ϕh) ∀ϕ ∈ Xh∫
Ω

ψT
h χh d x =

∫
Ω

ψT
h H ′(zh) d x ∀ψ ∈ Xh

▶ Standard Galerkin form, but size doubled.
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Convergence in τ for quasilinear wave equation
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Left: ν = 0 convergence in L∞(0, T ; L2(Ω)) for τ → 0.
Middle: ν = 1 convergence in L∞(0, T ; L2(Ω)) for τ → 0.
Right: ν = 1 nodal super convergence in ℓ∞({ti}; L2(Ω)) for τ → 0.
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Convergence in τ for quasilinear wave equation
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Left: ν = 1 convergence in L∞(0, T ; L2(Ω)) for τ → 0 is uniform in h
Right: ν = 1 error in energy balance
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Summary and Outlook

▶ Systematic way to construct structure preserving space and time discretisations of
port- Hamiltonian systems

▶ Similar methods have been used case by case for space discretisation in many special
cases before

▶ Order is optimal (relative to polynomial degree) and arbitrary (can be increased by
increasing polynomial degree)

▶ Discretisation is of Galerkin type (“simple”) but doubles systems size

▶ Systematic investigation of h → 0 limit

▶ A priori and a posteriori error estimates

▶ Generalizing the class of systems: C(z)∂t z instead of ∂t z
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Thank you for your attention!
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